
Synchronous Reactive

Modular Code Generation
 Dai Bui

Mentor: Stavros Tripakis

EE290N – Concurrent Models of Computations

Introduction

Synthesize an atomic actor from a
composite actor

Why?

IP protection: hide internals of
composite

Efficiency: static scheduling

Generated code should be modular

Independent from context

Usage scenarios

Creating a new modular composite actor

Add SRModularDirector

Add SRModularCodeGenerator

Add other actors and connect them

Generate code for each actor by pressing
the SRModularCodeGenerator actor

Create an entry in User Library in
Ptolemy actor tree like other atomic
actors

This entry points to the generated Java
class similarly to atomic actors

Introduction

Synthesize an atomic actor from a composite actor

Some issues with current approach

Flattening composite actors increases the number
of actors in a model, and thus increases the
scheduling computation of external directors

Flattening composite actors is not always possible
when the composite actors are intellectual property
(IP) composite actors -> composite actors should
have their own fire functions

However, one monotholic fire function approach
currently used in Ptolemy can reduce performance
of SR models since composite actors might have
to fire several times before the models reach fixed
points

Key idea: Interfaces

Instead of “monolithic”

interface: single fire/

postfire functions

Multi-function interface

E.g.: fire1(), fire2()

Solution

We employ a new technique, called modular interface, in which each
composite actor could have multiple fire interface functions so that an outside
director can invoke appropriate interface functions based on the presence of
respective inputs.

The modular code generated for each composite actor should be independent
from context the composite actor can be used. This can be achieved by
generating a set of fire interface functions for each composite actors.

The provided information about the interface functions is used by outside
directors to make decisions on which fire interface function should be invoked
based on the outside directors' scheduling algorithm.

Background

Synchronous/Reactive

Causality interfaces

New stuff

New standard interface ModularInterface:

Number of fire interface functions

Output ports belongs to each fire interface functions

New SRModularDirector:

If this director is inside a modular composite actor, it can fire
multiple schedules according to which fire interface function of
the modular composite actor is invoked

If the director is used as an external director, it can exploit the new
features of modular composite actors

Code generation

Each generated modular composite actor implements a standard
interface called ModularInterface with standard functions that
provides information about fire interface functions

Number of fire interface functions

Output ports belongs to each fire interface functions

New SRModularDirector is implemented

If this director is inside a modular composite actor, it can fire
multiple schedules according to which fire interface function of
the modular composite actor is invoked

If the director is used as an external director, it can exploit the new
features of modular composite actors

Store, Reconstruct and Hide

internals

The internal structure of a modular composite actors is store in
the actor Java file in some form of XML structure

Internal structures are constructed in constructors of Java class

Compiling and preprocessing information of each modular
composite actors, i.e. port dependency, number of interface
functions, clusters of actors, …, are initialized in Preinitialization

Internal structures are hidden so that users can not see, i.e. for IP
protection

SRModularDirector

External

SRModularDirector uses a

causality interface for

modular director to derive

schedules

Exploit reflection

mechanism in Java

Operating mechanism

External

SRModularDirector uses a

causality interface for

modular director to derive

schedules

Exploit reflection

mechanism in Java

Clustering (1)

How many interface functions to generate? Which ones?

Clustering: different methods

Clustering (1)

A set of output ports depending on the same set of input

ports is called a cluster

Upstream actors of a cluster form a fire interface function

Clustering (2)

Compatibility

Modular composite actors are compatible with conventional

external SR Director

Example 1

Modular firing trace

Conventional firing trace

Example 2

Modular firing trace

Conclusion and Future work

Improve performance

IP protection

Automatic updates

Possible extensions

Support Modal Models with multiple dynamic firings

Apply the same idea for other domains in Ptolemy, in

particular SDF

Questions?

