
Code Generation for PTIDES Models
Jia Zou, Isaac Liu, Jeff C. Jensen

EE290N Class Project Report

Abstract—PTIDES is a programming model for distributed
real-time embedded systems. PTIDES builds on Discrete-Event
(DE) semantics and leverages a global notion of time throughout
distributed platforms. Applications expressed in PTIDES models
can be designed without any knowledge about the hardware plat-
form upon which it is implemented, thus completely decoupling
the design from the implementation. To bridge this gap, a code
generator is implemented to automatically generate platform-
specific C code from PTIDES models designed in Ptolemy II [1] to
a particular hardware platform. This paper present our approach
in generating C code from PTIDES models, and statically link
them against the PtidyOS scheduling libraries to produce a real-
time executable we call PtidyOS.

I. INTRODUCTION

PTIDES (Programming Temporally Integrated Distributed
Embedded Systems) is a programming model for distributed
real-time embedded systems that provides an abstract frame-
work for distributed real-time applications. The purpose of
PTIDES is to enable programmers to efficiently develop cor-
rect, deterministic programs. To meet the constraints of real-
time systems, we additionally require that the time at which the
output signals are generated is also deterministic, i.e. for any
two executions of the same PTIDES model and input signals,
the applicaiton will generate the same output signals.

Designing and modeling applications in high-level models
of computation such as PTIDES allows for robust design and
easier analysis of concurrent software, and prevents many of
the common pitfalls introduced though lower-level program-
ming models such as threading. One of the key benefits of
the PTIDES programming model is its inclusion of timing
semantics, so that the user is able to design an application
without any knowledge of the hardware platform upon which
it is implemented, with the guarantee of deterministic behavior.
A PTIDES program may be designed within a high-level
programming environment such as Ptolemy II. The design can
be verified and tested through simulation until it satisfies all
functionality and timing constraints. This design can then be
mapped to a specific embedded target platform. As Fig. 2
shows, to bridge this gap between design and implementation,
a code generator is ideal, so that the design can be automati-
cally generated into an executable for a specific platform. We
call this executable PtidyOS.

Our code generator relies on and extends the current code
generation framework in Ptolemy II. Ptolemy II models are
composed of directors (which govern the semantics of the
model), and actors (which govern its behavior). In our case,
the PTIDES Embedded director embodies the semantics of a
PTIDES model, both for simulation and for C code generation.
In simulation, actors define input and output behaviors, and
are composed according to the rules of the director. In C
code generation, Ptolemy II uses helpers (adapters) for each
hardware platform and actor. In this paper, we present Ptolemy
II actors written for the PTIDES Embedded domain, as well

PTIDES WorkflowPTIDES!Workflow

Schedulability

Design

Simulation Analysis

Code!
Generation

Program!
A l i

PtidyOS

Analysis

PtidyOS
Runtime

Fig. 1. PTIDES Programming Workflow

as the C code generator helpers that target our embedded
platform, the Luminary Micro LM3s8962.

A. PTIDES Programming Model
PTIDES builds on the Discrete Event (DE) model of com-

putation, an event-triggered model where software components
communicate via timestamped events. We refer to the values
of these timestamps as model time. Physical time, by contrast,
is time in the physical world when a sensor event is received
or an actuation event is set to occur. Physical time is totally
ordered, while model time need only be partially ordered.
The scheduler may schedule an event with later timestamp
before processing one of an earlier timestamp, as long as
no actor observes any violation of causality with respect to
physical time. Model time and physical time are bound at
the interfaces of sensors and actuators, as defined in [2].
Using this relationship, as well as causality interface as defined
in [7], PTIDES specifies a safe-to-process algorithm [8] which
determines if an event may be safely used in computations or
sent for actuation. In the most simple case, an event is safe-
to-process if its timestamp, when added to a constant model
time delay (or offset), is greater than or equal to the current
physical time. This offset is specified for each input port of
the system at design time. Input ports are inputs which are
connected to external systems on the same hardware environ-
ment, external sensors, or network devices. These offsets may
be calculated using causality information of events within the
system, physical response time of hardware IO devices, or
network delay and synchronization error, respectively. In our
current implementation these offsets are annotated by the user
in the Ptolemy II model, though automated analysis of the
model may be achieved in the future.

B. PtidyOS Real-Time Operating System
The final product of our code generation is PtidyOS. One

way to think about PtidyOS is that it is a collection of software



PtidyOSPtidyOS
!! All"event"processing"is"
implemented within interruptimplemented"within"interrupt"
service"routines.
!! All"interrupts"are"reentrant,"
interrupts"do"not"have"priority"
only"events"do.
!! No"dynamic"memory"
allocation."
!! Combines PTIDES semantics

Scheduler.lib

.".".""".".".
Main()"{
…

!! Combines"PTIDES"semantics"
with"traditional"scheduling"
algorithms"(for"example"Earliest!
Deadline!First(EDF)).Sensor.lib

Computation.lib

}

PtidyOS.exe

Fig. 2. PtidyOS

libraries. As Fig. 2 shows, during code generation, we produce
a scheduling library that implements PTIDES semantics and
dictates the scheduling of the system. Each of the actors in the
system can also be viewed as a software component library.
Thus the code generation framework glues together all the
libraries into one executable, which we call PtidyOS.

In this regard, PtidyOS is very different from general
embedded operating systems such as OpenRTOS [6], vx-
Works [4], and RTLinux [5]. Unlike these conventional
RTOS’s that leverage a threaded programming model, PtidyOS
instead performs all event processing and context switching
in interrupt service routines. The use of interrupt service
routines minimizes latency between software components and
dramatically reduces the number of context switches, as con-
text switching occurs only when an incoming sensor event
is received, when an event becomes safe-to-process, or when
an actuation event has been scheduled in accordance with
its predetermined deadline. To ensure the most time-critical
event is always executed first, PtidyOS relies on reentrant
interrupts that may interrupt both themselves or other interrupt
service routines so that higher-priority events take precedence.
PtidyOS leverages the event-order execution semantics of
PTIDES with traditional scheduling methods such as earli-
est deadline first (EDF). EDF guarantees optimal scheduling
(when a feasible schedule exists), and when combined with
PTIDES semantics, allows for correct execution without the
need to totally order event processing. Finally, PtidyOS tries
to achieve a small memory footprint in part through this
code generation, which performs optimization through partial
evaluation of the application model.

C. Related Work
PTIDES is not the first to introduce timed semantics into

a model of computation. Giotto [3] does so by introducing
”logical execution time”; both Giotto and PTIDES limit the
interaction between non-physical and physical time. PTIDES
is more explicit in that only sensors and actuators bind model
time to physical time, while in Giotto logical execution time
can relate to physical time at all components. Furthermore,
PTIDES takes an event triggered approach instead of exclu-
sively focusing on periodic tasks.

PtidyOS solves traditional real-time scheduling problems,

but differs from conventional real-time operating systems in
its explicitly timed semantics and reentrant interrupt context
switching. PtidyOS, as its name indicates, share somes resem-
blance to TinyOS, a light-weight operating system used mainly
in small-scale sensors. For example, Distributed controls sys-
tems benefit from the light footprint of PtidyOS. Both TinyOS
and PtidyOS employ a single stacked memory scheme, which
simplifies memory management and provides more predictable
timing behaviors by simplifying memory use.

II. IMPLEMENTATION

A. PtidyOS Application Anatomy
Since a pilot implementation of PtidyOS was done in C,

it was used as a basis for our generated code. Moreover,
much of the code incorporates the scheduler that implements
PTIDES semantics, which could be simply copied as the core
of the scheduler library. To efficiently identify and reuse the
available function in the pilot code, the functions in PtidyOS
are partitioned into ”static” code and ”generated” code.

”Static” code refers to core PtidyOS components such as
scheduling methods, stack manipulation, and utility functions.
Examples of these functions are processEvents(), disableIn-
terrupts(), and convertCyclesToNsecs(). These functions
are static in the sense they do not need to be partially
evaluated, and only one instance of each function is nec-
essary for any PtidyOS application. In the Ptolemy II code
generation infrastructure, these functions are generated in the
”sharedBlock” region, which is generated only once for any
given target. notice this code can be platform independent
(e.g. scheduling methods) or platform dependent (e.g. inter-
rupt enable/disable), but they are generated together through
platform independent and dependent adapters that were created
for Ptides Embedded director.

In order to correctly implement a PTIDES semantics, the
scheduler needs to access causality information about the
PTIDES model. Since one of our goals for PtidyOS is to
minimize its footprint, a full duplicate representation of the
model in PtidyOS is undesirable. Thus the causality informa-
tion about this model is preprocessed, and as we will show
later, they are stored as a part of Events, which is accessed
when a particular event is processed.

Finally, ”generated” code refers to methods specific to actors
in a model, which mainly include the fire() functions for each
actor. At the end of firing of each actor, code is also generated
for the production of an event, which we will discuss in detail
in the next subsection.

B. Code generation Infrastructure
When code generating an implementation from a PTIDES

model, the structure of the model must be preserved. In the
pilot PtidyOS implementation, the structure of the model is
created by Actor and Port data structures, which are used to
construct the model at program initialization time. However,
because we are leveraging the Ptolemy II code generation
framework, we can use partial evaluation before we generate
the code to save the code space and memory overhead of
storing the model. The structure of the model is static, so
the destination actor of an event will never change. Since our
code generator has access to this static model, when events are
generated by each actor, the destination of the event is known.



Fig. 3. Event Generation Code

Thus, we do not need to generate and store this model at run
time, but instead, we directly code generate the firing code of
an actor to place its output event at the known destination actor
input. In our code generation framework, actors are simply
generated to be a single function in the c code, which we
call the firing function. This firing function will contain the
semantics of the actor, which reads from its inputs ports and
produces outputs to its output port. The structure that carries
the data passed around by actors are called Events.

An Event contains a place holder for the data value that’s
being passed around, as well as a timestamp to signify
the model time it was created. So far this is the same as
in a discrete event system. However, leveraging the partial
evaluation of Ptolemy II, we can store the destination actor
(firing function) of this event in this Event structure, as well
as its destination port. By doing so, we avoid the need to store
any information about the model at run time in the generated
implementation. When an event is processed by the scheduler,
it simply looks in its own structure, and calls the function
stored in its destination firing function field. This is illustrated
by the code snippet in Fig. 3, which is the fire function of a
Const actor. This actor simply produces a constant value each
time it is triggered.

Since the computation it performs is trivial, the entire fire
function is basically the code that produces an output event.
As it shows, an event is first created by calling newEvent().
Notice since no dynamic allocation of event is allowed, this
method simply takes an event from a repository of event
structures that are allocated at initialization. The timestamp
and microstep of the event is then set to the currentModelTime
and currentMicrostep, which keep track of the current model
time of the system. The deadline and the event as well as its
offset are then set. Notice these values are preprocessed by
the code generator to reflect the causality of this event with
respect to the rest of the system. This is followed by a function
pointer that points to the fire method of the destination actor,
as well as the data value of the event. sinkEvent, which is a
pointer to a pointer of an event, represents the port this event
is destined to. When this event is processed, the scheduler will
use this pointer to ensure the input channel slot points to this
event. Next, addEvent() is called to add this event into the
event queue, which completes the event generation process.
Notice at the end of the firing function, the input channel slot
of this actor is cleared, to indicate that the input event has
been consumed.

C. Communication between actors
For dataflow like models of computation, for example, Syn-

chronous Dataflow or Process Network, the communication
channels from the model is simply a First In First Out (FIFO)
buffer. The output actor generates tokens to be stored in
the communication buffers while the destination actor simply
reads from the buffer when it is fired. Since each firing of
a dataflow actor is based upon a firing rule, whenever its
fire function is executed, it knows that there will always be
tokens in its input. However, for PTIDES, which is based on
the Discrete Event model of computation, each firing of an
actor is not dependent on a firing rule. Instead, PTIDES actors
are fired whenever an event arrives at any of its input ports,
and the actor only consumes the token(s) with the smallest
timestamp at each firing. Thus, even if we have communication
buffers for each connection, the firing function would still
need to determine which events to consume based on the
timestamp of the events, instead of simply taking an event
off each of the buffers of its incoming connections. Along
with that, PTIDES contains an event queue which orders the
events to determine which one to process next. With the event
queue storing the processing order of events, and the events
themselves containing the destination firing function and port,
we no longer need to generate a buffer for each connection
between the actors.

We create an empty Event slot for each channel on each
input port for an actor. When events are taken off the event
queue for execution at a particular timestamp by the PTIDES
scheduler, the scheduler points the destination input channel
slot to the event that is currently being processed, and then it
calls the firing function for the destination of the event. The
firing function now simply checks each input slot to see if an
event is present, and generates the correct output based upon
the inputs its received. The event that is produced by each
firing is then simply added onto the event queue, which is self
sorted by the deadline of the event. By doing so, we avoid the
need to generate lengthy buffers for each connection between
actors.

D. Bridging physical time and model time
The fundamental goal of PTIDES is that it bridges the

model and the physical world. It does so with sensor and
actuator actors. A sensor is an actor which fires only when
triggered by the physical world. An actuator is an actor that
when fired, produces an actuation on the physical environment.
The deterministic time at which the actuation occurs is the
fundamental property of PTIDES. Thus, special care needs to
be taken when generating code for sensors and actuators.

For sensors, its generated fire function is always registered
as an interrupt service routine for the specific device its trying
to model. For example, if the sensor actor represents a general
purpose input pin, then its fire function will be registered as
the interrupt service routine of the specific general purpose
input pin. The fire function of the sensor does the following:

1) Get the current physical time
2) Reads in the value of the sensor
3) Generates an event that encapsulates the sensor value

and sets the timestamp of the event to be the physical
time obtained in step 1

4) Add the event to the event queue



Thus, whenever a sensor actor is triggered, it generates an
event to be put into the system with its timestamp equal to
physical time. As this event is propagated through the system,
its timestamp is manipulated and increased by other actors in
the system, such as TimeDelay actors. When it finally triggers
an actuator, the physical time of the actuation should occur at
the timestamp specified by the event.

Thus, for actuators, two separate firing functions are gener-
ated. The firing function of an actuator is the function which
is called when the scheduler schedules an event to be run on
the actuator actor. The actuation function is the function that
actually does the physical actuation through the output device.
The firing function of the actuator does the following:

1) Get the current physical time
2) Reads the timestamp of the event which triggered this

firing
3) Sets up a timer with the difference between physical

time and the timestamp of the event
The actuation function is simply the timer interrupt service
routine that is run when the timer expires. This ensures that
the physical actuation from the system occurs when physical
time equals the timestamp of the event.

E. Platform Dependency
The goal of the code generation infrastructure is to gener-

ate the same model semantics for different target platforms.
The pilot version of PtidyOS targets the Luminary Micro
LM3s8962, an ARM Cortex-M3 based embedded platform.
Thus, the partitioning of generating platform dependent and
independent code had to be designed into the code generation
framework. Ptolemy II’s code generation framework already
provides a solid framework which to extend: Platform indepen-
dent code is generated from Ptolemy II by a PTIDES domain
adapter, while platform-dependent code is generated from a
subadapter which is architecture specific.

Platform independent code includes most of the scheduling
libraries of PtidyOS, and the structures required for the basic
PTIDES framework. This includes the event queue, the Event
structure, and the functions which manipulate the event queue
to schedule events. Typically the structure of the model would
also be platform independent code, but in this case the
structure of the model is optimized away by partial evaluation,
thus we don’t need generate those.

For sensors, actuators, and any device configuration code,
they are generated in the subadapter for the specific target.
This is done through the code template theme of the code
generation framework in Ptolemy II. Platform specific actors,
such as general purpose input/output pins or speakers, can be
created by writing its platform specific code in the code blocks
of code templates. The subadapter for the PITDES director
will then place specific code blocks in the correct location in
the code, including initializing the device, and the code to use
the device.

By doing so, we can extend the code generation framework
for another target by simply writing different code templates
for the different targets. This allows us to have a platform
independent code generator.

III. EXAMPLE PTIDYOS APPLICATION

We present a simple example of a code-generated PtidyOS
application, as shown in Fig. 4. The model, built in Ptolemy II

Fig. 4. PTIDES Example Application

with the PtidesEmbedded director, receives an external input
signal, converts the signal into a note of a song, and sends the
note to an actuator (in this case a speaker) with an annotated
physical delay.

Given a periodic input signal, a correct execution of this
model will play sequential notes in a song on a regular beat.
An observer can easily detect beat frequencies if notes are
played irregularly, missed notes if deadlines are not met, and
incorrect playback if tasks are executed out of timestamp order.

IV. RESULTS AND CONCLUSION

In this project, we augmented the code-generation frame-
work of Ptolemy II with the capability of generating PTIDES
models into embedded C applications. PTIDES semantics are
embodied by the PtidyOS scheduling and context-switching
libraries, and PTIDES models are statically linked against
these libraries to define the behavior of a model. Unlike a
typical threaded operating system scheduler, PtidyOS benefits
from the partial-evaluation [1] steps of code generation which
statically analyze causality and dependency relationships and
converts them into predetermined firing paths. Constructing
PTIDES models in Ptolemy II allows for simplified design,
evaluation, and verification through simulation without con-
cern for low-level design considerations such as memory
management, mutual exclusion locks, or thread priorities.
When satisfied with the design, the code generation framework
allows for fast prototyping and implementation of the PTIDES
model on varied target platforms.

We plan to continue development of PtidyOS by adding
additional target platforms, implementing more sophisticated
PTIDES scheduling libraries, improving system performance,
minimizing code footprint, and supporting a more complete
subset of Ptolemy II actors.

REFERENCES

[1] C. Brooks, C. Cheng, T. H. Feng, E. A. Lee, and R. von Hanxleden.
Model engineering using multimodeling. In 1st International Workshop
on Model Co-Evolution and Consistency Management (MCCM ’08),
September 2008.

[2] T. H. Feng and E. A. Lee. Real-time distributed discrete-event execution
with fault tolerance. In Proceedings of RTAS, St. Louis, MO, USA, April
2008.

[3] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered
language for embedded programming. volume 91(1) of Proceedings of
the IEEE, pages 84–99, 2003.

[4] W. River. Vxworks: Embedded rtos with suport for posix and smp.
http://www.windriver.com/products/vxworks/.

[5] W. R. RTLInuxFree. Rtlinuxfree. http://www.rtlinuxfree.com/.
[6] The FreeRTOS.org Project. Openrtos. http://www.freertos.org.
[7] Y. Zhou. Interface Theories for Causality Analysis in Actor Networks.

PhD thesis, EECS Department, University of California, Berkeley, May
2007.

[8] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler. Execution strategies
for ptides, a programming model for distributed embedded systems. In
to appear in RTAS, 2009.


