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Abstract

Software simulation of embedded systems is generally
less expensive and offers more flexibility than direct test-
ing on hardware. In embedded systems, it is necessary to
consider the concurrency and timing properties of the tar-
get system that are not captured by the sequential execution
of its code. To account for the timing properties of the target
system, the simulator must be able to estimate the timing be-
havior of the system under simulation. This paper proposes
a method to efficiently extract a timing profile from the tar-
get system that allows the simulator to accurately estimate
the timing characteristics of the embedded system.

1. Introduction

Software simulation of embedded systems provides sev-
eral advantages over direct hardware testing. First, it is usu-
ally less expensive to run many trials in simulation rather
than running tests directly on the hardware, especially if the
intent is to perform many thousands of trials. Second, it of-
fers more flexibility because different testing environments
can be constructed and applied more efficiently in software.
However, in embedded systems, it is necessary not only to
account for the functional characteristics of the target sys-
tem but also the concurrency and timing properties not cap-
tured by the sequential execution of its code.

Running a functional software model of the target sys-
tem on a general-purpose machine will not generally yield
the same timing behavior as the actual hardware because
the machine running the simulation has completely different
hardware specifications from the system it simulates. This
paper proposes a method to extract and encode the timing
profile of a target system, given access to the system, such
that a pure software simulation can use the timing profile to
accurately estimate the target system’s timing characteris-
tics.

2. Related Work

In the Access Point Event Simulation of Legacy Embed-
ded Software Systems (APES-LESS) project [7], Resmerita
presents an approach for efficient simulation of software
models mapped to platform abstractions. Any line of the
embedded source code containing an I/O access is consid-
ered an access point, where process control is returned to
the APES engine to compute the next set of environment
variables or to analyze the current simulation state. The
APES simulation engine uses the discrete-event domain in
the Ptolemy II framework [2], where the time stamps of the
access point events are computed from the estimated execu-
tion times between consecutive access points. Considering
that many target platform tasks may be executing concur-
rently, it is imperative that the time stamps be accurate to
effectively model the concurrent behavior of the target sys-
tem.

Seshia in [9] describes a method to estimate the worst-
case execution time of a target platform by modeling the
estimation problem as a game between the estimation al-
gorithm and the environment. The estimation algorithm at-
tempts to find the longest path through the program while
the environment sets environmental parameters to thwart
it. The technique relies on computing a set of basis paths
through the control flow graph (CFG) of the program that is
a good “representative” set of all the other paths in the CFG.
The algorithm then proceeds to sample these paths, and uses
the limited timing data it obtains to estimate the worst-case
execution time and path. Many of the techniques in this
paper are borrowed from [9], and the relevant aspects are
described in the next section.

3. Methodology

3.1. Timing Model

In this section, an overview of the timing model is pre-
sented. We first define the control flow graph, and then de-



scribe its connection with timing estimation.
The control flow graph (CFG) of a program is a represen-

tation of the program’s code as a weighted directed graph,
where each node represents a statement in the code, and its
outgoing directed edges represent the statements that im-
mediately follow it. In most cases, a statement simply leads
to the next. However, a conditional statement, such as an
if or switch statement, may have more than one outgo-
ing edge. The edge taken by the control flow of a particular
execution of the program depends on the result of the con-
ditional statement.

Consider the following simple program:

void func(int x, int y) {
if(x > y) {

x = 3;
}
else {

y = x;
}
return;

}

Figure 1 shows the CFG of the above program, with
the nodes labeled by their corresponding statements and the
edges labeled by the conditions required to traverse them.
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Figure 1. Control flow graph of a simple program.

In this model, we assume that all loops are unrolled so
that the CFG is acyclic, and an execution of the program
corresponds to a path from the start node (source) to the
end node (sink). A basic block is a sequence of statements
with no conditionals and where only the first node of the
basic block may have more than one incoming edge. In
other words, not only does a basic block execute sequen-
tially from start to finish, but the execution of a program
can never jump to the middle of a basic block from outside
the block. Using this definition of a basic block, the CFG
can be simplified by compressing all the statements in a ba-
sic block to a single node.

The time required to execute a basic block is represented
in the CFG by the weight of the outgoing edge from its cor-
responding node. If the node has more than one outgoing

edge, such as the node for an if statement, then the time to
execute the conditional statement depends on the outcome
of its predicate. This is reasonable because an if statement
generally requires a jump if it evaluates to true but simply
falls through to the next statement if it evaluates to false.
Although this simplified timing model does not completely
reflect every aspect of realistic timing behavior, it serves as
a basis for abstracting the timing analsis, upon which addi-
tional details can be added.

3.2. Algorithm

In this section, the main algorithm of the paper is de-
scribed. The algorithm consists of running the program with
specialized inputs that drive the execution down particular
paths in the CFG. The timing information for each of these
executions is recorded and used to interpolate the execution
times for all the other paths.

The algorithm operates over a series of rounds. In each
round, the algorithm provides inputs to the target system
that drive the execution along a particular path. To find these
inputs, the algorithm uses a satisfiability solver on the con-
straints that the program’s conditional statements impose.

The problem can be formulated as follows. Every round,
the weights on the edges change, and the algorithm is only
allowed to try one path through the CFG and measure its ex-
ecution time, corresponding to the total weight of the path.
After T rounds, the algorithm must construct an estimate of
the average edge weights over all T rounds. Note that the
algorithm only receives the end-to-end time of the execu-
tion path, not the time required for each edge. This limited
timing data from each trial is the obstacle that the algorithm
attempts to circumvent.

3.2.1 Path Space

In order for the sampling procedure to be effective, the al-
gorithm must choose its sampling set carefully. In addition,
the number of paths that can be tested should be polynomial
in the number of edges of the CFG. There are an exponential
number of paths from the source to the sink, which makes
testing every possible path infeasible.

Every path through the CFG can be represented by an m-
bit vector, where m is the number of edges in the graph. If a
path traverses an edge, the bit corresponding to the edge is
set to 1. Bits corresponding to edges that are not traversed
are set to 0. These m-bit vectors form a subspace of di-
mension m− n + 2, where n is the number of nodes in the
graph. The dimension is m − n + 2 because the space of
paths consists only of vectors that satisfy flow conservation
at every vertex except the source and the sink. That is, a
path through the graph can be viewed as a flow, where ev-
ery unit of flow that comes into a node must leave the node,
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removing a degree of freedom per node. Thus, the dimen-
sion is the number of edges minus one per node, except for
the source and the sink, (m− (n− 2)).

A subspace of dimension b = m−n+2 is spanned by a
basis set of b vectors. However, rather than choose an arbi-
trary basis set, the algorithm will choose a special basis set
where every path can be represented as a linear combination
of basis paths with coefficients at most 2. This special basis
set is called a 2-barycentric spanner. Intuitively, a barycen-
tric spanner is a good “representative” set of all the other
paths in the graph since every path requires at most 2 times
any of the basis paths. It is analagous to how two perpen-
dicular vectors span R2 “more effectively” than two nearly
parallel vectors. Barycentric spanners were first introduced
in [1] by Awerbuch and Kleinberg, in which they provide an
efficient algorithm to compute a barycentric spanner over a
given subspace. Using a barycentric spanner ensures that
the subset of paths that are sampled effectively capture the
stochastic distribution of the delays on the edges and accu-
rately represent all other paths in the CFG.

3.2.2 Example

We now present an example of how paths can be represented
by vectors, and how they can be constructed by linear com-
binations of others paths. Each component of the vector
represents an edge of the graph.

Consider the CFG in Figure (2). In this CFG, each of
the edges is labeled with a number. Each component in an
edge vector represents the corresponding edge. For exam-
ple, the first component represents edge 1, the second rep-
resents edge 2, and so on.

The vector x = (1 0 1 0 1 0 1 0) represents the
path that goes from a to b to d to e to g. The vector
y = (0 1 0 1 0 1 0 1) represents the path that goes from
a to c to d to f to g. The vector z = (1 0 1 0 0 1 0 1) rep-
resents the path that goes from a to b to d to f to g. These
vectors form a basis set for the CFG. Another path in the
CFG is u = (0 1 0 1 1 0 1 0), corresponding to a, c, d, e, g.
This path can be written as a linear combination of x, y and
z as follows: u = x + y− z. Note that in general the coef-
ficients for the basis vectors are not restricted to 1 and −1.
They could potentially be very large in more complex CFGs
unless the right set of basis paths is selected.

The main steps of the algorithm will now be described.
Let B be a matrix where each row is a basis vector. The
ordering of the basis vectors as rows in B can be arbitrary.
Call the first row of B basis vector 1, the second row basis
vector 2, and so on. From the example above, the matrix
would be

B =




1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 1
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Figure 2. Control flow graph.

Notice that the number of basis paths, b, is less than m,
the number of edges. Hence, B is not a square matrix (its
dimensions are b × m). Let B+ denote its pseudoinverse,
with dimensions m× b.

The algorithm is as follows. It is a simplified version of
the GAMETIME algorithm in [9].

1. Compute a 2-barycentric spanner over the subspace of
paths through the CFG.

2. Construct B and compute B+.

3. In each round from t = 1 to T :

(a) Choose a basis path uniformly at random. Call it
basis vector i.

(b) Measure the time of execution ct for the chosen
basis path.

(c) Let ŵt equal the ith column of B+ multiplied by
bct (recall that b is the number of basis vectors).
ŵt is the estimated weight vector for round t.

4. Compute w = 1
T

∑T
t=1 ŵt (the average of the esti-

mated weight vectors over all the rounds).

The result w is an m-vector, each component containing
the estimated weight for its corresponding edge.

These edge weights can now be used to construct the
estimated path length of any path through the CFG, even
those that were not directly sampled by the algorithm. With
the appropriate assumptions, it can be shown that these esti-
mated edge weights are close to the true edge weights with
high probability. A necessary assumption is that the max-
imum time for any basis path in any round is bounded by
M . This limits how significantly the edge weights can vary
from round to round.

An intuitive explanation of how the algorithm works is
as follows. Suppose in every round, the algorithm were al-
lowed to try every basis path instead of only one. Then it
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would be straightforward to calculate the estimated weights
on the edges for round t. It would only require taking the in-
verse linear transformation to obtain edge weights from ex-
ecution times. Specifically, for round t, let lt be a b-vector
with the time for each basis path in the corresponding com-
ponent. The algorithm would then compute B+lt = ŵt.
Any error would stem from the fact that B+ is only the
pseudoinverse of B rather than the true inverse. However,
this would be the best one could hope for in estimating the
edge weights for round t given end-to-end timing data.

Now returning to the original situation, the algorithm is
only allowed to test one basis path per round. To compen-
sate for only sampling one basis path, it “normalizes” (mul-
tiplies) the time required for the basis path by b to make up
for the fact that this basis path is only sampled once every
b rounds in expectation. Being able to sample only one ba-
sis vector in every round is potentially a significant source
of error. However, by showing that the sampling procedure
results in an unbiased estimator of the edge weights over
the T rounds, we can deduce that in expectation, the es-
timated edge weights won’t be too far off from the actual
edge weights.

3.2.3 Example

Returning to the example from above, the pseudoinverse of
B is

B+ =





.125 −.125 .25

.125 −.375 −.25

.125 −.125 .25

.125 .375 −.25

.375 .125 −.25
−.125 .125 .25

.375 .125 −.25
−.125 .125 .25





Suppose that over T rounds, the average time for basis
path 1 is 12 seconds, the time for basis path 2 is 40 seconds,
and the time for basis path 3 is 18 seconds. Then ŵ, the
estimated weights vector, would be

ŵ = B+




12
40
18



 =





1
12
1
12
5
8
5
8





This estimated weights vector is then used to estimate the
path lengths for the other paths. For example, if we wanted
to estimate the path length of u from the previous example,
we would take the dot produce of u and w, which in this
case is 34 seconds.

Due to the lack of space, a formal bound on the error of
the algorithm is deferred to the Appendix.

4. Experiments

The implementation of the proposed timing estimation
method builds on CREST [3], which is closely based on
CUTE [8]. CREST is a branch coverage testing tool, de-
signed to verify general-purpose programs written in C. It
uses CIL [5] to process and instrument the C code. CIL
also extracts the CFG, which is used by CREST to generate
the inputs for program execution. CREST uses Yices [4], a
satisfiability solver developed by SRI, to find satisfying as-
signments to conditionals. None of the aforementioned pro-
grams address timing issues in their verification processes,
instead focusing on bugs and reachability properties.

The linear algebra manipulations required in the timing
estimation make use of the Numpy library in the Python
programming language.

The experiments were done on fragments of code from
the open source PapaBench [6] software for an unmanned
aerial vehicle. The first is called “Altitude” and the second
is called “Climb Control.” The trials were performed us-
ing SimIt-Arm 2.1 [10], a cycle accurate simulator of the
StrongARM architecture.

The results of the experiments are shown in Table 1.

Altitude Climb Control
Nodes 15 50
Edges 19 66

Basis Paths 6 18
Paths 11 657

Non-basis Paths Tested 5 94
Mean (cycles) 794 1178

Std Dev 54% 35%
Avg Est. Diff. 0.9% 2.5%
Max Est. Diff. 1.62% 12.7%

Table 1. Results of the experiments.

The experiments show that for small programs, the tim-
ing estimation method is accurate to well within the stan-
dard deviation over all the paths. The standard deviation
above is the variation among all feasible paths through the
program, and the mean is the average number of cycles over
the paths.

Because the experiments were done on a simulator, the
execution time for a given input was deterministic. How-
ever, the algorithm as specified in Section 3 can be applied
when the execution times are nondeterministic. That is,
given a fixed input that drives the execution down a partic-
ular path, the execution time can vary. An extension to the
experiments is to prepare the processor in a random state
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so that the execution time for a given path varies even on
the same input. For example, the state of the cache when
execution begins can change the path length from round to
round even for a fixed input.

5. Conclusion

This paper presented a method to extract the timing pro-
file from a target platform running a specified program. It
differs from [9] in that it focuses on constructing a tim-
ing profile for a portion of code, rather than aiming for the
worst-case execution time of an entire program. In addition,
the timing profile has leeway for some error, as its goal is
not to find one correct answer (e.g. the worst case execution
time) but instead to provide an efficient, albeit less accurate,
alternative to directly testing on hardware. Possible future
improvements include augmenting the timing model to ac-
count for more timing effects.

6. Appendix

We formally bound the error of the algorithm. Let w∗ be
an m-vector denoting the true average weights of the edges
over rounds 1 to T .

Theorem 6.1 With probability at least 1 − δ, for all paths
x in the CFG,

∣∣(w −w∗)T x
∣∣ ≤ 2bM

T
1
2

√
2 ln (2b/δ)

That is, with high probability, the difference between the
estimated average path time and the actual average path
time is bounded by an expression that approaches 0 as T ,
the number of rounds, goes to infinity.

Proof: Let it denote which basis vector was sampled in
round t. Let dt be a b-vector with bct in the itth component
and 0 elsewhere. Let lt be a b-vector whose ith component
contains the execution time for basis path i in round t.

dt is the algorithm’s observation in round t. It has only
one non-zero component. lt contains all the execution times
for the basis paths in round t (only one of which the algo-
rithm was able to observe).

Then eτ =
∑τ

t=1 (dt − lt) is a vector whose ith com-
ponent contains the total error of the algorithm’s estimate of
the execution time of basis path i over the past τ rounds.

We first need to show that every component of eτ is
a bounded martingale sequence with respect to the filter
(i1, i2, . . . , iτ−1) (the random choices of the algorithm).
That is, we need to show that for every component j of eτ ,
E(ej,τ | i1, i2, . . . , iτ−1) = ej,τ−1 and that |ej,τ − ej,τ−1|
is bounded. Then we can apply Azuma’s inequality to com-
pute a concentration bound, which leads to the theorem’s
result.

It is easy to see that ej,τ = ej,τ−1 + dj,τ − lj,τ .
Then observe that E(dj,τ ) = lj,τ , because in every

round, the algorithm uniformly chooses a basis path to sam-
ple. Thus, E(ej,τ | i1, i2, . . . , iτ−1) = ej,τ−1 by linearity
of expectation.

Next we need to bound |ej,τ − ej,τ−1|. Notice that the
most ej,τ−1 can change in one round is |dj,τ − lj,τ |.

dj,τ = lj,τ b (the execution time for basis j multiplied
by b). Thus, |dj,τ − lj,τ | ≤ bM , since we assume that the
execution time for any basis path is bounded by M .

Now we apply Azuma’s Inequality to arrive at

Pr
(
ej,T > bM

√
2T ln (2b/δ)

)
≤ δ

b

This holds for any single basis path j. Taking the union
bound over all b basis paths, we find an upperbound for the
probability that all the basis paths satisfy the above proba-
bility.

Pr
(
∀ basis paths j, ej,T > bM

√
2T ln (2b/δ)

)
≤ δ

Having bound the error for the basis paths, we now use
the properties of the barycentric spanner to bound the error
on the rest of the paths.

Because any path can be written as a linear combination
of the basis paths with coefficients less than or equal to 2,
in the worst case, the probability that the error of any path
is greater than 2bM

√
2T ln (2b/δ) is negligible.

Let x = BT k. The total error in the estimation of path
x over T rounds is then |eT · k|. Hence, for all paths x =
BT k,

Pr
(

|eT · k| > 2bM
√

2T ln (2b/δ)
)
≤ δ

Note, however, that |eT · k| = T (w−w∗)T x. Thus, the
theorem follows by dividing the inequality in the probability
by T .
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