
 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 290n – Advanced Topics in Systems Theory
Concurrent Models of Computation
Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 10: Consistency

Lee 10: 2

Recall:
Execution Policy for a Dataflow Actor

Suppose s ∈ S n is a concatenation of firing rules,
s = u1. u2. u3 …

Then the output of the actor is the concatenation of the
results of a sequence of applications of the firing function:

F0 (s) = ⊥ n
F1 (s) = (φ (F0))(s) = f (u1)

F2 (s) = (φ (F1))(s) = f (u1). f (u2)
…

The problem we address now is scheduling: how to
choose which actor to fire when there are choices.

 2

Lee 10: 3

Dataflow variants constrain firing rules and trade
off expressiveness and analyzability
  Computation graphs [Karp & Miller - 1966]
  Process networks [Kahn - 1974]
  Static dataflow [Dennis - 1974]
  Dynamic dataflow [Arvind, 1981]
  K-bounded loops [Culler, 1986]
  Synchronous dataflow [Lee & Messerschmitt, 1986]
  Structured dataflow [Kodosky, 1986]
  PGM: Processing Graph Method [Kaplan, 1987]
  Synchronous languages [Lustre, Signal, 1980’s]
  Well-behaved dataflow [Gao, 1992]
  Boolean dataflow [Buck and Lee, 1993]
  Multidimensional SDF [Lee, 1993]
  Cyclo-static dataflow [Lauwereins, 1994]
  Integer dataflow [Buck, 1994]
  Bounded dynamic dataflow [Lee and Parks, 1995]
  Heterochronous dataflow [Girault, Lee, & Lee, 1997]
  Parameterized dataflow [Bhattacharya and Bhattacharyya 2001]
  Structured dataflow (again) [Thies et al. 2002]
  …

today

Lee 10: 4

Recall: Synchronous Dataflow (SDF)

Actor 1

Connector 1
balance equations

firing vector

production/consumption matrix

 3

Lee 10: 5

Consistent Models

Let a be the number of actors in a connected model. The
model is consistent if Γ has rank a - 1.

If the rank is a, then the balance equations have only a
trivial solution (zero firings).

When Γ has rank a - 1, then the balance equations
always have a non-trivial solution.

Lee 10: 6

Recall: Boolean Dataflow uses
Symbolic Production/Consumption Rates

Imperative
equivalent:

while (true) {
 x = f1();
 b = f7();
 if (b) {
 y = f3(x);
 } else {
 y = f4(x);
 }
 f6(y);
}

Production and consumption rates
are given symbolically in terms of
the values of the Boolean control
signals consumed at the control
port.

Symbolic consumption rate.

Symbolic production rate.

 4

Lee 10: 7

Interpretations of Symbolic Rates

  General interpretation: p is a symbolic placeholder for
an unknown.

  Probabilistic interpretation: p is the probability that a
Boolean control input is true.

  Proportion interpretation: p is the proportion of true
values at the control input in one complete cycle.

 NOTE: We do not need numeric values for p. We
always manipulate it symbolically.

Lee 10: 8

Symbolic Balance Equations

The two connections above imply the following balance
equations:

q2 p = q3

q2 (1 – p) = q4

 5

Lee 10: 9

Balance equations:

Note that the
solution now
depends on the
symbolic variables

Production/Consumption Matrix for If-Then-Else
Symbolic
variables:

Lee 10: 10

The balance equations have a solution
if an only if has rank 6. This occurs
if and only if p7 = p8 , which happens to
be true by construction because signals
7 and 8 come from the same source. The
solution is given at the right.

Production/Consumption Matrix for If-Then-Else

 6

Lee 10: 11

Strong and Weak Consistency

A strongly consistent dataflow model is one where the
balance equations have a solution that is provably valid
without concern for the values of the symbolic variables.

 The if-then-else dataflow model is strongly consistent.

A weakly consistent dataflow model is one where the
balance equations cannot be proved to have a solution
without constraints on the symbolic variables that cannot
be proved.

 Note that whether a model is strongly or weakly
consistent depends on how much you know about the
model.

Lee 10: 12

Weakly Consistent Model

This production/consumption
matrix has full rank unless p = 1.

Unless we know f4 , this cannot
be verified at compile time.

 7

Lee 10: 13

Another Example of a Weakly Consistent Model

This one requires that actor 7 produce half true and half
false (that p = 0.5) to be consistent. This fact is derived
automatically from solving the balance equations.

Lee 10: 14

Use Boolean Relations

Symbolic variables
across logical
operators can be
related as shown.

 8

Lee 10: 15

Routing of Boolean Tokens

Symbolic variables
across switch and
select can be
related as shown.

Lee 10: 16

Recall If-Then-Else Pattern

The if-then-else model is strongly
consistent and we can give a
quasi-static schedule for it:
(1, 7, 2, b?3, !b?4, 5, 6)

guard

Symbolic consumption rate.

Solution to
the symbolic
balance
equations:

 9

Lee 10: 17

Quasi-Static Schedules & Traces

 A quasi-static schedule is a finite list of guarded firings where:

  The number of tokens on each arc after executing the schedule
is the same as before, regardless of the outcome of the
Booleans.

  If any arc has a Boolean token prior to the execution of the
schedule, then it will have a Boolean token with the same value
after execution of the schedule.

  Firing rules are satisfied at every point in the schedule.

 A trace is a particular execution sequence.

Lee 10: 18

Quasi-Static Schedules & Traces

Solution to the symbolic balance equations:

Quasi-static schedule: (1, 7, 2, b?3, !b?4, 5, 6)
Possible trace: (1, 7, 2, 3, 5, 6)
Another possible trace: (1, 7, 2, 4, 5, 6)

 10

Lee 10: 19

Proportion Vectors

  Let S be a trace. E.g. (1, 7, 2, 3, 5, 6)
  Let qS be a repetitions vector for S. E.g.

  Let ti,S be the number of TRUEs consumed from
Boolean stream bi in S. E.g. t7,S = 1, t8,S = 1.

  Let ni,S be the number of tokens consumed from
Boolean stream bi in S. E.g. n7,S = 1, n8,S = 1.

  Let

  We want a quasi-static schedule s.t. for every trace S
we have .

proportion vector

Lee 10: 20

Proportion Interpretation

Recall the balance equations depend on , a vector with
one symbolic variable for each Boolean stream that
affects consumption production rates:

Under a proportion interpretation, for a trace S,
represents the proportion of TRUEs in S. We seek a
schedule that always yields traces that satisfy

 11

Lee 10: 21

Proportion Interpretation for If-Then-Else

Quasi-static schedule: (1, 7, 2, b?3, !b?4, 5, 6)
Possible trace: S = (1, 7, 2, 3, 5, 6)

Another possible trace: (1, 7, 2, 4, 5, 6)

Both satisfy the balance equations.

Lee 10: 22

Limitations of Consistency

Consistency is necessary but not sufficient for a dataflow
graph to have a bounded-memory schedule. Consider:

[Gao et al. ’92]. This model is strongly consistent. But
there is no bounded schedule
(e.g., suppose b7 = (F, T, T, T , …).

 12

Lee 10: 23

Limitations of Consistency

Even out-of-order execution (as supported by tagged-
token scheduling [Arvind et al.] doesn’t solve the
problem:

Lee 10: 24

Gao’s Example has no Quasi-Static Schedule

Solution to the symbolic balance equations is

A trace S with N firings (N even) of actor 1 must have

But this cannot be unless t7,S is even. There is no
assurance of this.

 13

Lee 10: 25

Another Example

The model is strongly consistent.
Solution to symbolic equations:

A trace S with N firings (N
even) of actor 1 must have:

where t is the number of TRUEs consumed. There
is no finite N where this is assured of being an
integer vector.

Lee 10: 26

Clustered Quasi-Static Schedules

Consider the clustered schedule:
n = 0;
do {
 fire 1;
 fire 5;
 fire 2;
 if (b) {
 fire 3;
 } else {
 n += 1;
 }
} while (n < 2);
fire 4;
This schedule either fails to terminate or yields an integer vector of
the form:

 14

Lee 10: 27

Delays Can Also Cause Trouble

This model is weakly consistent, where the balance
equations have a non-trivial solution only if p7 = p8, in
which case the solution is:

Lee 10: 28

Relating Symbolic Variables Across Delays

For the sample delay:

What is the relationship between p1 and p2?

Since consistency is about behavior in the limit, under the
probabilistic of the interpretation for the symbolic
variables, it is reasonable to assume p1 = p2.

Is this reasonable under the proportion interpretation?

 15

Lee 10: 29

Delays Cause Trouble with the Proportion Interpretation

Solution to the symbolic balance equations is

A trace S with N firings of actor 1 must have

But for no value of N is there any assurance of being
able to fire actor 5 N times. This schedule won’t work.

Lee 10: 30

Do-While Relies on a Delay

Is this model strongly
consistent? Weakly
consistent? Inconsistent?

Imperative
equivalent:

while (true) {
 x = f1();
 b = false;
 while(!b) {
 (x, b) = f3(x);
 }
 f5(x);
}

 16

Lee 10: 31

Checking Consistency of Do-While

This model is consistent
if and only if p5 = p6,
which is true under the
probabilistic
interpretation, but not
under the proportion
interpretation.

Lee 10: 32

Checking Consistency of Do-While

Let p = p5 = p6, then the
solution to the balance
equations is:

 17

Lee 10: 33

Clustering Solution for Do-While

This schedule yields traces
S for which p5 = p6 = 1/N
and

compare:

Clustered Schedule:

fire 1;
do {
 fire 2;
 fire 3;
 fire 4;
} while(!b);
fire 5;

Lee 10: 34

Extensions

  State enumeration scheduling approach: Seek a finite
set of finite guarded schedules that leave the model in
a finite set of states (buffer states), and for which there
is a schedule starting from each state.

  Integer dataflow (IDF [Buck ’94]): Allow symbolic
variables to have integer values, not just Boolean
values. Extension is straightforward in concept, but
reasoning about consistency becomes harder.

 18

Lee 10: 35

Taking Stock

  BDF and IDF generalize the idea of balance equations
and introduce quasi-static scheduling.

  BDF and IDF are Turing complete, so existence of
quasi-static schedules is undecidable.

  Can often construct quasi-static schedules anyway.
  Tricks like clustered schedules make the set of

manageable models larger.
  Are Switch and Select like unrestricted GOTO?

Lee 10: 36

Extensions of SDF that Improve Expressiveness

Structured Dataflow [Kodosky 86, Thies et al. 02]
Boolean dataflow [Buck and Lee, 93]
Cyclostatic Dataflow [Lauwereins 94]
Multidimensional SDF [Lee & Murthy 96]
Heterochronous Dataflow [Girault, Lee, and Lee, 97]
Parameterized Dataflow [Bhattacharya et al. 00]
Teleport Messages [Thies et al. 05]

Many of these remain decidable

 19

Lee 10: 37

Structured Dataflow
[Kodosky 86]

LabVIEW uses homogeneous SDF augmented with
syntactically constrained forms of feedback and rate
changes:
 While loops
 Conditionals
 Sequences
LabVIEW models are decidable.

Lee 10: 38

vs. Dynamic Dataflow, which uses token
routing for control flow

Imperative
equivalent:

while (true) {
 x = f1();
 b = f7();
 if (b) {
 y = f3(x);
 } else {
 y = f4(x);
 }
 f6(y);
}

The if-then-else model is not SDF. But
we can clearly give a bounded quasi-
static schedule for it:
(1, 7, 2, b?3, !b?4, 5, 6)

What consumption rate?

What production rate?

guard

 20

Lee 10: 39

vs. Dynamic Dataflow, which uses token
routing for control flow

This model uses conditional
routing of tokens to iterate a
function a data-dependent
number of times.

initial token

Imperative
equivalent:

while (true) {
 x = f1();
 b = false;
 while(!b) {
 (x, b) = f3(x);
 }
 f5(x);
}

Switch Select

Lee 10: 40

Syntax: Graphical or Textual?

The graphical vs. textual debate obscures a more important question:

Are actors and streams a programming language technology or a
software component technology?

  Lucid (77)
  Id (78)
  VAL (79)
  Sisal (83)
  Lustre (86)
  Signal (90)
  Granular Lucid (95)
  StreamIT (02)
  Cal (03)
  …

  Sutherland (66)
  Prograph (85)
  LabVIEW (86)
  Gabriel (86)
  Show and Tell (86)
  Cantata (91)
  Ptolemy Classic (94)
  Ptolemy II (00)
  Scade (05)
  … co
m

po
ne

nt
 te

ch
no

lo
gi

es

 21

Lee 10: 41

Consistency in Synchronous/Reactive Models

SR models are intrinsically bounded, but have related
consistency issue: Clock consistency.

Lee 10: 42

Two Interpretations of Clocks

A clock is a
property of a

model, and
signals may
be absent at

ticks of the
clock

(Esterel)

A clock is a
property of a
signal, and
components
impose
constraints
on clock
relationships
(Lustre,
Signal) The choice

between these
has profound

consequences

 22

Lee 10: 43

The Ptolemy II
SR Director
realizes Esterel-
style clocks with
hierarchical
clock domains.

In this example, the CountDown
composite issues a “ready”
signal to the EnabledComposite,
which then issues a number.
The CountDown composite
counts down from that number to
0, then issues another ready.

Lee 10: 44

The EnabledComposite
has a clock that ticks
only when the enable
input is present and true.
It issues the sequence 1,
5, 3, 2, followed by
absent henceforth.

The Ptolemy II
SR Director
realizes Esterel-
style clocks with
hierarchical
clock domains.

 23

Lee 10: 45

The Clock is a
Property of the
Model

To get a different clock,
use opaque hierarchy.
This is (roughly) the
style of Esterel (with
multiclock extensions).

Lee 10: 46

Hierarchical clock domains bear some
resemblance to structured dataflow

Opaque hierarchy can do:
  Conditioning an internal tick on an external signal

 Like a conditional
  If the internal component is an instance of the external,

then this amounts to recursion
  Multiple internal ticks per external tick

 Like a do-while
  Iterated internal ticks over a data structure (use

IterateOverArray higher-order actor)
 Like a for

 24

Lee 10: 47

A Consequence: Pre and NonStrictDelay have
different behaviors!

Alternative Semantics:
The Clock is a Property of the Signal

In Lustre and Signal, a clock is a property
of a signal, and Pre and NonStrictDelay
behave identically by constraining the
input clock to be the same as the output
clock. They only fire when the clock of the
input signal ticks.

This leads to a clock consistency problem,
which is in general undecidable.

Lee 10: 48

Inconsistent clocks

In Lustre-style clock systems, the AddSubtract actor
imposes the constraint that all its input signals have the
same clock. The above model becomes inconsistent and
will not execute.

 25

Lee 10: 49

Clock Calculus

  Let T be a totally ordered set of tags.
  Let s: T→ V ∪ { ε} be a signal of type V, where ε

means “absent.”
  Let c: T→ {–1, 0, 1} be a clock associated with s

where
 s(t) = ε ⇒ c(t) = 0
 s(t) = true ⇒ c(t) = 1
 s(t) = false ⇒ c(t) = –1
 If V is not boolean, then when s(t) is present, c(t) has
value or 1 or –1 (we will make no distinction).

Lee 10: 50

Operations on Clocks

Arithmetic on clocks is in GF-3 (a Galois field with 3
elements), as follows:

 0 + x = x 0 ⋅ x = 0
 1 + 1 = –1 1 ⋅ x = x
 –1 + –1 = 1 –1 ⋅ x = – x
 –1 + 1 = 0

 26

Lee 10: 51

Clock Relations: Simple Synchrony

Most actors require that the clocks on all signals be the
same. For example:

This means that either all are present, or all are absent.

s1

s2

s3

Lee 10: 52

Assuming that s1 is a boolean-valued signal (which it
must be), the clocks on signals interacting through the
when operator are related as follows:

This means:
 If s1 is absent, then s3 is absent.
 If s2 is false, then s3 is absent.
 If s2 is true, then s3 is the same as s1.

Clock Relations: When Operator

s1

s2

s3

 27

Lee 10: 53

Consistency Checking

Consider the following model:

These two together imply that:

where we have used the fact that:

s1

s2

s4

s3

€

∀t ∈ T, c1
2(t)(1+ c2

2(t)) = −c2(t)c1
2(t)

Lee 10: 54

Interpretation of Consistency Result

Consistency check implies that:

This means:
 s1 is absent if and only if s2 is absent or false.

s1

s2

s4

s3
€

∀t ∈ T, c1
2(t)(1+ c2

2(t)) = −c2(t)c1
2(t)

 28

Lee 10: 55

Logic Operators Affect Clocks

The output of the When actor has a clock that depends
on the Boolean control signal. Clocks of Boolean-valued
signals reflect the signal value as follows:

s1

s2
s3

s3

s1

s2

s2

s1

Lee 10: 56

Token Routing Also Affects Clocks

Switch and Select affect the clocks as follows:

s2

s3

s3

s1

s2

s1 s4

s4

 29

Lee 10: 57

Example 1 Using Switch and Select

What can you infer about the clock of s6 ?

s2

s3
s1

s5

s4
s6

Lee 10: 58

Example 2 Using Switch and Select

What can you infer about the clocks?

This means that s1 is absent and s3 is either absent or
false.

s2

s3

s1
s2

 30

Lee 10: 59

What About Delays?

Clock relations across the delays
become dependent on the tags. E.g., if
T is the natural numbers, then we get a
nonlinear dynamical system:

This makes clock analysis very difficult,
in general.

s2 s1

s2 s1

Lee 10: 60

Default: The output equals the left input, if it is present,
and the bottom input otherwise:

This means the clock of s3 is equal to the clock of s1 , if it
is present, and to the clock of s2 otherwise.

Default Operator

s1

s2

s3

 31

Lee 10: 61

In SIGNAL semantics, the following model has many
behaviors:

The two generated sequences have independent clocks
(defined over incomparable values of t ∈ T), and the
output sequence is any interleaving that preserves the
ordering.

Default Operator in SIGNAL is Nondeterministic

Lee 10: 62

Guarded Count in SIGNAL

Instead of
generating a
“ready” signal, in
SIGNAL, the count
hitting zero can be
synchronized with
the input being
present.

 32

Lee 10: 63

Conclusion and Open Issues

  When clocks are a property of the model, the result is structured
synchronous models, where differences between clocks are
explicit and no consistency checks are necessary (and signals
may be absent at ticks of the clock).

  When clocks are a property of a signal, the result is similar to
Boolean Dataflow (BDF). It is arguable that clock operators like
“when,” “default,” “switch,” and “select” become analogous to
unstructured gotos. Clock consistency checking becomes
undecidable.

  When further extended as in SIGNAL to partially ordered clock
ticks, models easily become nondeterministic.

