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Ptolemy II: Framework for Experimenting with Alternative 

Concurrent Models of Computation 

Basic Ptolemy II infrastructure: 
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The Basic Abstract Syntax 

• Actors 

• Attributes on actors (parameters) 

• Ports in actors 

• Links between ports 

• Width on links (channels) 

• Hierarchy 
Concrete syntaxes: 

• XML 

• Visual pictures 

• Actor languages (Cal, StreamIT, …) 
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Hierarchy - Composite Components 

toplevel CompositeActor 
transparent or opaque 

CompositeActor 

Actor 
Relation 

dangling 
Port 

Port 
opaque Port 
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Abstract Semantics 
of Actor-Oriented Models of Computation 

Actor-Oriented Models of 

Computation that we have 
implemented: 

• dataflow (several variants) 

• process networks 

• distributed process networks 
• Click (push/pull) 

• continuous-time 
• CSP (rendezvous) 

• discrete events 

• distributed discrete events 
• synchronous/reactive 

• time-driven (several variants) 
• … 

execution control data transport 

init() 

fire() 
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Notation: UML Static Structure Diagrams 

class 

extends 

subclass 
private member 

protected method 

association 

aggregation 

cardinality 
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Instance of ProcessThread Wraps Every Actor 

Lee 05: 8 

ProcessThread Implementation (Outline) 

_director._increaseActiveCount(); 
try { 

    _actor.initialize(); 
    boolean iterate = true; 

    while (iterate) { 
        if (_actor.prefire()) { 
            _actor.fire(); 

            iterate = _actor.postfire(); 
        } 

    } 
} finally { 
    try { 

        wrapup(); 
    } finally { 

        _director._decreaseActiveCount(); 
    } 
} 

Subtleties: 

• The threads may never 

terminate on their own 
(a common situation). 

• The model may 
deadlock (all active 

actors are waiting for 

input data) 
• Execution may be 

paused by pushing the 
pause button. 

• An actor may be deleted 

while it is executing. 
• Any actor method may 

throw an exception. 
• Buffers may grow 

without bound. 
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Typical fire() Method of an Actor 

    /** Compute the absolute value of the input.  
     *  If there is no input, then produce no output. 

     *  @exception IllegalActionException If there is 
     *   no director. 

     */ 

    public void fire() throws IllegalActionException { 
        if (input.hasToken(0)) { 

            ScalarToken in = (ScalarToken)input.get(0); 
            output.send(0, in.absolute()); 

        } 

    } 

The get() method is behaviorally polymorphic: what it does depends on the director. 

In PN, hasToken() always returns true, and the get() method blocks if there is no data. 
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Sketch of get() and send() Methods of IOPort 

    public Token get(int channelIndex) { 
      Receiver[] localReceivers = getReceivers(); 

      return localReceivers[channelIndex].get(); 

   } 

   public void send(int channelIndex, Token token) { 

      Receiver[] farReceivers = getRemoteReceivers(); 

      farReceivers[channelIndex].put(token); 

   } 
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Ports and Receivers 

actor contains ports 

port contains receivers 

director creates receivers 

receiver implements communication 
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Process Networks Receiver Outline 

public class PNQueueReceiver extends QueueReceiver 
       implements ProcessReceiver { 

    private boolean _readBlocked; 

    public boolean hasToken() { 
        return true; 

    } 

    public synchronized Token get() { 
        ... 
    } 

    public synchronized void put(Token token) { 

        ... 
    } 
} 

flag indicating whether the 

consumer thread is blocked. 

always indicate that a token is 

available 

acquire a lock on the receiver 

before executing put() or get() 
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get() Method (Simplified) 

    public synchronized Token get() { 

        PNDirector director = ... get director ...; 
        while (!super.hasToken()) { 

            _readBlocked = true; 

            director._actorBlocked(this); 
            while (_readBlocked) { 

                try { 
                    wait(); 

                } catch (InterruptedException e) { 

                    throw new TerminateProcessException(""); 
                } 

            } 
        } 

        return result = super.get(); 

    } 

notify the director that the 

consumer thread is blocked 

release the lock on the 

receiver and stall the thread 

use this exception to stop 

execution of the actor thread 

super class returns true only if 

there is a token in the queue 

super class returns the first token 

in the queue. 
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put() Method (Simplified) 

    public synchronized void put(Token token) { 
        PNDirector director = ... get director ...; 

        super.put(token); 
        if (_readBlocked) { 

            director._actorUnBlocked(this); 

            _readBlocked = false; 
            notifyAll(); 

        } 
    } 

notify the director that the 

consumer thread unblocks. 

wake up all threads that are 

blocked on wait(). 
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Subtleties 

Director must be able to detect deadlock. 

It keeps track of blocked threads 

Stopping execution is tricky 

When to stop a thread? 

How to stop a thread? 

Non-blocking writes are problematic in practice 

Unbounded memory usage 

Use Parks’ strategy: 

• Bound the buffers 

• Block on writes when buffer is full 

• On deadlock, increase buffers sizes for actors blocked on writes 

• Provably executes in bounded memory if that is possible (subtle). 
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Stopping Threads 

“Why is Thread.stop deprecated? 

 Because it is inherently unsafe. Stopping a thread causes it to unlock all 
the monitors that it has locked. (The monitors are unlocked as the 
ThreadDeath exception propagates up the stack.) If any of the objects 
previously protected by these monitors were in an inconsistent state, 
other threads may now view these objects in an inconsistent state. 
Such objects are said to be damaged. When threads operate on 
damaged objects, arbitrary behavior can result. This behavior may be 
subtle and difficult to detect, or it may be pronounced. Unlike other 
unchecked exceptions, ThreadDeath kills threads silently; thus, the user 
has no warning that his program may be corrupted. The corruption can 
manifest itself at any time after the actual damage occurs, even hours 
or days in the future.” 

Java JDK 1.4 documentation. 

Thread.suspend() and resume() are similarly deprecated. 

Thread.destroy() is unimplemented. 
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Distributed Process Networks 

Created by Dominique Ragot, Thales Communications 
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Threads 

Threads dominate concurrent software. 

Threads: Sequential computation with shared memory. 

Interrupts: Threads started by the hardware. 

Incomprehensible interactions between threads are the sources of many 
problems: 

Deadlock 
Priority inversion 

Scheduling anomalies 
Timing variability 

Nondeterminism  

Buffer overruns 
System crashes 
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My Claim 

Nontrivial software written with threads is 

incomprehensible to humans. It cannot deliver 

repeatable and predictable timing, except in trivial 

cases. 
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Consider a Simple Example 

 “The Observer pattern defines a one-to-many 

dependency between a subject object and any number 

of observer objects so that when the subject object 

changes state, all its observer objects are notified and 

updated automatically.”  

 Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides 

(Addison-Wesley Publishing Co., 1995. ISBN: 0201633612):  
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Observer Pattern in Java 

public void aaddListener(listener) {…} 

public void ssetValue(newValue) { 
    myValue = newValue; 

    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 

} 

Thanks to Mark S. Miller for the details 

of this example. 

Will this work in a 

multithreaded context? 
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Observer Pattern 

With Mutual Exclusion (Mutexes) 

public synchronized void aaddListener(listener) {…} 

public synchronized void ssetValue(newValue) { 
    myValue = newValue; 

    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 

} 

Javasoft recommends against this. 

What’s wrong with it? 
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Mutexes are Minefields 

public synchronized void aaddListener(listener) {…} 

public synchronized void ssetValue(newValue) { 
    myValue = newValue; 

    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 

} 
valueChanged() may attempt to acquire 

a lock on some other object and stall. If 

the holder of that lock calls 
addListener(), deadlock! 
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After years of use without problems, a Ptolemy Project code review found 

code that was not thread safe. It was fixed in this way. Three days later, a 

user in Germany reported a deadlock that had not shown up in the test suite. 
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Simple Observer Pattern Becomes 

Not So Simple 

public synchronized void aaddListener(listener) {…} 

public void ssetValue(newValue) { 
    synchronized(this) { 
        myValue = newValue; 
        listeners = myListeners.clone(); 
    } 

    for (int i = 0; i < listeners.length; i++) { 
        listeners[i].valueChanged(newValue) 
    } 

} 

while holding lock, make copy 

of listeners to avoid race 

conditions 

notify each listener outside of 

synchronized block to avoid 

deadlock 

This still isn’t right. 

What’s wrong with it? 
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Simple Observer Pattern: 

How to Make It Right? 

public synchronized void aaddListener(listener) {…} 

public void ssetValue(newValue) { 
    synchronized(this) { 
        myValue = newValue; 
        listeners = myListeners.clone(); 
    } 

    for (int i = 0; i < listeners.length; i++) { 
        listeners[i].valueChanged(newValue) 
    } 

} 
Suppose two threads call setValue(). One of them will set the value last, 

leaving that value in the object, but listeners may be notified in the opposite 

order. The listeners may be alerted to the value changes in the wrong order! 
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If the simplest design patterns yield such problems, what 

about non-trivial designs? 

/** 
CrossRefList is a list that maintains pointers to other CrossRefLists. 
… 
@author Geroncio Galicia, Contributor: Edward A. Lee 
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $ 
@since Ptolemy II 0.2 
@Pt.ProposedRating Green (eal) 
@Pt.AcceptedRating Green (bart) 
*/ 
public final class CrossRefList implements Serializable  { 
    … 
    protected class CrossRef implements Serializable{ 
        …         
        // NOTE: It is essential that this method not be 
        // synchronized, since it is called by _farContainer(), 
        // which is.  Having it synchronized can lead to 
        // deadlock.  Fortunately, it is an atomic action, 
        // so it need not be synchronized. 
        private Object _nearContainer() { 
            return _container; 
        } 

        private synchronized Object _farContainer() { 
            if (_far != null) return _far._nearContainer(); 
            else return null; 
        } 
        … 
    } 
} 

Code that had been in 

use for four years, 

central to Ptolemy II, 

with an extensive test 

suite with 100% code 

coverage, design 

reviewed to yellow, then 

code reviewed to green 

in 2000, causes a 

deadlock during a demo 

on April 26, 2004. 
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What it Feels Like to Use the synchronized 

Keyword in Java 
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Perhaps Concurrency is Just Hard… 

Sutter and Larus observe: 

 “humans are quickly overwhelmed by concurrency and 
find it much more difficult to reason about concurrent 
than sequential code. Even careful people miss possible 
interleavings among even simple collections of partially 
ordered operations.” 

 H. Sutter and J. Larus. Software and the concurrency revolution. 
ACM Queue, 3(7), 2005. 
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Is Concurrency Hard? 

It is not 

concurrency that 

is hard… 
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…It is Threads that are Hard! 

Threads are sequential processes that share 

memory. From the perspective of any thread, the 

entire state of the universe can change between 

any two atomic actions (itself an ill-defined 

concept). 

Imagine if the physical world did that… 
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Succinct Problem Statement 

Threads are wildly nondeterministic. 

The programmer’s job is to prune away the 

nondeterminism by imposing constraints on execution 

order (e.g., mutexes) and limiting shared data accesses 

(e.g., OO design). 
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We Can Incrementally Improve Threads 

Object Oriented programming 

Coding rules (Acquire locks in the same order…) 

Libraries (Stapl, Java 5.0, …) 

Patterns (MapReduce, …) 

Transactions (Databases, …) 

Formal verification (Blast, thread checkers, …) 

Enhanced languages (Split-C, Cilk, Guava, …) 

Enhanced mechanisms (Promises, futures, …) 

 But is it enough to refine a mechanism  

with flawed foundations? 
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The Result: Brittle Designs 

Small changes have big consequences… 

Patrick Lardieri, Lockheed Martin ATL, about a vehicle management 

system in the JSF program: 

“Changing the instruction memory layout of the Flight Control Systems 

Control Law process to optimize ‘Built in Test’ processing led to an 

unexpected performance change - System went from meeting real-

time requirements to missing most deadlines due to a change that was 

expected to have no impact on system performance.” 

National Workshop on High-Confidence Software Platforms for 

Cyber-Physical Systems (HCSP-CPS) Arlington, VA November 30 –

December 1, 2006 



18 

Lee 05: 35 

For a brief optimistic instant, transactions looked 

like they might save us… 

“TM is not as easy as it looks (even to explain)” 

Michael L. Scott, invited keynote, (EC)2  Workshop, Princeton, 
NJ, July 2008 
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So, the answer must be message passing, right? 

Not quite… 

More discipline is needed that what is provided by today’s 

message passing libraries. 
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A Model of Threads 

Binary digits:   B = {0, 1} 

State space:   B** 

Instruction (atomic action):   a : B**  B** 

Instruction (action) set:   A  [B**  B** ] 

Thread (non-terminating):   t : N  A 

Thread (terminating):   t :{0, … , n}  A,    n  N 

A thread is a sequence of atomic actions, a member of A** 
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Programs 

A program is a finite representation of a family of threads 

(one for each initial state b0 ). 

Machine control flow: c : B**  N  (e.g. program counter) 

where c ( b ) = 0  is interpreted as a “stop” command. 

Let m be the program length. Then a program is: 

 p : {1, … , m}  A 

A program is an ordered sequence of m instructions, a 

member of A* 
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Execution (Operational Semantics) 

Given initial state b0  B** , then execution is: 

 b1 = p ( c ( b0 ))( b0 )       = t (1)( b0 )  

 b2 = p ( c ( b1 ))( b1 )       = t (2)( b1 )  

 … 

 bn = p ( c ( bn-1 ))( bn-1 )   = t (n)( bn-1 ) 

  c ( bn ) = 0 

Execution defines a partial function (defined on a subset 
of the domain) from the initial state to final state: 

 ep : B
**  B** 

This function is undefined if the thread does not 
terminate. 
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Threads as Sequences of State Changes 

initial state: b0  

final state: bn  

sequence t ( i ): B**  B** 

• Time is irrelevant 

• All actions are ordered 

• The thread sequence depends on the program and the state 
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Expressiveness 

Given a finite action set:   A  [B**  B**] 

Execution:   ep  [B**  B** ] 

Can all functions in [B**  B**] be defined by a program? 

Compare the cardinality of the two sets: 

 set of functions: [B**  B**] 

 set of programs: [{1, … , m}  A,  m  N ] = A* 
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Programs Cannot Define All Functions 

Cardinality of this set: A* for finite set A, is the same as 

the cardinality of the set of integers (put the elements of 

the set into a one-to-one correspondence with the 

integers). The set is countable. 

This set is larger: [B**  B** ]. 

Proof: Choose the subset of constant functions, 

 C  [B**  B**] 

This set is not countable (use Cantor’s diagonal 

argument to show this).  
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Simpler: Choose a Smaller State Space 

Smaller state space (natural numbers): N = {0, 1, 2, … } 

Set of all functions:   F = [ N  N ] 

Finite action set:   A  [ N  N ] 

Set of all programs: [{1, … , m}  A,  m  N ] = A* 

Again, the set of all functions is uncountable and the set 
of all programs is countable, so clearly not all functions 
can be given by programs. 

With a “good” choice of action set, we get programs that 
implement a well-defined subset of functions. 
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Taxonomy of Functions 

Functions from initial state to final state: 

 F = [ N  N ] 

Partial recursive functions: 

 PR  [ N  N ] 

(Those functions for which there is a program that 
terminates for zero or more initial states). 

Total recursive functions: 

 TR  P  [ N  N ] 

(There is a program that terminates for all initial states). 
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Church’s Thesis 

Every function f : N  N   that is computable by any 

practical computer is in PR. 

There are many “good” choices of finite action sets that 

yield the same definition of PR. 

Evidence that this set is fundamental is that Turing 

machines, lambda calculus, PCF (a basic recursive 

programming language), and all practical computer 

instruction sets yield the same set  PR. 
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Key Results in Computation 

Turing: Instruction set with 7 instructions is enough to 

write programs for all partial recursive functions. 

A program using this instruction set is called a Turing 

machine 

A universal Turing machine is a Turing machine that can 

execute a binary encoding of any Turing machine. 

Church: Instructions are a small set of transformation 

rules on strings called the lambda calculus. 

Equivalent to Turing machines.  
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Turing Completeness 

A Turing complete instruction set is a finite subset of PR 

(and probably of TR) whose transitive closure is PR. 

Many choices of underlying instruction sets A  [ N  N ]  

are Turing complete and hence equivalent. 

This can be generalized to the larger state space B** by 

encoding the integers in it.  
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Equivalence 

Any two programs that implement the same partial 

recursive function are equivalent. 

Terminate for the same initial states. 

End up in the same final states. 

NOTE: Big problem for embedded software: 

All non-terminating programs are equivalent. 

All programs that terminate in the same “exception” state 

are equivalent. 
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Limitations of the 20-th Century  

Theory of Computation 

Only terminating computations are handled. 

This is not very useful… 

But it gets even worse: 

There is no concurrency. 
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Concurrency: Interactions Between Threads 

suspend 

The operating system 

(typically) provides: 

•  suspend/resume 
•  mutual exclusion 

•  semaphores 

resume 

another thread can 

change the state 

Recall that for a thread, which 

instruction executes next 

depends on the state, and what 
it does depends on the state. 
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Nonterminating and/or Interacting Threads: 

Allow State to be Observed and Modified 

external input 

environment observes state 

sequence p ( c ( bi )): B
**  B** 

initial state 

environment modifies state 

… 

… 
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Recall Execution of a Program 

Given initial state b0  B**, then execution is: 

 b1 = p ( c ( b0 ))( b0 )       = t (1)( b0 )  

 b2 = p ( c ( b1 ))( b1 )       = t (2)( b1 )  

 … 

 bn = p ( c ( bn-1 ))( bn-1 )   = t (n)( bn-1 )  

 c ( bn ) = 0 

When a thread executes alone, execution is a 

composition of functions: 

 t (n)  …  t (2)  t (1) 
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Interleaved Threads 

Consider two threads with functions: 

 t1(1), t1 (2), … , t1 (n) 

 t2 (1), t2 (2), … , t2 (m) 

These functions are arbitrarily interleaved. 

Worse: The i-th action executed by the machine, if it 
comes from program c ( bi-1), is: 

 t (i) = p ( c ( bi-1)) 

which depends on the state, which may be affected by 
the other thread.  
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Equivalence of Pairs of Programs 

For concurrent programs p1 and p2 to be equivalent under 

threaded execution to programs  p1' and p2' , we need for 

each arbitrary interleaving of the thread functions 

produced by that interleaving to terminate and to 

compose to the same function as all other interleavings 

for both programs. 

This is hopeless, except for trivial concurrent programs! 
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Equivalence of Individual Programs 

If program p1 is to be executed in a threaded 

environment, then without knowing what other programs 

will execute with it, there is no way to determine whether 

it is equivalent to program  p1'  except to require the 

programs to be identical. 

This makes threading nearly useless, since it makes it 

impossible to reason about programs. 
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Determinacy 

For concurrent programs p1 and p2 to be determinate 
under threaded execution we need for each arbitrary 
interleaving of the thread functions produced by that 
interleaving to terminate and to compose to the same 
function as all other interleavings. 

This is again hopeless, except for trivial concurrent 
programs! 

Moreover, without knowing what other programs will 
execute with it, we cannot determine whether a given 
program is determinate. 
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Manifestations of Problems 

Race conditions 
• Two threads modify the same portion of the state. Which one 

gets there first? 

Consistency 

• A data structure with interdependent data is updated in multiple 

atomic actions. Between these actions, the state is inconsistent. 

Deadlock 

• Fixes to the above two problems result in threads waiting for 
each other to complete an action that they will never complete. 
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Improving the Utility of the Thread Model 

Brute force methods for making threads useful: 

Segmented memory (processes) 

• Pipes and file systems provide mechanisms for sharing data. 

• Implementation of these requires a thread model, but this 

implementation is done by operating system expert, not by 

application programmers. 

Functions (no side effects) 

• Disciplined programming design pattern, or… 

• Functional languages (like Concurrent ML)  

Single assignment of variables 

• Avoids race conditions 
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Mechanisms for Achieving Determinacy 

Less brute force (but also weaker): 

 Semaphores 

 Mutual exclusion locks (mutexes, monitors) 

 Rendezvous 

All require an atomic test-and-set operation, which is not 

in the Turing machine instruction set. 
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rendezvous is more 

symmetric use of 

semaphores 

semaphore or monitor 

used to stall a thread 

race condition 

Mechanisms for Interacting Threads 

Potential for 

race conditions, 
inconsistency, 

and deadlock 
severely 

compromise 

software 
reliability. 

These methods 

date back to the 

1960’s 
(Dijkstra). 
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Deadlock 

acquire lock x 

“Acquire lock x” means the following atomic action: 

 if x is false, set it to true, 

 else stall until it is false. 

where x is Boolean variable (a “semaphore”). 

“Release lock x” means: 

 set x to false. 

acquire lock y 

acquire lock y 

stall 
acquire lock x 

stall 
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Simple Rule for Avoiding Deadlock [Lea] 

“Always acquire locks in the same order.” 

However, this is very difficult to apply in practice: 

Method signatures do not indicate what locks they grab 

(so you need access to all the source code of methods 

you use). 

Symmetric accesses (where either thread can initiate 

an interaction) become more difficult. 
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remote procedure call 

Distributed Computing: In Practice, Mostly Based 

on Remote Procedure Calls (RPC) 

Force-fitting the 

sequential 
abstraction onto 

parallel 
hardware. 
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“asynchronous” 

 procedure call 

Combining Processes and RPC –  
Split-Phase Execution, Futures, 

Asynchronous Method Calls, Callbacks, … 

These methods 

are at least as 
incomprehensible 

as concurrent 
threads or 

processes. 
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What is an Actor-Oriented MoC? 

Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

         Output data 

What flows through 

an object is 

streams of data 

class name 

data 

methods 

call return 

What flows through 

an object is 

sequential control 

Traditional component interactions: 
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Models of Computation 

Implemented in Ptolemy II 

CI – Push/pull component interaction 

Click – Push/pull with method invocation 

CSP – concurrent threads with rendezvous 

CT – continuous-time modeling 

DE – discrete-event systems 

DDE – distributed discrete events 

FSM – finite state machines 

DT – discrete time (cycle driven)  

Giotto – synchronous periodic 

GR – 2-D and 3-D graphics 

PN – process networks 

DPN – distributed process networks 

SDF – synchronous dataflow 

SR – synchronous/reactive 

TM – timed multitasking 

Most of 

these are 

actor 

oriented. 
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Summary 

Theory of computation supports well only 

terminating 

non-concurrent 

 computation 

Threads are a poor concurrent model of computation 

weak formal reasoning possibilities 

incomprehensibility 

race conditions 

inconsistent state conditions 

deadlock risk 


