Fdidliel DESIEIN FdLLElrS Usirig

Algrier-oraer ACLOIS

) —
Chang-Seo Park

Christos Stergiou

Project Goals

N
» Multicore execution of Ptolemy models

> Scalable to multiple cores
» Exploit task and data parallelism

» Extend existing static scheduling domains
> SDF
> (Others suggested)

Extracting Parallelism

__]
» Task & Pipeline parallelism

> Give each actor a thread
> What if more cores than actors?
> What if too many actors?

» Data parallelism

> Run same schedule on different data
independently

Assumptions

N
» Assume actors have no state

> Can't use Expression, FIR
> Loops are also problematic

» Computation bound application

Synchronous Dataflow

]
» Each actor consumes and produces fixed
amount of token on each firing (usually 1)

» Firing sequence of actors can be determined

statically

SDF Director

1 sequence 7 StringToUnsignedByteArray 3 IP

e Keyl: "deadbeefl2345678"
@ Key?: "feedbacfeedbac00”

@ Key3: "cafedeadbeeffeed"”

6 Encode(Key3) SDecoue[Kevzj 4Encodeu<em l

irlP UnsignedByte ArrayToString Display
7 38 9
S0 G o=

Schedule

Sequence(1), S2ZUBA(1), IP(1),
E_Key1(1), D_Key2(1), E_Key3(1),
invIP(1), UBA2S(1), Display(1)

3DES Encryption

Multicore Synchronous Dataflow

N
» Programmer encapsulates parallelizable
region in a composite actor

> Run schedule on multiple cores

MSDFDirector

i i IP
port StringToUnsignedByteArray

i

e Keyl: "deadbeefl2345678"

FMN Director

- e Key?: "feedbacfeedbacO0”
e Keyd: "cafedeadbeeffeed)

ThreadedMdtilnstanceComposite Display

= -

Multicore Synchronous Dataflow

2
» Assume we have 4 cores

e Keyl: "deadbeefl2345678" Schedule
- e Key2: "feedbacfeedbacO " S S S S T D D D D
e Keyd: "cafedeadbeeffeed”

ThreadedMultilnstanceComposite Display

Multicore Synchronous Dataflow

2
» Assume we have 4 cores

Worker 1 Schedule:

SIEDEiU

é Worker 2 Schedule: 2 MSDFDirector

S ||/|SIEDEiU e]

&S) t port StringToUnsignedByteArray P

= Worker 3 Schedule: = »—<}

4(2'; S I E D E 1 U LOJ EncodelKey3)

=)
Worker 4 Schedule: invip o -
SIEDEiU >4 -

Parallel Fork-Join Actor

]
» ThreadedMultilnstanceComposite Actor

> Given n worker threads, runs static schedule of
component actors on each worker

> Vectorization factor runs multiple schedules on
each worker for less overhead

» Current Status
> Deterministic fork-join order
> Receiver multiplexing instead of actor cloning

> Linear scaling for computation intensive toy
benchmark

Implementation
- |
» MSDFDirector

> Prefire inflates consumption rate
> Fire

> Returns msdf receivers

» MSDFReceiver

> Get & put

> GetWorkerReceiver : mapping from thread to
receiver index

Application: Mandelbrot Set

» Compute whether for a complex number z,
Zy = Zn-lp tZ
converges or not

> Compute intensive

> Embarrassingly parallel for each number

ﬂﬂﬂﬂﬂﬂﬂﬂ J =0k
File Help

[] Application: Mandelbrot Set

]
@ X_low: -1.0 @ width: 64 PN Director
‘x_hlgh: 1.0 ® hEIght 96
e Y_low: -1.5
@ Y_high: 1.5 @ numWorkers: 8
¥ Repeat

ThreadedMultiinstanceComposite

RGEDisplay

SequenceToMatrix

LAY

\
|

¥ Repeats

X J’iﬁ

MSDFDirector

Mandelbrot

e

:
|

[] Application: Mandelbrot Set

» Speedup

==ie=]deal

eg=p=4 (vf=2)
e=fli=p=3 (vf=1)
sle=p=3 (vf=2)
e p=3 (vf=4)

=) — N w S 9] (o)} ~ (o] O
1

1 2 3 4 5 6 7 8

» Verdict: near linear scaling to 4 cores, can
extend to more cores with larger problem

Recursion Actor

]
» Remains statically schedulable as long as
base case and recursive case consume and
produce same number of tokens

> Have a “guard” input that decides whether to
recurse

> “default” model for base case

» Nested cloning of actors avoided by using
receiver multiplexing

Application: Fibonacci

N
» Compute the n-th Fibonacci number

» Naive algorithm runs in O(2")

port2_default port ==071:0
guari: part == 2

AddSubtract?2 ™ Recurse

Br + | |
oL — g}D Add5subtract

2
T por
AddSubtract3 Recurse 2 o -
B+
o —

Fibonacci

Application: Fibonacci number

» Results
Recurse ActorRecursion
1 ﬁ]); ' 7l :} fﬂ)g{fn) ﬁh] (12) fﬂ)g{fn)
10 32 22 || 909 (12.922) 62 (542)
20 2627 26 - (>10mn) | 101 (1,065)
10 || =3min 29 -(-) | 217 (2.,633)

» Verdict: More efficient execution than actor
cloning

Future Work

S
» Schedules do not have to be a linear order

> Partial order schedules allows for parallelism
> Task stealing among worker threads
» Dynamic load balancing in the presence of
multiple parallelizable regions

> Input queue length is a good indicator of
“utilization” - give and take workers as
necessary

» More SDF Actors to simplify programming
> Spawn, Iterate, etc.

Conclusion

N
» Multicore scalability is possible

> Nature of the problem
> Platform overhead
» Multiplexing receivers is more efficient than
explicit actor cloning
> Allowed for a clean implementation of MSDF
> Provided support for Recursion actor

