Concurrent Models of
Computation

Edward A. Lee

Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 290n — Advanced Topics in Systems Theory
Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 4: Message Passing Patterns

Message Passing Interface
MPI

MPI is a collaborative standard developed since the early
1990s with many parallel computer vendors and
stakeholders involved.

Realized as a C and Fortran APIs.

First draft of MPI: J. J. Dongarra, R. Hempel, A. J. G.
Hey, and D. W. Walker. A proposal for a user-level,
message passing interface in a distributed memory
environment. Technical Report TM-12231, Oak Ridge
National Laboratory, February 1993.

Lee 04: 2

ol

Anatomy of an MPI Program (in C)

/* On each processor, execute the following with different values for rank. *./
int main(int argc, char *argv[]) {

int rank, size, ..;

MPI_Init(&argc, &argv);

// Find out which process this is (rank)
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

// Find out how many processes there are (size)
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank == 0) {
.. code for one process ..
} else if (rank == RAMP2) {
.. code for another process ..

}
MPI_Finalize();
return 0;

Lee 04: 3

MPI Implementation of Select Process

Rank of the source or

int control; destination process

while (1) {

MPI_Recv(&control, 1, MPI_INT/(CONTROL_ SOURCE,) ...);

if (control) {

MPI_Recv(&selected, 1, DATA_SOURCEl) ...);

} else {

MPI_Recv(&selected, 1, DATA SOURCE2) ...);
}
MPI_Send(&selected, 1, cee)}

}
SELECT
i3 Data type of the
D_;' —> handled message
3

Lee 04: 4

o2

Vague MPI Send Semantics

MPI_Send is a “blocking send,” which means that it does
not return until the memory storing the value to be sent
can be safely overwritten. The MPI standard allows
iImplementations to either copy the data into a “system
buffer” for later delivery to the receiver, or to rendezvous
with the receiving process and return only after the
receiver has begun receiving the data.

Discussion: What do you think of this?

You can force a rendezvous style by using MPI_Ssend
instead of MP1_Send

Lee 04: 5

What happens to this program under a
rendezvous style of communication?

SOURCE1

SELECT DISPLAY

SOURCE?2 P I-

CONTROL Process:

CONTROL

MPI_Recv(&datal, 1, MPI_INT, SOURCEL, ...);
MPI_Recv(&data2, 1, MPI_INT, SOURCE2, ...);

while (1) {
if (someCondition(datal, data2)) {
MPI_Send(&trueValue, 1, MPI_INT, SELECT, ...);
MP1_Recv(&datal, 1, MPI_INT, SOURCE1, ...);
} else {
MPI_Send(&falsevValue, 1, MPI_INT, SELECT, ...);
MP1_Recv(&data2, 1, MPI_INT, SOURCE2, ...);
}
3

Lee 04: 6

o3

Forcing Buffered Send: MPI_Bsend()

“A buffered send operation that cannot complete because
of a lack of buffer space is erroneous. When such a
situation is detected, an error is signalled that may cause
the program to terminate abnormally. On the other hand,
a standard send operation that cannot complete because
of lack of buffer space will merely block, waiting for buffer
space to become available or for a matching receive to
be posted. This behavior is preferable in many
situations.”

Message Passing Interface Forum (2008). MPI: A Message Passing Interface
standard -- Version 2.1, University of Tennessee, Knoxville, Tennessee.

Lee 04: 7

Irony

“The reluctance of MPI to mandate whether standard
sends are buffering or not stems from the desire to
achieve portable programs.”

Message Passing Interface Forum (2008). MPI: A Message Passing Interface
standard -- Version 2.1, University of Tennessee, Knoxville, Tennessee.

Lee 04: 8

[Yk

Buffer Size Control in MPI

MPI_Buffer_attach associates a buffer with a process.
Any output can use the buffer, and MPI does not limit the
buffering to the specified buffers.

The MPI_Send procedure can return an error, SO you can
write processes that do something when buffers overflow.
What should they do?

MPI provides few mechanisms to exercise control over
the process scheduling (barrier synchronization seems to
be about it).

Lee 04: 9

A Design Question:
How to accomplish the fork processes?

Option 1 SOURCEL
Create a process for each
fork that copies inputs to
outputs (in what order?)

SELECT pispLaY

SOURCE2

CONTROL

Option 2:

Modify the SOURCE
processes to do
successive writes to
SELECT and CONTROL
(in what order?).

Lee 04: 10

o5

MPI_Recv Semantics

MPI_Recv blocks until the message is received.

Communication is point-to-point: Sending and receiving
processes refer to each other. According to the MPI
standard: “[this] guarantees that message-passing code
Is deterministic, if processes are single-threaded and the
wildcard MPI_ANY_SOURCE is not used in receives.”

MPI_ANY_SOURCE can be specified in a MPI_Recv()

Messages arrive in the same order sent.
Lee 04: 11

Discussion: Suppose you wanted to implement
Parks’ algorithm or Geilen and Basten?

How would you do it? SOURCE1

SELECT pispLay

SOURCE2 g -

F

CONTROL

Lee 04: 12

[15)

Threads and Fairness

MPI is used sometimes with threads, where a single process runs in
multiple threads. This can

“Fairness MPI makes no guarantee of fairness in the handling of
communication. Suppose that a send is posted. Then it is possible that the
destination process repeatedly posts a receive that matches this send, yet
the message is never received, because it is each time overtaken by
another message, sent from another source. Similarly, suppose that a
receive was posted by a multi-threaded process. Then it is possible that
messages that match this receive are repeatedly received, yet the receive
is never satisfied, because it is overtaken by other receives posted at this
node (by other executing threads). It is the programmer’s responsibility to
prevent starvation in such situations.”

Lee 04: 13
NondeterministicMerge in Ptolemy Il is
implemented in a multithreaded actor
Two threads | Zigiedr llustration of NondeterministicMerge in PN
perform o timeStep1: 1000L
blocking o timeStep2: 1500L
reads on DRa’"P Sleep
each of two N P NondeterministicMerge Display
input Rampa
channels o
and write to | o=
the same This model generates events with the time between events roughly

given by the two timeStep parameters, which are in units of milliseconds.
It then merges the two event sequences using a NondeterministicMerge,
which is a PN-specific actor that passes data from any number of input
streams to the output. Notice that this actor extends PN to support
nondeterministic models. It should be used with caution.

output port.

Lee 04: 14

o7/

SOURCE1

Scaling Up SOEIHFL;‘“
Designs

SOURCE3

Collective D_"_Lbslmcu "—L‘iﬂ.scn

operations souRcea
enable
compact —
representatio D—'—L‘jm
ns of certain | souee _j_‘*n

composite conTots

’—L;mcrs
structures J

SOURCE?7 CONTROL6

(not this one D—l_jwm
though, at s, | —r,

least not in
MPI).

CONTROL1

=

SELECTL pigpiay

!

Lee 04: 15

Collective Operations Provided by MPI

Barrier synchronization in a group
Broadcast to a group

Gather from a group (to one member or all members)

Scatter to a group
Scatter/Gather all-to-all

Reduction operations such as sum, max, min, or user-
defined functions, where the result is returned to all

group members or one member
Combined reduction and scatter operation

Scan across all members of a group (also called prefix)

Lee 04: 16

o3

Message Passing Interface Forum (2008). MPI: A
Message Passing Interface standard -- Version 2.1,
University of Tennessee, Knoxville, Tennessee.

Broadcast
data —

7]

g AO AO

® A

S broadcast 0

S Ay

| -
Ag
Ag

MPI_Bcast is like MPI_Send except that it sends to all
members of the group. Data are copied.

Lee 04: 17

Broadcast in Ptolemy |l

Choice of director defines the communication policy.

Ramp Display

| <l t——E]

Display2 Ramp2 MultilnstanceComposite

=R

Display3

2

Lee 04: 18

o9

Gather/Scatter
data —>

g A0 A1 A2 AS 5 scatter AO
—> K

g 5

l gather Ag
< [~

Ag

Message Passing Interface Forum (2008). MPI: A
Message Passing Interface standard -- Version 2.1,
University of Tennessee, Knoxville, Tennessee.

E.g., For gather, processes execute

MP1_Gather(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, receivingProcesslID, communicator);

At the receiving process, this results in recvbuf getting
filled with items sent by each of the processes (including

the receiving processes).

Lee 04: 19

Ptolemy Il Mechanisms a bit like Gather/Scatter

These models
scatter and gather

data in two different

ways, one starting

with an array and the
other with a stream.

SOURCE1

Distributor

PROCESS

PROCESSS

SOURCE2 ArrayToEler

=]

Commutator DISPLAY1

Lee 04: 20

el0

Message Passing Interface Forum (2008). MPI: A
Message Passing Interface standard -- Version 2.1,
University of Tennessee, Knoxville, Tennessee.

Gather to all

3% Aol Bo[0| Po|Eo| Fo

38 A0| Bo| Co[Po| Fo| Fo

§ Co allgather Aol Bol ol Dol Eol Fo

Do |:> Ao| Bo| Co| Po| Eo| Fo

l Eo Ao Bo|Co| Po| Eo| Fo

PROCESS Fo Aol 8ol ol 0ol Eol Fo

——»
PROCESS? MP1_Allgather() is roughly
equivalent to the model

PROCESS) shown at the left.
PROCESS4 ElementsToArray DISPLAY2
— =
*
Lee 04: 21
Application of Gather to All:
Gravitation Simulation
PN Director e initialPositions: {{-0.3846183834541, 0.5887969972942, -1.9913366415896}, {-0.1997461963

e initialVelocities: {{-0.9455016433226, -0.9624448115118, 0.7334486448372}, {-1.289584485

e numberOfBodies: initialPositions.length

e stepSize: 0.01

. The Bod del tor i

Dol 5 higeher—omgr ::st;cs.ogpse:iﬁcallv

Simulate N bodlas with Animate the MultilnstanceComposite. The model
o inside that actor is replicated a
gr?w‘"'a“ot’;al fO;'C:S nurdnber of l‘i’mes giv:n by numb:romodies
etween em. e nd m the inputs. The input:
initialPositions and :re co;::e‘;eof t.};l:{poseilior[::asrraye puts
initialVelocities (which is an array of arrays) and
parameters provide SampleDelay2 the outputs are new positions for
initial velocities sactixithe bodlcs
and positions, and
the numberOfBodies BodyModels
parameter specifies 3 BT ° . ¢
the number of bodies. ° .
° % .
. L]
Here, BodyModels receives an array of . G
positions and broadcasts it to one process per .
body. Each process computes the position of
the body at the next time step and the
ElementsToArray gathers these into an array. e
Lee 04: 22

oll

How the Gravitation Simulation is a
Gather-to-all Pattern

3-D gravitational simulation of n bodies

positions of n bodies

copy of positions

.

Thanks to Rodric Rabbah,
IBM Watson Center, for
suggesting this example.

Lee 04: 23

How the Gravitation Simulation is a
Gather-to-all Pattern

3-D gravitational simulation of n bodies

positions of n bodies

X

y

z
calculate Euclidean
distances, then net
force on each body

X

y

z

copy of positions

Lee 04: 24

el?

How the Gravitation Simulation is a
Gather-to-all Pattern

3-D gravitational simulation of n bodies

positions of n bodies

x

<

N

calculate Euclidean
| distances, then net
‘ force on each body

x

<

N

copy of positions

Lee 04: 25

How the Gravitation Simulation is a
Gather-to-all Pattern

3-D gravitational simulation of n bodies

positions of n bodies

X

y

z
calculate Euclidean
distances, then net
force on each body

X

y

z

copy of positions

Lee 04: 26

el3

How the Gravitation Simulation is a
Gather-to-all Pattern

3-D gravitational simulation of n bodies

F(t) = ma(t)
a(t)y = F(t)/m

t
v(t) = / a(7)dr + v(0)
JO

ot
pt) = / v(7)dt + p(0)
Jo

A simple (naive) approximation:
v(t +A) =v(t) + Aa(t)
p(t + A) = p(t) + Av(t)

Each process computes this approximation.

Lee 04: 27

Message Passing Interface Forum (2008). MPI: A
Message Passing Interface standard -- Version 2.1,
University of Tennessee, Knoxville, Tennessee.

All to all Gather/Scatter

data —>

g Aol A A, As] ALl A Aol Bol ol ool Eol Fo

[}

% io i1 22 23 24 25 alltoall 21 21 21 21 E1 ;1
ol ~1| 2| “3| ~a|~5 [:::::C:> 2| P2 2| Y2| 2 T2

l Do[D1[P2| P3| Dyl Ps A3| B3| C3| P3| Es[Fa
Eol E1[Ex| Eal B4l Es A
Fol F1| P2 Fa| Fa| Fs As| Bs5| Cs5| D5 Es| Fs

Exercise: Realize this pattern in Ptolemy II.

Lee 04: 28

el4d

Reduction Operations

Reduce operations gather data from multiple processes
and reduce them using an associative operation (like
sum, maximum, ...). The operation need not be
commutative. The order of reduction is by process ID
(called “rank” in MPI).

Result may be returned to one process or to all.
E.g.,

MP1 Reduce(sendbuf, recvbuf, count, type, operation
receivingProcesslID, communicator);

Lee 04: 29

A Rather Different MPI Pattern:
Barrier Synchronization

MPI_Barrier() blocks until all members of a group have called
it. Ptolemy Il equivalent uses the Rendezvous director:

RendezvousDirector
Illustration of Barrier Synchronization using Rendezvous

Relation results

Ramp in multi-way Display
This model illustrates a design pattern with rendezvous rendezvous.
called a "barrier synchronization." In this example, the @—1
two Ramps are sending increasing sequences of integers
to the Displays. However, the transfer is constrained to Ramp2 :
occur only when both the Barrier actor and the Sleep Display2
actor read inputs. Thus, a multi-way rendezvous between ‘ < ;[[=
the two Ramp actors, the two Display actors, the Barrier
actor, and the Sleep actor constrains the two transfers

[

to the Display actors to occur simultaneously. The Barrier
Sleep actor will sleep a random amount of time after
reading its input, and during that time will not accept ¢
additional inputs. Thus, after the first two (why two?)
transfers to the Display actors the time between Sleep
transfers is controlled by the Sleep actor. oL
Uniform Round
tngger, J—
== R
uppeBoundl] |
FEFTVEEY Random wait time.
Lee 04: 30

el5

Not provided Directly by MPI:
Sorting Trees

SOURCEL

CONTROL2

SELECT4 4 SELECT3
\ T r
CONTROLS

F F
CONTROL3

SOURCES
D el
T
1 SELECTL pispray
L e [S

CONTROLS - "
CONTROL1
SOURCE? CONTROLS
LECT7

SOURCES

.

-

!
1,

Consider collecting time-stamped
trades from commodities markets
around the world and merging them
into a single time-stamped stream. The
CONTROL actors could compare time
stamps, with logic like this:

datal = topPort.get();
data2 = bottomPort.get();
while (true) {
if (datal.time < data2.time)) {
output.send(true);
datal = topPort.get();
} else {
output.send(false);
data2 = bottomPort.get();}

Lee 04: 31

Not provided directly by MPI:
Map/Reduce

Reduce

Reduce

Dean, J. and S. Ghemawat (2004).
{MapReduce}: Simplified Data
Processing on Large Clusters.
Symposium on Operating System
Design and Implementation (OSDI).

This pattern is intended to exploit parallel computing
by distributing computations that fit the structure. The
canonical example constructs an index of words found

in a set of documents.

Lee 04: 32

el6

A MapReduce Model in Ptolemy Il

Reduce1

merge
result

Merged word-
counting outputs

{“contents”, 3}
{“first”, 1}

Map1
document 8}0 Ya of
Split Vop2 %D
8o =
P ;I. &J
L
endOfTask
4
\\ WaitingStop
— e
Inputs of web \\
men
documents End of all Word-value
“contents of the documents pairs
first document” ‘ . .
“contents of the alse {“Cogtents , 1}
second document” false of”, 1}
“contents of the true {“document”, 1}

last document”

{“document”, 3}

Lee 04: 33

Not provided by MPI:

Recursion

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

distributorl e
) 5 IfThenElse repeat
k|
0 T ’ =
B) L B 1 :) —
|'|-.—*fl' (o mf—;l-_
FFT of half
the order e) X(0)
(recursive -
reference) L oxj X(1)
<> N
QY X(2)
recursive reference
X(3) > »—X(3)
Lee 04: 34

el7

Not provided by MPI:
Dynamically Instantiated Processes

Process SIFT in QI => Q0;
Vars PRIME; o
rapeat '
GET(QI) ~ PRIME; PUT{PRIME,QO0)
doco FILTER(PRIME,QI)*QI; CONTINUE closeco
Sforever ' ' ' ' ‘
Bndprocess;

Recall Kahn & MacQueen (1977). Above, a new instance
of FILTER is spliced into the pipeline ahead of this
process each time a new input arrives.

Kahn, G. and D. B. MacQueen (1977). Coroutines
and Networks of Parallel Processes. Information
Processing, North-Holland Publishing Co.

Lee 04: 35

Patterns as Higher-Order Components

e initialPositions: {{-0.3846183834541, 0.5887969972942, -1.9913366415896}, {-0.1997461963
e initialVelocities: {{-0.9455016433226, -0.9624448115118, 0.7334486448372}, {-1.289584485
e numberOfBodies: initialPositions.length

PN Director

e stepSize: 0.01
@ bodyRadius: 0.02 The BodyModels actor is a

5 higher-order actors, specifically
Animate the MultilnstanceComposite. The model
inside that actor is replicated a
number of times given by numberOf8odies
and mapped over the inputs. The inputs
are copies of the positions array
(which is an array of arrays) and
SampleDelay2 the outputs are new positions for

s = each of the bodies.
{initialPositions}

BodyModels

Simulate N bodies with
gravitational forces
between them. The
initialPositions and
initialVelocities
parameters provide
initial velocities

and positions, and
the numberOfBodies
parameter specifies
the number of bodies.

ElemergsToArray

BodyModels here is an instance of MultiinstanceComposite, an actor in
Ptolemy Il that has two parameters: one specifying the number of
instances, and one specifying the model to instantiate. This is a “higher-
order-component” because it operates on components, not just data.

Lee 04: 36

el8

Reexamining Kahn MacQueen Blocking Reads
or “do we need MPI_Probe()?”

PN Director

type A
Actor . /
'

—sequence in A™

Recall: Semantics of a PN Model is the Least Fixed Point
of a Monotonic Function:

o Chain: C={f(L),f(f(L)), ..., f"(1), ...}
o Continuity: f(vC)=v f(C)

Limits
Lee 04: 37

Kahn-MacQueen Blocking Reads vs.
Kahn Continuity

Following Kahn-MacQueen [1977], actors are threads
that implement blocking reads, which means that when
they attempt to read from an empty input, the thread
stalls.

This restricts expressiveness more than continuity

Lee 04: 38

el19

PN Implementation in Ptolemy I

Body of a process:

while (IstopRequested()) {
if (inputPort._hasToken(channelNo)) {

Token input = inputPort.get(channelNo);

}
}

When using the PN Director, hasToken() always returns
true. Why?

Lee 04: 39

Blocking reads realize
sequential Functions [Vuillemin]

Letf: A — A™ be an n input, m output function.

Then f is sequential if it is continuous and for any
a, be A" where a< b there exists an 1€ {1, ... n},
where:

alg =blg="1()=1(b)

Intuitively: At all times during an execution, there is an
input channel that blocks further output. This is the Kahn-
MacQueen blocking read!

Lee 04: 40

020

Continuous Function that is not Sequential

Two input identity function is not sequential:

Actor

Let f: A2 — A? such that forallae A2, f(a) = a.
Then f is not sequential.

Lee 04: 41

Cannot Implement the Two-Input Identity with
Blocking Reads

Consider the following connection:

Identity

This has a well-defined behavior, but an implementation
of the two-input identity with blocking reads will fail to find
that behavior.

Lee 04: 42

21

Sequential Functions do not Compose

If f,:A—=B and f,: C— D are sequential then f; x f,
may or may not be sequential. Simple example: suppose
f, and f, are identity functions in the following:

Lee 04: 43
Gustave Function E-G““}“"
Non Sequential but Continuous =

LetA=T" where T={t,f}.
Letf: A3— N™ such that for alla € A3,

@ if (@),(f). L) =a
fla)=1@2) if (L®.(f)a
@3) if (f).L®) Ca

This function is continuous but not sequential.

Lee 04: 44

| Yo

Linear Functions [Erhard]

Function f: A— B on CPOs is linear if for all joinable
sets CCA, f(C) isjoinable and

v f(C)=f(vO)

Intuition: If two possible inputs can be extended to a
common input, then the two corresponding outputs can
be extended to the common output.

Fact: Sequential functions are linear.
Fact: Linear functions are continuous (trivial)

Lee 04: 45

Stable Functions [Berry]

Function f: A — B on complete semilattices (CPOs
where every subset has a greatest lower bound) is stable
if it is continuous and for all joinable sets CC A, f(C) is
joinable and

1A]’}(C) = f(/\C) +—— NOTE: meet! not join!
Intuition: If two possible inputs do not contain

contradictory information, then neither will the two
corresponding outputs.

Fact: Sequential functions are stable.
Lee 04: 46

23

Summary

MPI is an underspecified standard (buffering issues)

MPI programs are not modular

Collective operations in MPI are useful

There are useful collective operations not specified in MPI

Collective operations can be viewed as higher-order

components.

o Constraint to blocking reads makes process networks non-
compositional.

o Constraint to blocking reads precludes implementing

certain continuous functions (but are any of those useful?)

O O O O O

Lee 04: 47

024

