
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 1: Process Networks

Lee 01: 2

Logistics

Class web page:

 http://embedded.eecs.berkeley.edu/concurrency

Project

Paper (and paper review)

Homework

Reading

Study group

Technology:

Ptolemy II

Java

Eclipse

LaTeX

2

Lee 01: 3

Homework

Issued roughly every two weeks

Will leverage a common technology base:

Java

Eclipse

Ptolemy II

First assignment is on the web

Lee 01: 4

Project

Conference (workshop) paper quality expected

Papers will be “submitted” and “reviewed” by you

Presentations will be workshop like

Teams up to two are encouraged

Leveraging the technology base is encouraged

Many project suggestions are on the web

In almost all cases, I have a fairly clear idea of how to

start. Come talk to me if one of these looks interesting

3

Lee 01: 5

Study Group

A mechanism for reading and discussing papers.

Hopefully will meet Fridays, 4-5PM, 540 A/B Cory.

Each week, 2-3 students are assigned to lead the
discussion. One of those will be selected as the
overall coordinator.

All are expected to have read the paper before the
study group meets.

All are encouraged to comment, as questions, and
participate in discussion.

Come prepared with a hard or soft copy of the paper.

Lee 01: 6

Introduction to

Edward A. Lee

Working in embedded software since1978, when
I was writing assembly code for 8-bit
microcontrollers to control biomedical robotic
machines. From 1980-82, I was writing assembly
code for the AT&T DSP-1 to implement modems at Bell Labs.

BS ’79 (Yale, Double major: CS and EE)
SM ’81 (MIT, EECS)
PhD ’86 (Berkeley, EECS)

Berkeley EECS faculty since 1986

One of four directors of Chess, the Berkeley
Center for Hybrid and Embedded Software Systems

Director of the Berkeley Ptolemy project

Co-author of five books (on digital communications, signals and systems, and
dataflow)

Chair of EE, then EECS, from Jan. 2005- June 2008.

Co-founder of BDTI, Inc., a 12 year old technology company

Key awards:
Robert S. Pepper Distinguished Professor

NSF Presidential Young Investigator

Terman Award for Engineering Education.

Fellow of the IEEE

4

Lee 01: 7

Who are you?

Lee 01: 8

Model of Computation

NIST:

 “A formal, abstract definition of a computer.”

 Examples: Turing machine, random access machine, primitive

recursive, cellular automaton, finite state machine, …

Wikipedia (on 1/18/09):

 “the definition of the set of allowable operations used in computation

and their respective costs.”

 “In model-driven engineering, the model of computation explains how

the behaviour of the whole system is the result of the behaviour of each

of its components.”

5

Lee 01: 9

Lee 01: 10

Concurrency

From the Latin,

concurrere,

“run together”

Discussion:

Is concurrency hard?

6

Lee 01: 11

Lee 01: 12

Potential Confusion

• Concurrent vs. parallel

• Concurrent vs. determinate

7

Lee 01: 13

Kahn Process Networks (PN)

A Concurrent Model of Computation (MoC)

• A set of components called actors.

• Each representing a sequential procedure.

• Where steps in these procedures receive or send

messages to other actors (or perform local operations).

• Messages are communicated asynchronously with

unbounded buffers.

• A procedure can always send a message. It does not need

to wait for the recipient to be ready to receive.

• Messages are delivered reliably and in order.

• When a procedure attempts to receive a message, that

attempt blocks the procedure until a message is available.

Lee 01: 14

Coarse History

Semantics given by Gilles Kahn in 1974.

Fixed points of continuous and monotonic functions

More limited form given by Kahn and MacQueen in 1977.

Blocking reads and nonblocking writes.

Generalizations to nondeterministic systems

Kosinski [1978], Stark [1980s], …

Bounded memory execution given by Parks in 1995.

Solves an undecidable problem.

Debate over validity of this policy, Geilen and Basten 2003.

Relationship between denotational and operational semantics.

Many related models intertwined.

Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction
(Wegner), Streams (Broy, …), Dataflow (Dennis, Arvind, …)...

8

Lee 01: 15

Syntax

• Processes communicate via ports.

• Ports are connected to one another, indicating message pathways.

• Interconnection of ports is

specified separately from

the procedures.

while(true) {

 data1 = in1.get();

 data2 = in2.get();

 … do something with it …

}

Message pathway

Port

Fork

Process

Discussion: What should a fork do?

while(true) {

 data = …

 outputPort.send(data);

}

Lee 01: 16

What should this mean?

9

Lee 01: 17

Question 1:

Is “Fair” Thread Scheduling a Good Idea?

In the following model, what happens if every thread is

given an equal opportunity to run?

Lee 01: 18

Rendezvous: An Alternative Communication

Mechanism with Bounded Buffers

Rendezvous underlies CSP (Hoare), CCS (Milner), and Statecharts (Harel)

while(true) {

 data1 = in1.get();

 data2 = in2.get();

 … do something with it …

}

Discussion: What should a fork do?

while(true) {

 data = …

 outputPort.send(data);

}
Processes must both reach this

point before either can continue.

10

Lee 01: 19

Discussion

How does this program compare under rendezvous

communication vs. process networks?

Lee 01: 20

Question 2: Should we use Rendezvous Here?

The control signal now depends on the source data.

11

Lee 01: 21

A Practical Application with this Structure

Consider collecting time-stamped

trades from commodities markets

around the world and merging them

into a single time-stamped stream. The

CONTROL actors could compare time

stamps, with logic like this:

data1 = topPort.get();

data2 = bottomPort.get();

while (true) {

 if (data1.time < data2.time)) {

 output.send(true);

 data1 = topPort.get();

} else {

 output.send(false);

 data2 = bottomPort.get();}

}

Lee 01: 22

Question 3: How about Demand-Driven (Lazy)

Execution?

In demand-driven execution, a process is stalled unless

its outputs are required by a downstream process.

The DISPLAY process

has nothing downstream.

When should it be allowed

to run?

12

Lee 01: 23

Will Demand-Driven Execution Work Here?

Lee 01: 24

Question 4:

Will Data-Driven Execution Work?

In data-driven execution, a process is stalled unless it

has input data. What about the processes with no inputs?

13

Lee 01: 25

Things are not looking good…

We have ruled out:

• Fair execution.

• Rendezvous communication.

• Demand-driven execution.

• Data-driven execution.

For all the examples given so far, there is an obvious

execution policy that does what we want. Is there a

general policy that will always deliver that obvious policy?

Are there models for which the policy is not so obvious?

Lee 01: 26

Question 5:

What is the “Correct” Execution of This Model?

while(true) {

 data1 = in1.get();

 data2 = in2.get();

 … do something with it …

}

14

Lee 01: 27

Question 6:

What is the Correct Behavior of this Model?

Lee 01: 28

Question 7:

How to support nondeterminism?

Merging of streams is needed for some
applications. Does this require fairness?
What does fairness mean?

15

Lee 01: 29

Properties of PN (Two Big Topics)

Assuming “well-behaved” actors, a PN network is

determinate in that the sequence of tokens on each

arc is independent of the thread scheduling strategy.

Making this statement precise, however, is nontrivial.

PN is Turing complete.

Given only boolean tokens, memoryless functional

actors, Switch, Select, and initial tokens, one can

implement a universal Turing machine.

Whether a PN network deadlocks is undecidable.

Whether buffers grow without bound is undecidable.

Lee 01: 30

PN Semantics

Where This is Going

A signal is a sequence of values

Define a prefix order:

 a a'

means that a is a prefix of a'.

Actors are monotonic functions:

a a' f (a) f(a')

Stronger condition: Actors are continuous functions

(intuitively: they don’t wait forever to produce outputs).

16

Lee 01: 31

PN Semantics of Composition (Kahn, ’74)

This Approach to Semantics is “Tarskian”

Fixed point theorem:

• Continuous function has a unique least fixed point

• Execution procedure for finding that fixed point
• Successive approximations to the fixed point

If the components

are deterministic,

the composition is
deterministic.

Lee 01: 32

What is Order?

Intuition:

1. 0 < 1

2. 1 <

3. child < parent

4. child > parent

5. 11,000/3,501 is a better approximation to than 22/7

6. integer n is a divisor of integer m.

7. Set A is a subset of set B.

Which of these are partial orders?

17

Lee 01: 33

Relations

A relation R from A to B is a subset of A B

A function F from A to B is a relation where

(a, b) R and (a, b) R b = b

A binary relation R on A is a subset of A A

A binary relation R on A is reflexive if

 a A, (a, a) R

A binary relation R on A is symmetric if

(a, b) R (b, a) R

A binary relation R on A is antisymmetric if

(a, b) R and (b, a) R a = b

A binary relation R on A is transitive if

(a, b) R and (b, c) R (a, c) R

Lee 01: 34

Infix Notation for Binary Relations

(a, b) R can be written a R b

A symbol can be used instead of R. For examples:

 N N is a relation.

(a, b) is written a b

A function f (A, B) can be written f : A B

18

Lee 01: 35

Partial Orders

A partial order on the set A is a binary relation that is:

For all a, b, c A ,

reflexive: a a

antisymmetric: a b and b a a = b

transitive: a b and b c a c

A partially ordered set (poset) is a set A and a binary

relation , written (A,) .

Lee 01: 36

Strict Partial Order

For every partial order there is a strict partial order <

where a < b if and only if a b and a b.

A strict poset is a set and a strict partial order.

19

Lee 01: 37

Total Orders

Elements a and b of a poset (A,) are comparable if
either a b or b a . Otherwise they are incomparable.

A poset (A,) is totally ordered if every pair of elements is
comparable.

Totally ordered sets are also called linearly ordered sets
or chains.

Lee 01: 38

Quiz

1. Is the set of integers with the usual numerical ordering

a well-ordered set? (A well-ordered set is a set where

every non-empty subset has a least element.)

2. Given a set A and its powerset (set of all subsets)

P(A), is (P(A),) a poset? A chain?

3. For A = {a, b, c} (a set of three letters), find a well-

ordered subset of (P(A),).

20

Lee 01: 39

Answers

1. Is the set of integers with the usual numerical ordering

a well-ordered set?

No. The set itself is a chain with no least element.

2. Given a set A and its powerset (set of all subsets)

P(A), is (P(A),) a poset? A chain?

It is a poset, but not a chain.

3. For A = {a, b, c} (a set of three letters), find a well-

ordered subset of (P(A),).

One possibility: { , {a}, {a, b}, {a, b, c}}

Lee 01: 40

Pertinent Example: Prefix Orders

Let T be a type (a set of values).

Let T ** be the set of all finite and infinite sequences of
elements of T, including the empty sequence (bottom).

Let be a binary relation on T ** such that a b if a is a
prefix of b. That is, for all n in N such that a(n) is defined,
then b(n) is defined and a(n) = b(n).

This is called a prefix order.

During execution, the outputs of a PN actor form a well-
ordered subset of (T **,).

21

Lee 01: 41

Summary

Concurrent models of computation

Process networks as an example

Intuitive model, but many subtle corner cases

Need a solid theory underlying it

Posets

Next time:

give meaning to all programs

develop an execution policy

