
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 4: Message Passing Patterns

Lee 04: 2

Message Passing Interface

MPI

MPI is a collaborative standard developed since the early

1990s with many parallel computer vendors and

stakeholders involved.

Realized as a C and Fortran APIs.

First draft of MPI: J. J. Dongarra, R. Hempel, A. J. G.

Hey, and D. W. Walker. A proposal for a user-level,

message passing interface in a distributed memory

environment. Technical Report TM-12231, Oak Ridge

National Laboratory, February 1993.

2

Lee 04: 3

Anatomy of an MPI Program (in C)

/* On each processor, execute the following with different values for rank. *./

int main(int argc, char *argv[]) {

 int rank, size, …;

 MPI_Init(&argc, &argv);

 // Find out which process this is (rank)

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // Find out how many processes there are (size)

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 if (rank == 0) {

… code for one process …

 } else if (rank == RAMP2) {

… code for another process …

}

 MPI_Finalize();

 return 0;

}

Lee 04: 4

Data type of the

handled message

MPI Implementation of Select Process

int control;

while (1) {

 MPI_Recv(&control, 1, MPI_INT, CONTROL_SOURCE, ...);

 if (control) {

 MPI_Recv(&selected, 1, MPI_INT, DATA_SOURCE1, ...);

 } else {

 MPI_Recv(&selected, 1, MPI_INT, DATA_SOURCE2, ...);

 }

 MPI_Send(&selected, 1, MPI_INT, DATA_SINK, ...);

}

Rank of the source or

destination process

3

Lee 04: 5

Vague MPI Send Semantics

MPI_Send is a “blocking send,” which means that it does

not return until the memory storing the value to be sent

can be safely overwritten. The MPI standard allows

implementations to either copy the data into a “system

buffer” for later delivery to the receiver, or to rendezvous

with the receiving process and return only after the

receiver has begun receiving the data.

Discussion: What do you think of this?

You can force a rendezvous style by using MPI_Ssend

instead of MPI_Send

Lee 04: 6

What happens to this program under a

rendezvous style of communication?

CONTROL Process:

MPI_Recv(&data1, 1, MPI_INT, SOURCE1, ...);

MPI_Recv(&data2, 1, MPI_INT, SOURCE2, ...);

while (1) {

 if (someCondition(data1, data2)) {

 MPI_Send(&trueValue, 1, MPI_INT, SELECT, ...);

 MPI_Recv(&data1, 1, MPI_INT, SOURCE1, ...);

 } else {

 MPI_Send(&falseValue, 1, MPI_INT, SELECT, ...);

 MPI_Recv(&data2, 1, MPI_INT, SOURCE2, ...);

 }

}

4

Lee 04: 7

Forcing Buffered Send: MPI_Bsend()

“A buffered send operation that cannot complete because

of a lack of buffer space is erroneous. When such a

situation is detected, an error is signalled that may cause

the program to terminate abnormally. On the other hand,

a standard send operation that cannot complete because

of lack of buffer space will merely block, waiting for buffer

space to become available or for a matching receive to

be posted. This behavior is preferable in many

situations.”

Message Passing Interface Forum (2008). MPI: A Message Passing Interface

standard -- Version 2.1, University of Tennessee, Knoxville, Tennessee.

Lee 04: 8

Irony

“The reluctance of MPI to mandate whether standard

sends are buffering or not stems from the desire to

achieve portable programs.”

Message Passing Interface Forum (2008). MPI: A Message Passing Interface

standard -- Version 2.1, University of Tennessee, Knoxville, Tennessee.

5

Lee 04: 9

Buffer Size Control in MPI

MPI_Buffer_attach associates a buffer with a process.

Any output can use the buffer, and MPI does not limit the

buffering to the specified buffers.

The MPI_Send procedure can return an error, so you can

write processes that do something when buffers overflow.

What should they do?

MPI provides few mechanisms to exercise control over

the process scheduling (barrier synchronization seems to

be about it).

Lee 04: 10

A Design Question:

How to accomplish the fork processes?

Option 1:

Create a process for each

fork that copies inputs to

outputs (in what order?)

Option 2:

Modify the SOURCE

processes to do

successive writes to

SELECT and CONTROL

(in what order?).

6

Lee 04: 11

MPI_Recv Semantics

MPI_Recv blocks until the message is received.

Communication is point-to-point: Sending and receiving

processes refer to each other. According to the MPI

standard: “[this] guarantees that message-passing code

is deterministic, if processes are single-threaded and the

wildcard MPI_ANY_SOURCE is not used in receives.”

MPI_ANY_SOURCE can be specified in a MPI_Recv()

Messages arrive in the same order sent.

Lee 04: 12

Discussion: Suppose you wanted to implement

Parks’ algorithm or Geilen and Basten?

How would you do it?

7

Lee 04: 13

Threads and Fairness

MPI is used sometimes with threads, where a single process runs in

multiple threads. This can

“Fairness MPI makes no guarantee of fairness in the handling of

communication. Suppose that a send is posted. Then it is possible that the

destination process repeatedly posts a receive that matches this send, yet

the message is never received, because it is each time overtaken by

another message, sent from another source. Similarly, suppose that a

receive was posted by a multi-threaded process. Then it is possible that

messages that match this receive are repeatedly received, yet the receive

is never satisfied, because it is overtaken by other receives posted at this

node (by other executing threads). It is the programmer’s responsibility to

prevent starvation in such situations.”

Lee 04: 14

NondeterministicMerge in Ptolemy II is

implemented in a multithreaded actor

Two threads

perform

blocking

reads on

each of two

input

channels

and write to

the same

output port.

8

Lee 04: 15

Scaling Up

Designs

Collective

operations

enable

compact

representatio

ns of certain

composite

structures

(not this one

though, at

least not in

MPI).

Lee 04: 16

Collective Operations Provided by MPI

• Barrier synchronization in a group

• Broadcast to a group

• Gather from a group (to one member or all members)

• Scatter to a group

• Scatter/Gather all-to-all

• Reduction operations such as sum, max, min, or user-

defined functions, where the result is returned to all

group members or one member

• Combined reduction and scatter operation

• Scan across all members of a group (also called prefix)

9

Lee 04: 17

Broadcast

MPI_Bcast is like MPI_Send except that it sends to all

members of the group. Data are copied.

Message Passing Interface Forum (2008). MPI: A

Message Passing Interface standard -- Version 2.1,

University of Tennessee, Knoxville, Tennessee.

Lee 04: 18

Broadcast in Ptolemy II

Choice of director defines the communication policy.

10

Lee 04: 19

Gather/Scatter

E.g., For gather, processes execute
 MPI_Gather(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, receivingProcessID, communicator);

At the receiving process, this results in recvbuf getting

filled with items sent by each of the processes (including

the receiving processes).

Message Passing Interface Forum (2008). MPI: A

Message Passing Interface standard -- Version 2.1,

University of Tennessee, Knoxville, Tennessee.

data

p
ro

c
e
s
s
e
s

Lee 04: 20

Ptolemy II Mechanisms a bit like Gather/Scatter

These models

scatter and gather

data in two different
ways, one starting

with an array and the

other with a stream.

11

Lee 04: 21

Gather to all

MPI_Allgather() is roughly

equivalent to the model

shown at the left.

Message Passing Interface Forum (2008). MPI: A

Message Passing Interface standard -- Version 2.1,

University of Tennessee, Knoxville, Tennessee.

data

p
ro

c
e
s
s
e
s

Lee 04: 22

Application of Gather to All:

Gravitation Simulation

Here, BodyModels receives an array of

positions and broadcasts it to one process per

body. Each process computes the position of

the body at the next time step and the

ElementsToArray gathers these into an array.

12

Lee 04: 23

x

y

z

…

copy of positions

How the Gravitation Simulation is a

Gather-to-all Pattern

3-D gravitational simulation of n bodies

x

y

z

…

positions of n bodies

Thanks to Rodric Rabbah,

IBM Watson Center, for

suggesting this example.

Lee 04: 24

x

y

z

…

copy of positions

How the Gravitation Simulation is a

Gather-to-all Pattern

3-D gravitational simulation of n bodies

x

y

z

…

positions of n bodies

calculate Euclidean

distances, then net

force on each body

13

Lee 04: 25

x

y

z

…

copy of positions

How the Gravitation Simulation is a

Gather-to-all Pattern

3-D gravitational simulation of n bodies

x

y

z

…

positions of n bodies

calculate Euclidean

distances, then net

force on each body

Lee 04: 26

x

y

z

…

copy of positions

How the Gravitation Simulation is a

Gather-to-all Pattern

3-D gravitational simulation of n bodies

x

y

z

…

positions of n bodies

calculate Euclidean

distances, then net

force on each body

14

Lee 04: 27

How the Gravitation Simulation is a

Gather-to-all Pattern

3-D gravitational simulation of n bodies

A simple (naïve) approximation:

Each process computes this approximation.

Lee 04: 28

All to all Gather/Scatter

Exercise: Realize this pattern in Ptolemy II.

Message Passing Interface Forum (2008). MPI: A

Message Passing Interface standard -- Version 2.1,

University of Tennessee, Knoxville, Tennessee.

data

p
ro

c
e
s
s
e
s

15

Lee 04: 29

Reduction Operations

Reduce operations gather data from multiple processes

and reduce them using an associative operation (like

sum, maximum, …). The operation need not be

commutative. The order of reduction is by process ID

(called “rank” in MPI).

Result may be returned to one process or to all.

E.g.,
 MPI Reduce(sendbuf, recvbuf, count, type, operation

receivingProcessID, communicator);

Lee 04: 30

A Rather Different MPI Pattern:

Barrier Synchronization
MPI_Barrier() blocks until all members of a group have called

it. Ptolemy II equivalent uses the Rendezvous director:

16

Lee 04: 31

Not provided Directly by MPI:

Sorting Trees

Consider collecting time-stamped

trades from commodities markets

around the world and merging them

into a single time-stamped stream. The

CONTROL actors could compare time

stamps, with logic like this:

data1 = topPort.get();

data2 = bottomPort.get();

while (true) {

 if (data1.time < data2.time)) {

 output.send(true);

 data1 = topPort.get();

} else {

 output.send(false);

 data2 = bottomPort.get();}

}

Lee 04: 32

Not provided directly by MPI:

Map/Reduce

This pattern is intended to exploit parallel computing

by distributing computations that fit the structure. The

canonical example constructs an index of words found

in a set of documents.

Data Split

Map

Map

Map

Reduce

Reduce

Reduce

Merge Result

(key, value) output_value

Dean, J. and S. Ghemawat (2004).

{MapReduce}: Simplified Data

Processing on Large Clusters.

Symposium on Operating System

Design and Implementation (OSDI).

17

Lee 04: 33

A MapReduce Model in Ptolemy II

Inputs of web

documents
End of all

documents

Merged word-

counting outputs

Word-value

pairs

Lee 04: 34

Not provided by MPI:

Recursion

FFT implementation in Ptolemy Classic (1995) used a partial

evaluation strategy on higher-order components.

recursive reference

18

Lee 04: 35

Not provided by MPI:

Dynamically Instantiated Processes

Recall Kahn & MacQueen (1977). Above, a new instance

of FILTER is spliced into the pipeline ahead of this

process each time a new input arrives.

Kahn, G. and D. B. MacQueen (1977). Coroutines

and Networks of Parallel Processes. Information

Processing, North-Holland Publishing Co.

Lee 04: 36

Patterns as Higher-Order Components

BodyModels here is an instance of MultiInstanceComposite, an actor in

Ptolemy II that has two parameters: one specifying the number of

instances, and one specifying the model to instantiate. This is a “higher-

order-component” because it operates on components, not just data.

19

Lee 04: 37

Reexamining Kahn MacQueen Blocking Reads
or “do we need MPI_Probe()?”

Recall: Semantics of a PN Model is the Least Fixed Point

of a Monotonic Function:

Chain: C = { f (), f (f ()), … , f n(), …}

Continuity:

type A

sequence in A**

Limits

Lee 04: 38

Kahn-MacQueen Blocking Reads vs.

Kahn Continuity

Following Kahn-MacQueen [1977], actors are threads

that implement blocking reads, which means that when

they attempt to read from an empty input, the thread

stalls.

This restricts expressiveness more than continuity

20

Lee 04: 39

PN Implementation in Ptolemy II

Body of a process:

 while (!stopRequested()) {

 …

 if (inputPort.hasToken(channelNo)) {

 …

 Token input = inputPort.get(channelNo);

 …

 }

 }

When using the PN Director, hasToken() always returns

true. Why?

Lee 04: 40

Blocking reads realize

sequential Functions [Vuillemin]

Let f : An Am be an n input, m output function.

Then f is sequential if it is continuous and for any

a, b An where a b there exists an i {1, … n},

where:

a |{i} = b |{i} f (a) = f (b)

Intuitively: At all times during an execution, there is an

input channel that blocks further output. This is the Kahn-

MacQueen blocking read!

21

Lee 04: 41

Continuous Function that is not Sequential

Two input identity function is not sequential:

Let f : A2 A2 such that for all a A2 , f (a) = a.

Then f is not sequential.

Lee 04: 42

Cannot Implement the Two-Input Identity with

Blocking Reads

Consider the following connection:

This has a well-defined behavior, but an implementation

of the two-input identity with blocking reads will fail to find

that behavior.

22

Lee 04: 43

Sequential Functions do not Compose

If f1 : A B and f2 : C D are sequential then f1 f2

may or may not be sequential. Simple example: suppose

f1 and f2 are identity functions in the following:

Lee 04: 44

Gustave Function

Non Sequential but Continuous

Let A = T ** where T = {t , f } .

Let f : A3 N ** such that for all a A3 ,

This function is continuous but not sequential.

23

Lee 04: 45

Linear Functions [Erhard]

Function f : A B on CPOs is linear if for all joinable

sets C A , is joinable and

Intuition: If two possible inputs can be extended to a
common input, then the two corresponding outputs can
be extended to the common output.

Fact: Sequential functions are linear.

Fact: Linear functions are continuous (trivial)

Lee 04: 46

Stable Functions [Berry]

Function f : A B on complete semilattices (CPOs

where every subset has a greatest lower bound) is stable

if it is continuous and for all joinable sets C A , is

joinable and

Intuition: If two possible inputs do not contain

contradictory information, then neither will the two

corresponding outputs.

Fact: Sequential functions are stable.

NOTE: meet! not join!

24

Lee 04: 47

Summary

MPI is an underspecified standard (buffering issues)

MPI programs are not modular

Collective operations in MPI are useful

There are useful collective operations not specified in MPI

Collective operations can be viewed as higher-order

components.

Constraint to blocking reads makes process networks non-

compositional.

Constraint to blocking reads precludes implementing

certain continuous functions (but are any of those useful?)

