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Project Goals

N
» Multicore execution of Ptolemy models

> Scalable to multiple cores
» Exploit task and data parallelism

» Extend existing static scheduling domains
> SDF
> (Others suggested)



Extracting Parallelism

__ ]
» Task & Pipeline parallelism

> Give each actor a thread
> What if more cores than actors?
> What if too many actors?

» Data parallelism

> Run same schedule on different data
independently



Assumptions

N
» Assume actors have no state

> Can't use Expression, FIR
> Loops are also problematic

» Computation bound application



Synchronous Dataflow

]
» Each actor consumes and produces fixed
amount of token on each firing (usually 1)

» Firing sequence of actors can be determined

statically
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Multicore Synchronous Dataflow

N
» Programmer encapsulates parallelizable
region in a composite actor

> Run schedule on multiple cores
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Multicore Synchronous Dataflow

2
» Assume we have 4 cores
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Multicore Synchronous Dataflow

2
» Assume we have 4 cores
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Parallel Fork-Join Actor

]
» ThreadedMultilnstanceComposite Actor

> Given n worker threads, runs static schedule of
component actors on each worker

> Vectorization factor runs multiple schedules on
each worker for less overhead

» Current Status
> Deterministic fork-join order
> Receiver multiplexing instead of actor cloning

> Linear scaling for computation intensive toy
benchmark



Implementation
- |
» MSDFDirector

> Prefire inflates consumption rate
> Fire

> Returns msdf receivers

» MSDFReceiver

> Get & put

> GetWorkerReceiver : mapping from thread to
receiver index



Application: Mandelbrot Set

» Compute whether for a complex number z,
Zy = Zn-lp tZ
converges or not

> Compute intensive

> Embarrassingly parallel for each number
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[ ] Application: Mandelbrot Set
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[ ] Application: Mandelbrot Set

» Speedup

==ie=]deal

eg=p=4 (vf=2)
e=fli=p=3 (vf=1)
sle=p=3 (vf=2)
e p=3 (vf=4)

=) — N w S 9] (o)} ~ (o] O
1

1 2 3 4 5 6 7 8

» Verdict: near linear scaling to 4 cores, can
extend to more cores with larger problem



Recursion Actor

]
» Remains statically schedulable as long as
base case and recursive case consume and
produce same number of tokens

> Have a “guard” input that decides whether to
recurse

> “default” model for base case

» Nested cloning of actors avoided by using
receiver multiplexing



Application: Fibonacci

N
» Compute the n-th Fibonacci number

» Naive algorithm runs in O(2")
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Application: Fibonacci number

» Results
Recurse ActorRecursion
1 ﬁ]); ' 7l :} fﬂ)g{fn ) ﬁh] (12) fﬂ)g{fn )
10 32 22 || 909 (12.922) 62 (542)
20 2627 26 - (>10mn) | 101 (1,065)
10 || =3min 29 -(-) | 217 (2.,633)

» Verdict: More efficient execution than actor
cloning



Future Work

S
» Schedules do not have to be a linear order

> Partial order schedules allows for parallelism
> Task stealing among worker threads
» Dynamic load balancing in the presence of
multiple parallelizable regions

> Input queue length is a good indicator of
“utilization” - give and take workers as
necessary

» More SDF Actors to simplify programming
> Spawn, Iterate, etc.



Conclusion

N
» Multicore scalability is possible

> Nature of the problem
> Platform overhead
» Multiplexing receivers is more efficient than
explicit actor cloning
> Allowed for a clean implementation of MSDF
> Provided support for Recursion actor



