
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 5: Threads

Lee 05: 2

Ptolemy II: Framework for Experimenting with Alternative

Concurrent Models of Computation

Basic Ptolemy II infrastructure:

2

Lee 05: 3

The Basic Abstract Syntax

• Actors

• Attributes on actors (parameters)

• Ports in actors

• Links between ports

• Width on links (channels)

• Hierarchy
Concrete syntaxes:

• XML

• Visual pictures

• Actor languages (Cal, StreamIT, …)

Lee 05: 4

Hierarchy - Composite Components

toplevel CompositeActor
transparent or opaque

CompositeActor

Actor
Relation

dangling
Port

Port
opaque Port

3

Lee 05: 5

Abstract Semantics
of Actor-Oriented Models of Computation

Actor-Oriented Models of

Computation that we have
implemented:

• dataflow (several variants)

• process networks

• distributed process networks
• Click (push/pull)

• continuous-time
• CSP (rendezvous)

• discrete events

• distributed discrete events
• synchronous/reactive

• time-driven (several variants)
• …

execution control data transport

init()

fire()

Lee 05: 6

Notation: UML Static Structure Diagrams

class

extends

subclass
private member

protected method

association

aggregation

cardinality

4

Lee 05: 7

Instance of ProcessThread Wraps Every Actor

Lee 05: 8

ProcessThread Implementation (Outline)

_director._increaseActiveCount();
try {

 _actor.initialize();
 boolean iterate = true;

 while (iterate) {
 if (_actor.prefire()) {
 _actor.fire();

 iterate = _actor.postfire();
 }

 }
} finally {
 try {

 wrapup();
 } finally {

 _director._decreaseActiveCount();
 }
}

Subtleties:

• The threads may never

terminate on their own
(a common situation).

• The model may
deadlock (all active

actors are waiting for

input data)
• Execution may be

paused by pushing the
pause button.

• An actor may be deleted

while it is executing.
• Any actor method may

throw an exception.
• Buffers may grow

without bound.

5

Lee 05: 9

Typical fire() Method of an Actor

 /** Compute the absolute value of the input.
 * If there is no input, then produce no output.

 * @exception IllegalActionException If there is
 * no director.

 */

 public void fire() throws IllegalActionException {
 if (input.hasToken(0)) {

 ScalarToken in = (ScalarToken)input.get(0);
 output.send(0, in.absolute());

 }

 }

The get() method is behaviorally polymorphic: what it does depends on the director.

In PN, hasToken() always returns true, and the get() method blocks if there is no data.

Lee 05: 10

Sketch of get() and send() Methods of IOPort

 public Token get(int channelIndex) {
 Receiver[] localReceivers = getReceivers();

 return localReceivers[channelIndex].get();

 }

 public void send(int channelIndex, Token token) {

 Receiver[] farReceivers = getRemoteReceivers();

 farReceivers[channelIndex].put(token);

 }

6

Lee 05: 11

Ports and Receivers

actor contains ports

port contains receivers

director creates receivers

receiver implements communication

Lee 05: 12

Process Networks Receiver Outline

public class PNQueueReceiver extends QueueReceiver
 implements ProcessReceiver {

 private boolean _readBlocked;

 public boolean hasToken() {
 return true;

 }

 public synchronized Token get() {
 ...
 }

 public synchronized void put(Token token) {

 ...
 }
}

flag indicating whether the

consumer thread is blocked.

always indicate that a token is

available

acquire a lock on the receiver

before executing put() or get()

7

Lee 05: 13

get() Method (Simplified)

 public synchronized Token get() {

 PNDirector director = ... get director ...;
 while (!super.hasToken()) {

 _readBlocked = true;

 director._actorBlocked(this);
 while (_readBlocked) {

 try {
 wait();

 } catch (InterruptedException e) {

 throw new TerminateProcessException("");
 }

 }
 }

 return result = super.get();

 }

notify the director that the

consumer thread is blocked

release the lock on the

receiver and stall the thread

use this exception to stop

execution of the actor thread

super class returns true only if

there is a token in the queue

super class returns the first token

in the queue.

Lee 05: 14

put() Method (Simplified)

 public synchronized void put(Token token) {
 PNDirector director = ... get director ...;

 super.put(token);
 if (_readBlocked) {

 director._actorUnBlocked(this);

 _readBlocked = false;
 notifyAll();

 }
 }

notify the director that the

consumer thread unblocks.

wake up all threads that are

blocked on wait().

8

Lee 05: 15

Subtleties

Director must be able to detect deadlock.

It keeps track of blocked threads

Stopping execution is tricky

When to stop a thread?

How to stop a thread?

Non-blocking writes are problematic in practice

Unbounded memory usage

Use Parks’ strategy:

• Bound the buffers

• Block on writes when buffer is full

• On deadlock, increase buffers sizes for actors blocked on writes

• Provably executes in bounded memory if that is possible (subtle).

Lee 05: 16

Stopping Threads

“Why is Thread.stop deprecated?

 Because it is inherently unsafe. Stopping a thread causes it to unlock all
the monitors that it has locked. (The monitors are unlocked as the
ThreadDeath exception propagates up the stack.) If any of the objects
previously protected by these monitors were in an inconsistent state,
other threads may now view these objects in an inconsistent state.
Such objects are said to be damaged. When threads operate on
damaged objects, arbitrary behavior can result. This behavior may be
subtle and difficult to detect, or it may be pronounced. Unlike other
unchecked exceptions, ThreadDeath kills threads silently; thus, the user
has no warning that his program may be corrupted. The corruption can
manifest itself at any time after the actual damage occurs, even hours
or days in the future.”

Java JDK 1.4 documentation.

Thread.suspend() and resume() are similarly deprecated.

Thread.destroy() is unimplemented.

9

Lee 05: 17

Distributed Process Networks

Created by Dominique Ragot, Thales Communications

Lee 05: 18

Threads

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.

Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources of many
problems:

Deadlock
Priority inversion

Scheduling anomalies
Timing variability

Nondeterminism

Buffer overruns
System crashes

10

Lee 05: 19

My Claim

Nontrivial software written with threads is

incomprehensible to humans. It cannot deliver

repeatable and predictable timing, except in trivial

cases.

Lee 05: 20

Consider a Simple Example

 “The Observer pattern defines a one-to-many

dependency between a subject object and any number

of observer objects so that when the subject object

changes state, all its observer objects are notified and

updated automatically.”

 Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides

(Addison-Wesley Publishing Co., 1995. ISBN: 0201633612):

11

Lee 05: 21

Observer Pattern in Java

public void aaddListener(listener) {…}

public void ssetValue(newValue) {
 myValue = newValue;

 for (int i = 0; i < myListeners.length; i++) {
 myListeners[i].valueChanged(newValue)
 }

}

Thanks to Mark S. Miller for the details

of this example.

Will this work in a

multithreaded context?

Lee 05: 22

Observer Pattern

With Mutual Exclusion (Mutexes)

public synchronized void aaddListener(listener) {…}

public synchronized void ssetValue(newValue) {
 myValue = newValue;

 for (int i = 0; i < myListeners.length; i++) {
 myListeners[i].valueChanged(newValue)
 }

}

Javasoft recommends against this.

What’s wrong with it?

12

Lee 05: 23

Mutexes are Minefields

public synchronized void aaddListener(listener) {…}

public synchronized void ssetValue(newValue) {
 myValue = newValue;

 for (int i = 0; i < myListeners.length; i++) {
 myListeners[i].valueChanged(newValue)
 }

}
valueChanged() may attempt to acquire

a lock on some other object and stall. If

the holder of that lock calls
addListener(), deadlock!

Lee 05: 24

After years of use without problems, a Ptolemy Project code review found

code that was not thread safe. It was fixed in this way. Three days later, a

user in Germany reported a deadlock that had not shown up in the test suite.

13

Lee 05: 25

Simple Observer Pattern Becomes

Not So Simple

public synchronized void aaddListener(listener) {…}

public void ssetValue(newValue) {
 synchronized(this) {
 myValue = newValue;
 listeners = myListeners.clone();
 }

 for (int i = 0; i < listeners.length; i++) {
 listeners[i].valueChanged(newValue)
 }

}

while holding lock, make copy

of listeners to avoid race

conditions

notify each listener outside of

synchronized block to avoid

deadlock

This still isn’t right.

What’s wrong with it?

Lee 05: 26

Simple Observer Pattern:

How to Make It Right?

public synchronized void aaddListener(listener) {…}

public void ssetValue(newValue) {
 synchronized(this) {
 myValue = newValue;
 listeners = myListeners.clone();
 }

 for (int i = 0; i < listeners.length; i++) {
 listeners[i].valueChanged(newValue)
 }

}
Suppose two threads call setValue(). One of them will set the value last,

leaving that value in the object, but listeners may be notified in the opposite

order. The listeners may be alerted to the value changes in the wrong order!

14

Lee 05: 27

If the simplest design patterns yield such problems, what

about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {
 …
 protected class CrossRef implements Serializable{
 …
 // NOTE: It is essential that this method not be
 // synchronized, since it is called by _farContainer(),
 // which is. Having it synchronized can lead to
 // deadlock. Fortunately, it is an atomic action,
 // so it need not be synchronized.
 private Object _nearContainer() {
 return _container;
 }

 private synchronized Object _farContainer() {
 if (_far != null) return _far._nearContainer();
 else return null;
 }
 …
 }
}

Code that had been in

use for four years,

central to Ptolemy II,

with an extensive test

suite with 100% code

coverage, design

reviewed to yellow, then

code reviewed to green

in 2000, causes a

deadlock during a demo

on April 26, 2004.

Lee 05: 28

What it Feels Like to Use the synchronized

Keyword in Java

I
m

ag
e
 “

b
or

ro
w

e
d
”

fr
om

 a
n

I
om

e
ga

 a
d
ve

rt
is

e
m

e
nt

 f
or

 Y
2

K

so
ft

w
ar

e
 a

nd
 d

is
k

d
ri

ve
s,

 S
ci

e
nt

if
ic

 A
m

e
ri

ca
n,

 S
e
pt

e
m

b
e
r

19
9

9
.

15

Lee 05: 29

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

 “humans are quickly overwhelmed by concurrency and
find it much more difficult to reason about concurrent
than sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

 H. Sutter and J. Larus. Software and the concurrency revolution.
ACM Queue, 3(7), 2005.

Lee 05: 30

Is Concurrency Hard?

It is not

concurrency that

is hard…

16

Lee 05: 31

…It is Threads that are Hard!

Threads are sequential processes that share

memory. From the perspective of any thread, the

entire state of the universe can change between

any two atomic actions (itself an ill-defined

concept).

Imagine if the physical world did that…

Lee 05: 32

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the

nondeterminism by imposing constraints on execution

order (e.g., mutexes) and limiting shared data accesses

(e.g., OO design).

17

Lee 05: 33

We Can Incrementally Improve Threads

Object Oriented programming

Coding rules (Acquire locks in the same order…)

Libraries (Stapl, Java 5.0, …)

Patterns (MapReduce, …)

Transactions (Databases, …)

Formal verification (Blast, thread checkers, …)

Enhanced languages (Split-C, Cilk, Guava, …)

Enhanced mechanisms (Promises, futures, …)

 But is it enough to refine a mechanism

with flawed foundations?

Lee 05: 34

The Result: Brittle Designs

Small changes have big consequences…

Patrick Lardieri, Lockheed Martin ATL, about a vehicle management

system in the JSF program:

“Changing the instruction memory layout of the Flight Control Systems

Control Law process to optimize ‘Built in Test’ processing led to an

unexpected performance change - System went from meeting real-

time requirements to missing most deadlines due to a change that was

expected to have no impact on system performance.”

National Workshop on High-Confidence Software Platforms for

Cyber-Physical Systems (HCSP-CPS) Arlington, VA November 30 –

December 1, 2006

18

Lee 05: 35

For a brief optimistic instant, transactions looked

like they might save us…

“TM is not as easy as it looks (even to explain)”

Michael L. Scott, invited keynote, (EC)2 Workshop, Princeton,
NJ, July 2008

Lee 05: 36

So, the answer must be message passing, right?

Not quite…

More discipline is needed that what is provided by today’s

message passing libraries.

19

Lee 05: 37

A Model of Threads

Binary digits: B = {0, 1}

State space: B**

Instruction (atomic action): a : B** B**

Instruction (action) set: A [B** B**]

Thread (non-terminating): t : N A

Thread (terminating): t :{0, … , n} A, n N

A thread is a sequence of atomic actions, a member of A**

Lee 05: 38

Programs

A program is a finite representation of a family of threads

(one for each initial state b0).

Machine control flow: c : B** N (e.g. program counter)

where c (b) = 0 is interpreted as a “stop” command.

Let m be the program length. Then a program is:

 p : {1, … , m} A

A program is an ordered sequence of m instructions, a

member of A*

20

Lee 05: 39

Execution (Operational Semantics)

Given initial state b0 B** , then execution is:

 b1 = p (c (b0))(b0) = t (1)(b0)

 b2 = p (c (b1))(b1) = t (2)(b1)

 …

 bn = p (c (bn-1))(bn-1) = t (n)(bn-1)

 c (bn) = 0

Execution defines a partial function (defined on a subset
of the domain) from the initial state to final state:

 ep : B
** B**

This function is undefined if the thread does not
terminate.

Lee 05: 40

Threads as Sequences of State Changes

initial state: b0

final state: bn

sequence t (i): B** B**

• Time is irrelevant

• All actions are ordered

• The thread sequence depends on the program and the state

21

Lee 05: 41

Expressiveness

Given a finite action set: A [B** B**]

Execution: ep [B** B**]

Can all functions in [B** B**] be defined by a program?

Compare the cardinality of the two sets:

 set of functions: [B** B**]

 set of programs: [{1, … , m} A, m N] = A*

Lee 05: 42

Programs Cannot Define All Functions

Cardinality of this set: A* for finite set A, is the same as

the cardinality of the set of integers (put the elements of

the set into a one-to-one correspondence with the

integers). The set is countable.

This set is larger: [B** B**].

Proof: Choose the subset of constant functions,

 C [B** B**]

This set is not countable (use Cantor’s diagonal

argument to show this).

22

Lee 05: 43

Simpler: Choose a Smaller State Space

Smaller state space (natural numbers): N = {0, 1, 2, … }

Set of all functions: F = [N N]

Finite action set: A [N N]

Set of all programs: [{1, … , m} A, m N] = A*

Again, the set of all functions is uncountable and the set
of all programs is countable, so clearly not all functions
can be given by programs.

With a “good” choice of action set, we get programs that
implement a well-defined subset of functions.

Lee 05: 44

Taxonomy of Functions

Functions from initial state to final state:

 F = [N N]

Partial recursive functions:

 PR [N N]

(Those functions for which there is a program that
terminates for zero or more initial states).

Total recursive functions:

 TR P [N N]

(There is a program that terminates for all initial states).

23

Lee 05: 45

Church’s Thesis

Every function f : N N that is computable by any

practical computer is in PR.

There are many “good” choices of finite action sets that

yield the same definition of PR.

Evidence that this set is fundamental is that Turing

machines, lambda calculus, PCF (a basic recursive

programming language), and all practical computer

instruction sets yield the same set PR.

Lee 05: 46

Key Results in Computation

Turing: Instruction set with 7 instructions is enough to

write programs for all partial recursive functions.

A program using this instruction set is called a Turing

machine

A universal Turing machine is a Turing machine that can

execute a binary encoding of any Turing machine.

Church: Instructions are a small set of transformation

rules on strings called the lambda calculus.

Equivalent to Turing machines.

24

Lee 05: 47

Turing Completeness

A Turing complete instruction set is a finite subset of PR

(and probably of TR) whose transitive closure is PR.

Many choices of underlying instruction sets A [N N]

are Turing complete and hence equivalent.

This can be generalized to the larger state space B** by

encoding the integers in it.

Lee 05: 48

Equivalence

Any two programs that implement the same partial

recursive function are equivalent.

Terminate for the same initial states.

End up in the same final states.

NOTE: Big problem for embedded software:

All non-terminating programs are equivalent.

All programs that terminate in the same “exception” state

are equivalent.

25

Lee 05: 49

Limitations of the 20-th Century

Theory of Computation

Only terminating computations are handled.

This is not very useful…

But it gets even worse:

There is no concurrency.

Lee 05: 50

Concurrency: Interactions Between Threads

suspend

The operating system

(typically) provides:

• suspend/resume
• mutual exclusion

• semaphores

resume

another thread can

change the state

Recall that for a thread, which

instruction executes next

depends on the state, and what
it does depends on the state.

26

Lee 05: 51

Nonterminating and/or Interacting Threads:

Allow State to be Observed and Modified

external input

environment observes state

sequence p (c (bi)): B
** B**

initial state

environment modifies state

…

…

Lee 05: 52

Recall Execution of a Program

Given initial state b0 B**, then execution is:

 b1 = p (c (b0))(b0) = t (1)(b0)

 b2 = p (c (b1))(b1) = t (2)(b1)

 …

 bn = p (c (bn-1))(bn-1) = t (n)(bn-1)

 c (bn) = 0

When a thread executes alone, execution is a

composition of functions:

 t (n) … t (2) t (1)

27

Lee 05: 53

Interleaved Threads

Consider two threads with functions:

 t1(1), t1 (2), … , t1 (n)

 t2 (1), t2 (2), … , t2 (m)

These functions are arbitrarily interleaved.

Worse: The i-th action executed by the machine, if it
comes from program c (bi-1), is:

 t (i) = p (c (bi-1))

which depends on the state, which may be affected by
the other thread.

Lee 05: 54

Equivalence of Pairs of Programs

For concurrent programs p1 and p2 to be equivalent under

threaded execution to programs p1' and p2' , we need for

each arbitrary interleaving of the thread functions

produced by that interleaving to terminate and to

compose to the same function as all other interleavings

for both programs.

This is hopeless, except for trivial concurrent programs!

28

Lee 05: 55

Equivalence of Individual Programs

If program p1 is to be executed in a threaded

environment, then without knowing what other programs

will execute with it, there is no way to determine whether

it is equivalent to program p1' except to require the

programs to be identical.

This makes threading nearly useless, since it makes it

impossible to reason about programs.

Lee 05: 56

Determinacy

For concurrent programs p1 and p2 to be determinate
under threaded execution we need for each arbitrary
interleaving of the thread functions produced by that
interleaving to terminate and to compose to the same
function as all other interleavings.

This is again hopeless, except for trivial concurrent
programs!

Moreover, without knowing what other programs will
execute with it, we cannot determine whether a given
program is determinate.

29

Lee 05: 57

Manifestations of Problems

Race conditions
• Two threads modify the same portion of the state. Which one

gets there first?

Consistency

• A data structure with interdependent data is updated in multiple

atomic actions. Between these actions, the state is inconsistent.

Deadlock

• Fixes to the above two problems result in threads waiting for
each other to complete an action that they will never complete.

Lee 05: 58

Improving the Utility of the Thread Model

Brute force methods for making threads useful:

Segmented memory (processes)

• Pipes and file systems provide mechanisms for sharing data.

• Implementation of these requires a thread model, but this

implementation is done by operating system expert, not by

application programmers.

Functions (no side effects)

• Disciplined programming design pattern, or…

• Functional languages (like Concurrent ML)

Single assignment of variables

• Avoids race conditions

30

Lee 05: 59

Mechanisms for Achieving Determinacy

Less brute force (but also weaker):

 Semaphores

 Mutual exclusion locks (mutexes, monitors)

 Rendezvous

All require an atomic test-and-set operation, which is not

in the Turing machine instruction set.

Lee 05: 60

rendezvous is more

symmetric use of

semaphores

semaphore or monitor

used to stall a thread

race condition

Mechanisms for Interacting Threads

Potential for

race conditions,
inconsistency,

and deadlock
severely

compromise

software
reliability.

These methods

date back to the

1960’s
(Dijkstra).

31

Lee 05: 61

Deadlock

acquire lock x

“Acquire lock x” means the following atomic action:

 if x is false, set it to true,

 else stall until it is false.

where x is Boolean variable (a “semaphore”).

“Release lock x” means:

 set x to false.

acquire lock y

acquire lock y

stall
acquire lock x

stall

Lee 05: 62

Simple Rule for Avoiding Deadlock [Lea]

“Always acquire locks in the same order.”

However, this is very difficult to apply in practice:

Method signatures do not indicate what locks they grab

(so you need access to all the source code of methods

you use).

Symmetric accesses (where either thread can initiate

an interaction) become more difficult.

32

Lee 05: 63

remote procedure call

Distributed Computing: In Practice, Mostly Based

on Remote Procedure Calls (RPC)

Force-fitting the

sequential
abstraction onto

parallel
hardware.

Lee 05: 64

“asynchronous”

 procedure call

Combining Processes and RPC –
Split-Phase Execution, Futures,

Asynchronous Method Calls, Callbacks, …

These methods

are at least as
incomprehensible

as concurrent
threads or

processes.

33

Lee 05: 65

What is an Actor-Oriented MoC?

Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through

an object is

streams of data

class name

data

methods

call return

What flows through

an object is

sequential control

Traditional component interactions:

Lee 05: 66

Models of Computation

Implemented in Ptolemy II

CI – Push/pull component interaction

Click – Push/pull with method invocation

CSP – concurrent threads with rendezvous

CT – continuous-time modeling

DE – discrete-event systems

DDE – distributed discrete events

FSM – finite state machines

DT – discrete time (cycle driven)

Giotto – synchronous periodic

GR – 2-D and 3-D graphics

PN – process networks

DPN – distributed process networks

SDF – synchronous dataflow

SR – synchronous/reactive

TM – timed multitasking

Most of

these are

actor

oriented.

34

Lee 05: 67

Summary

Theory of computation supports well only

terminating

non-concurrent

 computation

Threads are a poor concurrent model of computation

weak formal reasoning possibilities

incomprehensibility

race conditions

inconsistent state conditions

deadlock risk

