
Parallel Design Patterns in Ptolemy II using Higher-order Actors
EE290N Project Report

Chang-Seo Park
parkcs@cs.berkeley.edu

Christos Stergiou
chster@cs.berkeley.edu

Abstract

The ubiquity of multicore processors nowadays allows
for increased performance in applications that are par-
allelizable. We focus on achieving high performance for
a class of data parallel applications which have a static
schedule of actor firings. These applications can be run
efficiently in parallel and correctly if the actors are state-
less. We present a new execution model based on multiplex-
ing receivers on SDF models. We have implemented a new
director, receivers, domain specific actors in the Ptolemy
II framework. We show that using this model, data paral-
lel applications can be executed with near linear speedup.
The receiver multiplexing paradigm can be extended to effi-
ciently execute actor recursion as well.

1 Introduction

The ParLab’s vision for the future of parallel program-
ming includes two layers of programmers. The efficiency
layer programmers are experts of parallel programming and
their goal is to provide frameworks and libraries to the pro-
ductivity layer programmers who are usually domain ex-
perts who wish to utilize the processing capability of mul-
ticore processors to solve problems without worrying about
the low-level details. As noted in the Berkeley View paper
[1], there are recurring patterns [6] in parallel programs and
if these are provided to the productivity layer programmers
as frameworks and libraries, it would help them write cor-
rect, efficient, and scalable parallel programs easily.

Ptolemy II has a graphical framework that can help do-
main experts not proficient in textual programming lan-
guages. Using diagrams that consist of blocks and arrows
along with a rich set of library actors can be much more in-
tuitive and productive. Also, these programmers should not
be concerned with low level thread spawning and synchro-
nization to achieve higher performance on multicore pro-
cessors. In contrast, Ptolemy II computation models, such
as synchronous dataflow, impose restrictions that make au-
tomatic parallelization and optimization more feasible. The

framework allows for extensions that can transparently en-
capsulate parallelism using custom directors and library ac-
tors.

Patterns such as Pipe-and-Filter seem “built-in” to visual
languages, as the blocks are the filters with arrows as pipes.
Parallelization of such programs in already done in Ptolemy
II when using the Process Network [5] director, by assign-
ing one thread to each actor and letting them run concur-
rently. However, more management needs to take place be-
hind the scenes if we wish to scale linearly with the number
of processors. For example, this strategy limits the paral-
lelism to the number of actors. It could also be problem-
atic for a design with too many actors causing unnecessary
threading overhead.

We attempt to tackle this problem by separating task
parallelism with data parallelism. Task parallelism can be
exploited by efficiently distributing threads to independent
tasks. In the project we focus on data parallelism, where
the same computation is performed on different data. We
use the synchronous dataflow model of computation, which
has some restrictions on expressiveness, but allows for eas-
ier parallelization.

We have made the following contributions in this project:

• Extended the SDF domain by implementing a new di-
rector and receivers designed for running dataflow ac-
tors on multicore processors

• Implemented two composite actors corresponding to
parallel design patterns (A parallel fork-join actor and
a recursion actor)

• Evaluated the scalability of the patterns on the new ex-
ecution model under varying numbers of cores

In the following section we discuss some related work
on the parallelization of synchronous dataflow models. In
section 3, we describe the implementation details on how
we parallelize SDF models. Section 4 presents our exper-
iments with some case studies and their results. We then
give an outline for future work in section 5 and conclude
the report in section 6.

1

2 Related Work

Synchronous dataflow is a model of computation that re-
stricts all signals to be synchronous with each other. Op-
erationally, this means that all inputs to an actor must be
present together, and the output will be present at the same
time. This implies that each actor consumes and produces
fixed amounts of tokens on each firing, and there cannot be
any absent values. This results in the ability to statically
compute a schedule of firing sequences. In our work, we
make an additional assumption that actors do not have any
state (i.e. actors are functional), such that parallelization
will not affect the semantics of the actor.

There have been several efforts in the past that attempted
to parallelize schedules of the SDF domain. One example
is the work on the distributed SDF director in [2]. In that
project, concurrency was exposed in the firings of actors
that belong in the same topological level of an SDF sched-
ule and in pipelining successive executions of the sched-
ule. In contrast, we targeted multicore processors instead of
distributed networks. We run multiple copies of the whole
schedule and synchronize when all the spawned schedules
are complete.

There has also been some work in automatically paral-
lelizing StreamIt programs. StreamIt is a stream language
that includes actors with fixed input and output rates and
synchronous dataflow was the starting point of the work.
The target of the StreamIt optimizations is multicore archi-
tectures as in our case. [4] talks about extracting task, data
and pipeline parallelism while we focused on parallel pat-
terns such as fork-join and recursion.

3 Implementation

3.1 Parallel Fork-Join

The MultiInstanceComposite actor creates mul-
tiple clones of a model to perform the same work on dif-
ferent data. Using a process network director, these clones
can run in parallel. However, the cloning amount and data
distribution needs to be explicit. If there are not enough
clones, then a multicore processor can be under utilized. If
there are too many clones, thread scheduling overhead can
hinder the advantages of parallel execution.

Our take on this problem is to run clones on multi-
ple threads for speedup, but controlling the number of
spawned threads depending on the environment. We
achieve this by creating a new director, which we
call MSDF, short for Multicore Synchronous Dataflow.
This is the default director for our convenience actor
called ThreadedMultiInstanceComposite. The
execution model is quite different from the original
MultiInstanceComposite, as we do not explicitly

create any clones of the actors in the model. Instead we
clone the receivers, calling this the context of the cloned
model, and execute the model on multiple threads with in-
dividual contexts.

3.2 Multicore Synchronous Dataflow

The MSDF director is a straightforward extension of the
SDF director, so we can statically compute the schedule and
token consumption / production rates of each port. To run
the model on multiple threads, we need input tokens for
each clone of the model. Therefore, we inflate the token
consumption and production rate for each port of the com-
posite by the number of worker threads assigned to the di-
rector. On each firing of the director (which is triggered by
the firing of the composite), we enqueue the statically com-
puted schedule on each of the worker threads. Each worker
will iterate through the schedule with its own context.

The context of a worker is implicitly given, by means
of multiplexing the receiver between actors under the con-
trol of a MSDF director. We implemented a special
MSDFReceiver for this purpose. An MSDFReceiver
encapsulates a number of SDFReceivers. Each worker
thread can index into its own independent SDFReceiver.
Since the model is not cloned, every worker will be fir-
ing the same actors which are connected to the same
MSDFReceivers. We override the get and put methods
of the MSDFReceiver, so that each worker accesses its
own receiver without any interference from other workers
or the need for synchronization. The receivers connected
to the input and output ports of the composite need to be
treated specially, because we need to distribute and collect
tokens in a deterministic order. We differentiate between
calls from worker threads and “outside” threads to the get
and put methods, so that we can handle them accordingly.

3.3 Recursion Actor

We observe that multiplexing receivers allows to run ac-
tors with multiple contexts. This can also be extended to
implement recursion more efficiently. Thus we created an
actor called Recurse that works under the MSDF director
and acts as a recursive reference to the composite actor that
contains it.

The implementation of Recurse solves some of the
problems of the ActorRecursion actor but also en-
forces some functional limitations on the model that con-
tains it. Recurse works only under an MSDF director
which, as SDF, is a static scheduling director. Thus it is nec-
essary for the model that contains Recurse to execute un-
der the same static schedule (and the same token consump-
tion and production rates) for both the base and the recur-
sive case of the function being modeled. In other words, a

2

model that fires a different set of actors when some boolean
condition holds than when it does not hold cannot be given
a static schedule. To overcome that difficulty, we encoded
the base case and the corresponding condition as parame-
ters of the Recurse actor. The user needs to provide the
base case of the recursive function and the boolean guard
that causes the actor to recurse or not, as expressions that
depend on the input of the actor.

In the initialization of Recurse, we create as many in-
put and output ports as the input and outputs ports of the
composite that contains the actor. In addition we create a
parameter guard and a set of parameters that provide the
default value of the recursive function in the base case. The
number of the default parameters is equal to the number of
the outputs of the composite.

When a Recurse actor fires, the following steps are
taken. First, the input tokens are read and the guard pa-
rameter is evaluated with given inputs. If the guard is true,
the actor will recurse, otherwise, the default parameters are
evaluated and then passed to the output of the actor. In the
case of recursion, the inputs of the actor are transferred as
inputs to the ports of the composite that contains Recurse
and the worker starts executing a fresh schedule. To enable
recursive execution, each worker is associated with a recur-
sion depth and each MSDF receiver encapsulates multiple
stacks of SDF receivers. When a worker makes a recursive
call, its depth is increased by one and when it returns from
that call the depth is decreased. Furthermore, the get and
put functions of MSDF receivers are modified to be aware
of worker depth and to return the corresponding tokens from
the stack of SDF receivers.

4 Experimental Results

We experimented with our parallel actors on a dual
socket quad-core Intel Core 2 Duo 2.0GHz (total 8 cores)
with 8GB of RAM. All measurements are reported as an av-
erage of 5 runs. For the models using ActorRecursion,
the initial run-times were much higher than subsequent runs
due to actor cloning, rewiring, type checking, etc. In this
case, we report the run-times separately.

4.1 Mandelbrot Set

Visualizing the Mandelbrot set is a fairly computation-
intensive operation. The Mandelbrot set M is formally de-
fined to be the subset of the complex plane where

M =
{

c ∈ C : sup
n∈N

|Pn
c (0)| <∞

}

and
Pc(z) = z2 + c .

Figure 1. A sample visualization of the Man-
delbrot set where #(c) ∈ [−2.0, 1.0],%(c) ∈
[−1.0, 1.0]. The black region corresponds to
the complex numbers c ∈M .

Figure 2. Model that computes the Mandelbrot
set

The boundary of M is a fractal, and we can approxi-
mately calculate whether a number c is in M or not by it-
eratively calculating zi+1 = Pc(zi) for a finite number of
times and using the well-known fact that once |zi| > 2,
it will diverge to infinity (“escape”) and therefore c /∈ M .
Beautiful visualizations can be made with this set (for ex-
ample, Figure 1) where a color is assigned to each point in
the complex plane whether it is in the set (black) or how fast
it escapes.

The computation required at each point is em-
barrassingly parallel. This kind of computation
fits well into our parallel fork-join pattern, so we
have implemented a model (Figure 2) using our
ThreadedMultiInstanceComposite actor un-
der the MSDF director. The Mandelbrot actor is a Java

3

p = 3.0 p = 4.0
nw vf =1 2 4 2
1 12.5 12.3 12.1 35.4
2 6.9 7.1 7.4 19.2
4 4.2 4.3 5.1 10.6
8 3.5 3.4 4.2 7.2

Table 1. Average run time (s) for calculating
the Mandelbrot set for varying parameters. p
is the exponent for the Mandelbrot criterion
function, nw is the number of worker threads,
and vf is the vectorization factor.

Figure 3. Speedup obtained by computing the
Mandelbrot set on multiple cores

actor that computes the color for each coordinate.
The results for running the model on different numbers

of cores are shown in Table 1 and Figure 3. Since our fork-
join actor enforces a deterministic order by synchronizing
at each firing, we varied the vectorization factor to measure
the overhead of synchronization (a higher vectorization fac-
tor makes a worker go through the schedule multiple times
before synchronizing). It seems beneficial to reduce syn-
chronizing for the case of one and eight workers, but in the
other cases, it actually had an adverse effect.

We also extended the Mandelbrot set criterion function
such that Pc(z) = zp + c for added complexity in calcula-
tion to give an effect of a larger problem size. Linear scaling
seems to taper off as the number of cores increases, but if
we increase the problem size, we can achieve higher scala-
bility.

4.2 Fibonacci Sequence

Recursion is not the most efficient method to compute
the Fibonacci sequence, but we have implemented two
recursive versions using the Recurse actor to compare

Figure 4. Model that computes the n-th Fi-
bonacci number recursively

Recurse ActorRecursion
n fib1(n) fib2(n) fib1(n) fib2(n)
10 32 22 909 (12,922) 62 (542)
20 2,627 26 - (>10min) 101 (1,065)
40 >3min 29 - (-) 217 (2,633)

Table 2. Average run time (ms) for cal-
culating the nth Fibonacci number. For
ActorRecursion, the value in parentheses
is the initial run time.

against the existing ActorRecursion implementation.
The first version is the most simple and straightforward im-
plementation which calculates in time O(2n) (shown in Fig-
ure 4):

fib1(n) = if (n > 1) then fib1(n− 1) + fib1(n− 2)
else n

and the second version is more efficient (O(n)) by having
only one recursive call and being tail-recursive:

f(n, i1, i2) = if (n >= 1) then f(n− 1, i1 + i2, i1)
else i1

fib2(n) = f(n, 0, 1)

Both versions perform significantly faster than the exist-
ing ActorRecursion implementation. The results are in
Table 2. The exponential version of fib obviously does not
finish in reasonable time if the input in too high. However,
Recurse was able to calculate fib(20) in 2.6 seconds
while ActorRecursion could not complete even after
10 minutes. For the linear version, ActorRecursion
had a much higher initial run time and presumably a much
higher constant in the asymptotic time complexity. We con-
clude from the experiments that our receiver multiplexing
strategy is advantageous over explicit actor cloning.

4

5 Future Work

In the current implementation, work is distributed
equally to a static number of workers. However, dynamic
load balancing techniques can be used to achieve higher
performance gains. Also, if multiple parts of the pro-
gram are parallelizable, a good strategy is needed to dis-
tribute the available workers among those parts. SEDA
[7] is an architecture framework for servers that dynam-
ically assigns threads to different parts of the workflow
called stages. These stages are connected by queues
whose lengths are used to measure utilization. If the
input queue length of a stage becomes too big, more
threads are assigned to the stage. We can adopt a
similar strategy to distribute workers, in case multiple
ThreadedMultiInstanceComposite actors exist in
a model.

Using receiver multiplexing for recursion, the original
schedule which has a recursive call and the new schedule
that is created by recursion can run concurrently. Thus we
can apply a work stealing algorithm [3] to execute mod-
els which contain Recurse actors on multicore processors
more efficiently.

6 Conclusion

In this project, we explored the use of visual program-
ming to increase the productivity of writing parallel pro-
grams. To support parallel execution, we developed an ex-
perimental execution model for synchronous dataflow to
achieve scalability on multicore processors. Our strategy
is to multiplex the receivers between actors and fire the ac-
tors in parallel on worker threads. We observed that linear
speedup can be achieved for computationally intensive ap-
plications. The same strategy was also found helpful for
executing recursive models efficiently.

References

[1] K. Asanovic et al. The landscape of parallel comput-
ing research: A view from berkeley. EECS, UC Berke-
ley, Technical Report No. UCB/EECS-2006-183, De-
cember, 18(2006-183):19, 2006.

[2] D. L. Cuadrado. Automated Distribution Simulation in
Ptolemy II. PhD thesis, Aalborg University, April 2008.

[3] M. Frigo, C. E. Leiserson, and K. H. Randall. The im-
plementation of the cilk-5 multithreaded language. In
PLDI ’98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and im-
plementation, pages 212–223, New York, NY, USA,
1998. ACM.

[4] M. I. Gordon, W. Thies, and S. Amarasinghe. Ex-
ploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. In ASPLOS-XII: Proceed-
ings of the 12th international conference on Architec-
tural support for programming languages and oper-
ating systems, pages 151–162, New York, NY, USA,
2006. ACM.

[5] G. Kahn. The semantics of a simple language for paral-
lel programming. Information processing, 74:471–475,
1974.

[6] T. Mattson, B. Sanders, and B. Massingill. Patterns for
parallel programming. Addison-Wesley Professional,
2004.

[7] M. Welsh, D. Culler, and E. Brewer. SEDA: An archi-
tecture for well-conditioned, scalable internet services.
ACM SIGOPS Operating Systems Review, 35(5):230–
243, 2001.

5

	Introduction
	Related Work
	Implementation
	Parallel Fork-Join
	Multicore Synchronous Dataflow
	Recursion Actor

	Experimental Results
	Mandelbrot Set
	Fibonacci Sequence

	Future Work
	Conclusion

