
1

C Code Generation from the Giotto Model of
Computation to the PRET Architecture

Shanna-Shaye Forbes, Ben Lickly, and Man-Kit Leung
{sssf,blickly,jleung}@eecs.berkeley.edu

May 15, 2009

Abstract—We present code generation from the Giotto model
of computation in Ptolemy II to the Precision Timed (PRET)
Architecture. Giotto is a time-triggered programming model that
provides the user with methods to specify timing at a high level,
and PRET is a processor architecture that emphasizes predictable
timing. The goal of code generation is to automatically generate
code that correctly implements the semantics of the model as the
designer has specified. We use the ISA-level timing controls of
PRET in the C code we generate to fulfill the timing constraints
of the Giotto model. We run the generated code on the cycle-
accurate PRET simulator to verify that our designs meet their
deadlines.

I. INTRODUCTION

In real-time embedded systems it is important to guarantee
correct functionality as well as timing constraints. Timing
in real-time embedded systems has always been of high
importance. However, with recent trends toward incorporating
X-by-wire systems in automotive and avionics systems, the
need for ensuring and predicting timing has gained renewed
attention. C, the de facto programming language for most em-
bedded platforms, lacks constructs to specify precise timing.
In addition, most embedded processors also lack constructs to
provide deterministic and precise timing at the hardware level.
In hard real-time systems where timing precision is critical,
hardware support for precise timing is necessary. One model
of computation with timing semantics used in embedded
controllers is Giotto. A processor that provides deterministic
and precise timing is PRET. This project maps the Giotto
timing semantics to a processor with direct hardware support
instead of best effort attempts at timing.

II. GIOTTO

Giotto is a time-triggered language and model of compu-
tation that allows a control engineer to specify the semantics
of time-triggered sensor readings, task invocations, actuator
updates, and mode switches independent of the platform used
to implement it [3], [4].

Giotto is best utilized by hard real-time specifications that
are periodic and feature multi-modal behavior. It is useful for
control systems such as fly-by-wire or brake-by-wire where
the responses of the system must be fairly periodic and have
multiple modes of operation. The modes of operation can
include a startup, cruise control/autopilot, normal operation
as well as a mode in case of partial equipment failure.

In Giotto semantics tasks are executed at a specific fre-
quency wt within a specific period π. Tasks communicate

through ports and they get input values from ports at the begin-
ning of the tasks logical execution time π/ωt and produce their
outputs at the end of their logical execution time. Tasks execute
concurrently and there is a one unit delay in communication
between tasks.

The Giotto model of computation is implemented as a do-
main in the Ptolemy II simulation and modeling environment.
To select a particular model of computation the user selects
and uses a director associated with the model of computation.
A Giotto model is created with a Giotto Director in Ptolemy II.
The period π of the mode is specified as the period parameter
to the director and the frequency of each task ωt is specified
as a frequency parameter to each Ptolemy II actor. If no values
for the period and actor frequencies are provided as parameters
default values of 0.1s and 1 are assumed respectively [1].

Fig. 1. A multi-modal Giotto specification modeled by Ptolemy II using the
Modal Model Actor. Each mode is further refined to a sub-model containing,
in this case, other Giotto tasks.

In [3] a mode in Giotto consists of all tasks to be run
concurrently with a particular period. In Ptolemy II, a mode
is slightly different but allows all models expressible in [3].
Ptolemy II allows the use of hierarchy that proves to be very
convenient in the specification of control behavior. In addition
it also reduces the number of distinct mode combination
specifications that are necessary in [3]. A Ptolemy II mode
is specified inside a finite state machine modal model and

2

Fig. 2. The work flow of the design framework that iteratively refines code generation using schedulability and WCET analysis

improves the flattened specification present in [3] with the
use of hierarchy. In Ptolemy II tasks, which are referred to as
actors, at the same level of hierarchy execute concurrently and
a modal model contains tasks that should be switched when
a guard is enabled. If it is desirable to have three tasks: A,
B, and C, where task A is always running and task C should
replace task B when a certain condition is met, a designer
could specify that in Ptolemy II as is shown in Figure 1. In
Figure 1 task C is shown twice in the lower figure to indicate
a frequency of 2. The lower portion of Figure 1 shows how
the model is specified with Ptolemy II and the upper portion
of the figure shows the logical execution times of each task
based on their frequencies, and on the period parameter π of
the Giotto Director.

Ptolemy II allows hierarchy through the use of composite
actors. A composite actor contains actors and in some cases
a director. If no director is present inside the composite actor
the actor is transparent. If however there is a director present
inside a composite actor the frequencies of the tasks inside
the composite actor are all interpreted to be relative to the
frequency of the composite actor itself. If a composite actor
with frequency 2 contains a Giotto Director, and a task with
frequency 3, the interpreted frequency of the task inside a
composite actor is 6.

Each Giotto model is expected to specify a period as an
attribute to the Giotto Director, the frequency of each task as
an attribute to each actor, as well as initial values for outputs. If
Giotto directors are used inside a composite actor, the period of
the top most Giotto director is used, but the frequencies of the
tasks inside the composite actor are relative to the frequency
of the composite actor.

III. PRET ARCHITECTURE

PRET [6], the Precision Timed Architecture, is a processor
architecture aimed at guaranteeing timing predictability and
analyzability. To do this, it replaces traditional architectural
enhancements that improve average-case performance at the
expense of worst-case performance with optimizations that
have more predictable timing behavior. These include a hard-
ware thread interleaved pipeline, on-chip scratchpad memories
instead of caches, and instructions in its instruction set to
control timing behavior. These timing instructions work as Ip

and Edwards’ deadline instructions [5], using a special set of
registers that are decremented every cycle to specify the timing
behavior of the code between timing instructions.

We feel that these features provide an ideal platform on
which to implement a Giotto program. In particular, the
PRET architecture’s timing instructions and hardware threads
provide much of the functionality required by the real-time
specifications of Giotto. Using macros that wrap these timing
instructions, C code can be written that includes timing
instructions. In this way, we can map Giotto specification
into a program that very literally implements the real-time
specifications of the program, without the need for preemption
or software threads.

IV. CODE GENERATION

To generate PRET C code from a Giotto model we created
a PRET specific adapter in the Ptolemy II code generation
framework [2]. This includes a Giotto code generation domain
and a PRET C code generation target. The C code generation
framework is split into preinitialize, initialize, fire, and postfire
methods, mimicking the actor abstract semantics of Ptolemy
II. The code generation produces a single monolithic C file that
the user can compile and run on their target. Since the PRET
simulator expects a separate executable for each hardware
thread, we use C preprocessor definitions to define separate
implementations within the single C file generated by the
adapter framework.

Our work is a central piece of the design framework
shown in Figure 2. A Giotto model specified in Ptolemy II
is processed by the Ptolemy II code generation framework;
it creates drivers for each actor/task specified in the model
and also generates code for each actor. The code generation
framework produces one C file, that we compile down into
the executables to run on the PRET cycle accurate simulator.
We currently use hand calculated WCET times, however when
automated we plan to extend this work to use the PRET WCET
analysis tool currently being developed at Columbia University
to fully automate the process.

PRET has no real-time operating system, so each task maps
directly to a hardware thread. This allows for much less
timing jitter since the overhead of task switching is much
smaller. Each hardware thread has its own registers and can

3

be treated as a parallel processor. Like other shared memory
architectures, PRET features an area of memory shared among
all the processors. Since we implement tight timing controls
to ensure each thread accesses shared memory at the correct
time, we do not need to use semaphores for synchronization.
Also since each task executes at a specified rate, we do not
need to use a scheduler to manage communication. We map
each task seen by a Giotto Director to its own hardware thread
and ensure that its inputs are read at the beginning a task’s
iteration and outputs are written at the end of a task’s iteration.

Hierarchy in Ptolemy II enables rich heterogeneous models,
but also introduces complexities to code generation. As a result
we currently support code generation for a subset of the actors
in Ptolemy II and we allow the user to generate code with
composite actors containing Synchronous Data Flow directors
as well as Giotto directors. The code generator targeting
PRET currently supports a SDF director inside a modal model
refinement, however we have determined a feasible mechanism
to support Giotto directors inside modal models which we will
implement in the near future.

The user should also note that since we map each Giotto
task to its own hardware thread, they are limited to at most 6
distinct Giotto tasks being executed concurrently if they target
the current PRET simulator.

A. Example with Sample Generated Code

Fig. 3. A simple Giotto model in the Ptolemy II environment. The frequency
annotations specify how often each actor is executed per iteration.

In Figure 3, we can see a simple Giotto model in Ptolemy
II. In Listing 1 we present a snapshot of the current status of
C code generation of this example to the PRET architecture.
Before starting the main loop, we use a synchronization
instruction to ensure that all the threads start at the same time.
We convert the period of the director and the frequency of a
task to processor cycles, and this is the total execution time
of one iteration of that task. Conceptually, we want the input
driver to run at the start of an iteration, and the output driver
to run at the end, to ensure that output values are written at
the end of the logical execution time of the task. In order to
achieve this, we use timing instructions to delay the call to
the output driver until as late as possible. This can be seen in
lines 16, 27, and 38, where we specify that the following code
takes an amount of time equal to the task frequency minus the
WCET bound of the output driver. On lines 19, 30, 41 are the

corresponding specifications that the output drivers do not take
longer than their bounds.

Listing 1. Main method of the Simple Giotto Model
1i n t main (i n t argc , char ∗a rgv []) {
2i n i t i a l i z e () ;
3jmp buf d e a d l i n e t r y i n g j m p b u f ;
4r e g i s t e r j m p b u f (0 ,& d e a d l i n e t r y i n g j m p b u f) ;
5i f (s e t j m p (d e a d l i n e t r y i n g j m p b u f) ! = 0) {
6p u t s (” Timing f a i l u r e !\n ”) ;
7END SIMULATION ;
8}
9SYNC(” 3F”) ;
10whi le (t r u e){
11# i f d e f THREAD 0
12# i f n d e f Simple Ramp OUTPUT DRIVER WCET
13# warn ing ”Simple Ramp OUTPUT DRIVER WCET was n o t d e f i n e d . ”
14# d e f i n e Simple Ramp OUTPUT DRIVER WCET 1000
15# e n d i f
16DEADBRANCH0(25000000−Simple Ramp OUTPUT DRIVER WCET) ; / / pe r iod−d r i v e r w c e t
17S imple Ramp dr ive r in () ; / / read i n p u t s from p o r t s d e t e r m i n i s t i c a l l y
18Simple Ramp () ;
19DEADBRANCH0(Simple Ramp OUTPUT DRIVER WCET) ; / / d r i v e r w c e t
20S imple Ramp dr ive r ou t () ; / / o u t p u t v a l u e s t o p o r t s d e t e r m i n i s t i c a l l y
21# e n d i f /∗ THREAD 0∗/
22# i f d e f THREAD 1
23# i f n d e f Simple outputs OUTPUT DRIVER WCET
24# warn ing ”Simple outputs OUTPUT DRIVER WCET was n o t d e f i n e d . ”
25# d e f i n e Simple outputs OUTPUT DRIVER WCET 1000
26# e n d i f
27DEADBRANCH0(25000000−Simple outputs OUTPUT DRIVER WCET) ; / / pe r iod−d r i v e r w c e t
28S i m p l e o u t p u t s d r i v e r i n () ; / / read i n p u t s from p o r t s d e t e r m i n i s t i c a l l y
29S i m p l e o u t p u t s () ;
30DEADBRANCH0(Simple outputs OUTPUT DRIVER WCET) ; / / d r i v e r w c e t
31S i m p l e o u t p u t s d r i v e r o u t () ; / / o u t p u t v a l u e s t o p o r t s d e t e r m i n i s t i c a l l y
32# e n d i f /∗ THREAD 1∗/
33# i f d e f THREAD 2
34# i f n d e f Simple outputs2 OUTPUT DRIVER WCET
35# warn ing ”Simple outputs2 OUTPUT DRIVER WCET was n o t d e f i n e d . ”
36# d e f i n e Simple outputs2 OUTPUT DRIVER WCET 1000
37# e n d i f
38DEADBRANCH0(12500000−Simple outputs2 OUTPUT DRIVER WCET) ;
39S i m p l e o u t p u t s 2 d r i v e r i n () ; / / read i n p u t s from p o r t s d e t e r m i n i s t i c a l l y
40S i m p l e o u t p u t s 2 () ;
41DEADBRANCH0(Simple outputs2 OUTPUT DRIVER WCET) ; / / d r i v e r w c e t
42S i m p l e o u t p u t s 2 d r i v e r o u t () ; / / o u t p u t v a l u e s t o p o r t s d e t e r m i n i s t i c a l l y
43# e n d i f /∗ THREAD 2∗/
44}
45e x i t (0) ;
46}

Theorem 1: Let A and B be actors with an output of
A connected to an input of B. Using our code generation
algorithm, if no exception is raised at runtime, then the
following conditions are true.

(a) There is no write/write hazard.
(b) There is no write/read hazard.
(c) Let g be the greatest common divisor of the periods of

A and B, WCETAout to be the provided bound for A’s
output driver, and EXECBin to be the execution time
of B’s input driver. If EXECBin + WCETAout < g,
then there is no read/write hazard.

Proof:

(a) Since every global memory location has only a single
writer, this is trivially true.

(b) The pathological ordering for a write/read hazard is
when the iterations of A and B end in the same cycle.
Since the ordering of the threads is arbitrary, B may be
earlier in the pipeline than A and start its next iteration
first. But this only means that the timing instruction of
A will be simultaneous with the first instruction of B.
Since the memory load instruction is no longer in the
pipeline and PRET memory accesses are blocking, no
write/read hazard occurs.

(c) The minimal possible positive interval between the start
of an iteration of B and the end of an iteration of A
is g cycles. A’s output driver starts WCETAout cycles
before the end of A’s iteration, and B’s input driver
finishes EXECBin cycles after the start of the iteration
of B. Thus if EXECBin +WCETAout < g, by similar

4

reasoning to case (b), we can show that no read/write
hazard occurs.

Note that sufficient conditions to prevent a read/write hazard
in case (c) only depend on knowing an execution time bound
on the input driver, the output driver, and the greatest common
divisor of the periods. If we required the user to specify a
bound on the input driver in addition to the output driver, this
condition could be checked at compile time.

B. Implementation
In order to make sure that communication between tasks

takes place at the proper time with respect to Giotto semantics,
we have added separate methods called drivers responsible
for communication. These drivers that are responsible for
reading the inputs and writing outputs to and from global
memory locations are called input drivers and output drivers
respectively. We make sure that these drivers execute at the
correct times by including timing instructions that bind the
time at which the drivers run. In particular, we start the input
drivers at the beginning of each iteration of an actor and delay
the writing of outputs to the end of the iteration.

In order to make sure that the output writing takes place as
late as possible, we delay by a time equal to the period of the
actor minus the worst-case execution time of the output driver.
This worst-case execution time bound is not known at the time
the Giotto model generates its code, so it is parametrized as
a C preprocessor define. This allows a user to use a separate
tool to calculate a worst-case execution time bound of the
output driver after the C code has been generated without
having to then return to the Giotto model and regenerate the
C code. In the case that no value is defined, we have provided
a default value and a compiler warning. This is only to allow
the generated code to be immediately compilable, and does not
mean that a user should depend on this value in the deployment
to the final PRET target.

To ensure that all deadlines are met, we include exception
code that detects missed deadlines and displays an error. Since
Giotto does not specify behavior in case timing constraints
are missed, we consider all missed deadlines fatal and end the
simulation. In this respect, our deadline detection mechanism
provides support for testing that deadlines will be met, but
not deployment-time support for recovering from missing
deadlines.

V. APPLICATION

To demonstrate the use of the C code generation for Giotto
models we generated the controller for a simplified toy elevator
controller shown in Figure 4. Since the elevator only serves
two floors the control algorithm is fairly straightforward, but it
is simple nonetheless. Riders can call the elevator from either
floor or select a destination floor, and the controller opens and
closes the doors and moves between floors. Since we target
the PRET simulator we use a sequence actor in Ptolemy II
to generate the inputs to the elevator controller and use the
EmbeddedCActor to generate code we display on the screen
during a run of the simulator.

Fig. 4. Top level structure of two story elevator controller.

In order to find appropriate execution time bounds for the
output drivers, we use existing knowledge of the timing of
the PRET simulator to choose reasonable values. The simple
nature of the generated C code along with the exception
mechanism allow us to verify that runs of the control program
meet their execution time bounds. In more complicated or
resource constrained situations, one may prefer to perform
more formal worst-case execution time analyses to produce
higher confidence bounds.

VI. CONCLUSION

Giotto is a useful and intuitive programming model for the
PRET architecture. We have built an extension to the existing
Ptolemy II code generator to target the PRET processor.
It compiles Giotto models into C programs with explicit
deadlines that establishes precise timing coordination between
execution threads. This is made possible because of the
precise-time control provided by the underlying hardware.
Along with the ability to synchronize execution, we employ
PRET’s mechanisms to throw a fatal runtime exception in
cases when the deadlines of the Giotto model cannot be met.
We provide the possibilities of doing both static and run-time
checking for execution safety.

REFERENCES

[1] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, Jan 2003.

[2] M.-K. L. Gang Zhou and E. A. Lee. A code generation framework for
actor-oriented models with partial evaluation. In International Conference
on Embedded Software and Systems, LNCS 4523, pages pp. 786–799,
May 2007.

[3] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered
language for embedded programming. volume 91(1) of Proceedings of
the IEEE, pages 84–99, 2003.

[4] T. A. Henzinger, C. M. Kirsch, and S. Matic. Schedule-carrying code.
In In Proc. EMSOFT, LNCS 2855, pages 241–256. Springer, 2003.

[5] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-accurate
real-time software. In Proceedings of the IFIP International Conference
on Embedded and Ubiquitous Computing (EUC), volume 4096, pages
449–458, Seoul, Korea, Aug. 2006.

[6] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee.
Predictable Programming on a Precision Timed Architecture. Proceedings
of International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems (CASES), 2008.

