
Using 3D Graphics in Combination with other Models of Computation

Yasemin Demir, Man-Kit Leung

EECS 290N Report
May 15, 2009

University of California at Berkeley
Berkeley, CA, 94720, USA

Abstract

This paper presents a framework for developing a new
graphics domain, called GRO, in Ptolemy II [1]. GRO
is an OpenGL-based implementation that imports utilities,
semantic and functionalities of OpenGL. The specification
provides users to fully utilize the potential in the communi-
cation between the rendering engine and the computation
in the model. This bottom-up design approach allows de-
velopers to create a event-based MoC that provides user, a
sophisticated and exible specification. Based on OpenGL
advantages, GRO is a user-friendly graphic domain that
provides a declarative specification for the user to use. At
the same time, it can also achieves better computation ef-
ficiency by migrating computation from the model (CPU)
onto GPU’s. Demos are provided showing the implementa-
tion of the new graphics domain.

1 Introduction

3D computer graphics is popular in modern technolo-
gies. 3D displays and real-time 3D viewing of modern sys-
tems, such as 3D human animations, tele-immersion sys-
tems, real-time organ viewing, entertainment environments
and other applications of 3D computer graphics shows us
the attractiveness of 3D technologies in nowadays life.
Thus, 3D computer graphics turn out to be a significant tool
that allows users and developers more entertaining and vi-
sual platforms and this off-course increases the share in the
market.

Modern embedded systems also puts high demands on
simulations using 3D graphics. This also increases the het-
erogeneity of embedded systems that is another important
issue in modern technologies. However, this heterogeneity
needs special environments that supports simulating each

different subsystem and enabling the interaction between
these subsystems. A real-time walking robot control sys-
tem with a synchronous 3D visualization of its movements
can be a good example for such heterogeneous embedded
systems. In this example, a model of motion including cal-
culations of next position and next movement can be a sub-
system.

This makes Ptolemy II a good example for such environ-
ments that provides a broad range of computational models
in an actor based platform. Ptolemy II allows users combine
different models in different domains in the specified hier-
archy. This advantage of Ptolemy II encourages developers
to implement different platforms including such graphical
interfaces, allowing the combination of 3D graphics with
other models of computation (MoC) such as GR domain
[2].

GR domain provides rendering of two-dimensional and
three-dimensional graphics in Ptolemy II that is based on
Java3D semantics and has a scheduling order based on
scene graphs that are used to optimized the rendering of
complex scene. It imposes certain constraints on scene ob-
jects. The representation is an directed acyclic graph which
is a directed graph with no closed cycles. Each leaf node
of a scene graph contain an object of within the scene to be
drawn. The object can possibly be empty or null, in which
case it is not rendered in the resulting image. Each immedi-
ate node (s.t. it has one or more children nodes) represents a
coordinate space in which its children exist. The immediate
node itself is a transformation that transforms the coordinate
space. These transformations can composed together s.t.
we can connect multiple transformation nodes before con-
necting to an object (leaf) node. There is one special node
called the root, which is the original unchanged coordinate
space-scene graphs are acyclic directed graphs where actors
are connected in an acyclic directed graph. Based on scene
graph semantics actors are fired according to GRScheduler
that is done by performing a topological sort on all the ac-



tors. In addition to GRScheduler, GR domain employs the
SDFScheduler (Synchronous Data Flow Scheduler) to de-
termine firing rules for other MoC that are used within a
GR model where each GR actors is fired according to scene
graph based GRScheduler and every other non-GR actors
obeys the firing rules determined by SDFScheduler. GR is
a developing platform that has some restrictions because of
Java3D specifications. For this reason, we implement a new
graphic domain avoiding the restrictions of Java3D and al-
lowing a more user-friendly platform to developers by im-
plementing the functionalities that OpenGL API specifies.

This paper introduces the implementation of OpenGL
concepts within the new domain GRO in the Ptolemy II
environment. We describe graphics modeling using actor-
oriented models in Section 2. We give a brief introduction
about OpenGL API specifications and give a reasoning for
employing OpenGL API in our implementations. in Sec-
tion 3. In Section 4 we introduce the basic idea behind the
new graphical domain GRO. In Section 5, we explicate our
implementation scheme in detail. In Section 6 we state our
conclusions and we point out our potential future work.

2 Graphics Modeling using Actor-Oriented
Models

Graphics modeling is the way to specify the appearance
of a space which consists of a collection of objects. 3D
modeling has three basic phases that first describes the pro-
cess of forming the shape of an object, and second defines
the motion and placement of objects within a scene and ren-
ders and produces an image of an object finally. The specifi-
cation expresses the phenotypic attributes (e.g. shape, size,
color, and etc.) of the objects. In addition, it specifies sev-
eral types of relationship. For instance, one of these rela-
tionship is orientation, which can be seen as the relationship
between the objects and the space. Shading is another rela-
tionship, which is between the objects and the light sources.
The primary application of graphics modeling is animation,
which often involves relationship across time or frames. A
general graphics modeling language should provide a suffi-
cient set of primitives to allow one to express these relation-
ship.

Actor-oriented modeling [3] is a conceptual modeling
framework for modeling, understanding, and reasoning
about, a wide range of concurrent systems. It provides ba-
sic constructs called actors that encapsulate internal states.
Actors can also have port(s) that send or receive data to
communicate with other actors. Communication seman-
tics is purposefully delegated to the model for flexibility.
Actor-oriented modeling gives us a clean visual syntax and
a structured way of composing components. It allows users
to, still, customize various constraints on the model seman-
tics. Our work is an extension to Fong’s [2], which shows

how actor-oriented modeling, using dataflow semantics, can
adapt to hierarchical scene graph, which is a popular ap-
proach in graphics modeling. We want to continue in this
direction of using actor-oriented modeling in the graphics
domain.

3 OpenGL API Functionalities

OpenGL (Open Graphics Library) is a standard specifi-
cation that describes a set of functions and the precise be-
haviours that they must perform writing applications that
produce 2D and 3D computer graphics. It serves two main
purposes, one is to hide the complexities of interfacing with
different 3D accelerators, by presenting the programmer
with a single, uniform API and second is to hide the dif-
fering capabilities of hardware platforms, by requiring that
all implementations support the full OpenGL feature set.

OpenGL and other various rendering and modeling soft-
ware packages often contain some support for scene graphs
in order to avoid complicated task of keeping track of all
the matrices. In OpenGL, we have the matrix stack and var-
ious operations allowing to modify the current model view
matrix, most of them allowing to multiply it by some sim-
ple transformation on the right. Together with the matrix
stack, this makes it very easy to convert a scene graph into
OpenGL code which is implemented as below;

• Save the current modelview matrix by pushing it onto
the matrix stack.

• Multiply the modelview matrix on the right by the
transformation associated with the edge.

• Call the drawing procedure recursively, pretending that
the endpoint of the edge is the root.

• Restore the original modelviev matrix, by popping it
from the matrix stack.

One reason for our effort in building a new graphics do-
main on the OpenGL API is because OpenGL is indus-
try’s most widely adopted graphics standard which brings
thousands of applications to a wide variety of workstation
platforms. Another important reason is that OpenGL has
hardware support which means if hardware 3D accelera-
tion is present, OpenGL can use it. As an API, OpenGL
does not depend on any particular language feature, and
can be made callable from almost any programming lan-
guages with the proper bindings. Such bindings exist for
VB, Ada, Pascal, Delphi, Python, Lua, Perl, Haskell, Java,
C and C++. OpenGL is capable of high visual quality
and performance that allows developers to do broadcast-
ing, CAD/CAM/CAE, entertainment, medical imaging, and

2



virtual reality to generate and display 2D/3D graphics effi-
ciently. In addition, OpenGL serves developer several ad-
vantages such as serving user the only truly open, vendor-
neutral, multi-platform graphics standard. Since various
OpenGL implementations have been available for more
than seven years on a wide variety of platforms, it is en-
sured by backward compatibility requirements that it is sta-
ble and legacy programs are not outdated. Briefly, OpenGL
provides reliable, portable, evolving, scalable, user-friendly
and well-documented platform in which developer is able to
render well-structured graphics with an intuitive and logical
design.

OpenGL is widely used in implementing a variety of
graphics tools that are commonly used animation, game and
virtual reality technologies. Blender, Celestia, RenderMan
are popular examples for such tools that are implemented
on the top of OpenGL.

4 GRO Domain

The basic idea behind the GRO domain is to build a pre-
cise model that handles geometry and transformation of 3D
objects which would rely on OpenGL semantics. Opengl
convert scene graph semantics in to OpenGL code. This
is implemented by using the matrix stack and various op-
erations allowing to modify the current model view ma-
trix. By mapping scene graph semantics in to these matrix
stack operations OpenGL avoids complicated task of keep-
ing track of all the transformation matrices and save more
space for other calculations which increases the rendering
rate on each different platform.

We mapped these scheduling semantics in to our new
domain and implemented a GROScheduler that is basi-
cally similar with scene graph semantics but has an oppo-
site ordering rule that is also rely on object semantics of
OpenGL. We write some of the OpenGL specific 3D objects
,such as Box3D, Line3D, Point3D, Triangle3D, Ellipse3D,
Cylinder3D and transformation actors that are Rotation and
Translation. The details of our implementation is described
in the following section.

5 Implementation

As the first stage, we want to reproduce the usability
of OpenGL in an actor based platform by retaining the
OpenGL semantics that avoids complicated task of keep-
ing track of all the transformation matrices and save more
space for other calculations We Implement the main classes
of actors of a graphics API such as view screen, transfor-
mation actors that are Translation and Rotation in 2D/3D,
and graphic objects such as Point3D, Line3D, Square3D,
Ellipse3D, Sphere3D, Triangle3D and Box3D. The visual

syntax of GRO is almost identical to GR. This way, user can
construct graphic models without learning a new syntax.

Figure 1. GRO Director.

5.1 GRO Scheduler

OpenGL exposes a callback mechanism for rendering;
in particular, it allows the client to attach GLEventListener
objects to perform rendering. Each GLEventListener im-
plements a display() method that is invoked by OpenGL.
Mapping OpenGL to the Ptolemy framework, our imple-
mented this listener object which is the GRODirector. It
implements the GLEventListener interface (depicted in Fig-
ure.1). GRODirector currently extends the StaticSchedul-
ingDirector with a custom GROScheduler, which we will
introduce in a later section. The display() method of the
GRODirector first initializes the display buffer and renders
the frame by firing the graphics actors in the model, accord-
ing to the order given by the scheduler. A snapshot of result
of this model is shown in Figure.2.

Figure 2. A snapshot of a GRO model.

Each transformation and graphics actor contains a block
of OpenGL rendering code. The order of firing them is stati-
cally computed from the given structure of the model. Thus,
no communication tokens actually need to be passed. The
connections, however, do provide information for comput-
ing the schedule. The OpenGL rendering code mapped to
the fire() method of the Translate and the Triangle3D actors
is given in Figure.3 and Figure.4.

5.2 GRO Scheduler

A GRO model is currently executed by iterating a static
schedule given by the GROScheduler. The design space

3



Figure 3. Triangle3D Actor.

Figure 4. Translate Actor.

for the scheduler is pretty flexible since GRO actors do not
communicate any data tokens with each other (even though
their ports are connected). There is a global OpenGL object,
called GL, that is shared implicitly by all GRO actors. Fir-
ing the GRO actors essentially make method calls to this GL
object, which does the actual rendering. A static schedule
is constructed by a depth-first pre-order traversal of the
graph. The traversal starts from a GRO root actor which is
called ViewScreen, and it proceeds to the intermediate and
leaf actors. These intermediate actors are Transformation
actors like Rotate, Translate, and Scale, while the leaf ac-
tors are 3DObject actors like Line, Triangle, Box, and etc.

A benefit of fixing ourselves to such statically computed
schedule is that we can also statically determine the push-
ing and popping of projection matrix and hence lift some
of the programming burdens from the user. Operations of
pushing and popping projection matrices are central to the
OpenGL graphic pipeline in keeping track of the state of the
projection for objects. These operations are implicit under
the current GRO semantics. The GROSchduler schedules
a pushMatrix() before executing each Transformation actor
and a popMatrix() after its execution. This ensures that we
retain the state of the projection and return to the original
state after drawing every object under that projection. We
realize that there is an optimization opportunity for the case
where the Transformation has only one child. In that case,
there is no need to push or pop a matrix.

Here, we described the current execution strategy for a
GRO model. However, we acknowledge that there are other
execution strategies that are more expressive, possibly in-
volving explicit pushMatrix() and popMatrix(). The chal-
lenge is in constructing a corresponding graphical syntax
that is understandable to a model designer.

6 Conclusion and Future Work

In this paper, we introduce a framework to implement a
graphics domain in Ptolemy II that is on top of OpenGL.
We explained how OpenGL semantics can be mapped to
the Ptolemy II abstract semantics (e.g. postfire(), prefire()
and etc.). We then give details about our implementation
of GRODirector, and some actor that we have in our li-
brary. By using the advantages of OpenGL we implemented
Line3D and Point3D actors which are not supported by
Java3D and are really common to use in games, stick fig-
ure animations, etc.

As our future goal, we would like to extend the GRO se-
mantics beyond the scene graph. This would let programers
to avoid complicated task of keeping track of all the trans-
formation matrices. We want to employ these graphical im-
plementations with other MoC which would be useful in
building different concurrent real-time models with graphi-
cal interfaces. We think that this would give the user another
perspective of understanding real-time models. We want
to investigate timing semantics in graphics rendering which
now relies on a frame based timing. This would allow the
user to use declarative syntax to specify models. In addition
to these, we want to implement more sophisticated actors
that would support for a variety of geometric primitives,
such as polygon meshes, fast subdivision surface model-
ing, Bezier curves, NURBS surfaces, Meatballs and Digi-
tal sculpting. We are pursuing to add key framed animation
tools including, inverse kinematics, curve and lattice-based
deformations, shape keys (morphing), soft body dynamics
including mesh collision detection and particle system with
collision detection.

References

[1] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. Lee,
J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie,
N. Smyth, J. Tsay, and Y. Xiong. Ptolemy ii: Hetero-
geneous concurrent modeling and design in java. Mem-
orandum UCB/ERL M99/44, EECS, University of Cal-
ifornia, Berkeley, July 19, 1999.

[2] C. Fong. Discrete-time dataflow models for visual
simulation in ptolemy ii. Master’s Report, Memoran-
dum UCB/ERL M01/9, Electronics Research Labora-
tory, University of California, Berkeley, January 2001.

[3] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-
oriented design of embedded hardware and software
systems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

4


	Introduction
	Graphics Modeling using Actor-Oriented Models
	OpenGL API Functionalities
	GRO Domain
	Implementation
	GRO Scheduler
	GRO Scheduler

	Conclusion and Future Work

