
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 12: Discrete-Event Systems

Lee 12: 2

Discrete Event Models

2

Lee 12: 3

Discrete Events (DE): A Timed Concurrent Model

of Computation

Lee 12: 4

Our Applications of DE

Modeling and simulation of

Communication networks (mostly wireless)

Hardware architectures

Systems of systems

Design and software synthesis for

Sensor networks

Distributed real-time software

Hardware/software systems

3

Lee 12: 5

Design of Discrete-Event Models

Example: Model of a transportation system:

Lee 12: 6

Event Sources and Sinks

The Clock actor produces events at regular

intervals. It can repeat any finite pattern of event

values and times.

The PoissonClock actor produces events at random

intervals. The time between events is given by an

exponential random variable. The resulting output

random process is called a Poisson process. It has

the property that at any time, the expected time until

the next event is constant (this is called the

memoryless property because it makes no difference

what events have occurred before that time).

The TimedPlotter actor plots double-valued

events as a function of time.

4

Lee 12: 7

Actors that Use Time

Lee 12: 8

Execution of the Transportation System Model

These displays show that the average time that passengers wait for

a bus is smaller if the busses arrive at regular intervals than if they

arrive random intervals, even when the average arrival rate is the

same. This is called the inspection paradox.

5

Lee 12: 9

Uses for Discrete-Event Modeling

Modeling timed systems

transportation, commerce, business, finance, social,

communication networks, operating systems, wireless

networks, …

Designing digital circuits

VHDL, Verilog

Designing real-time software

Music systems (Max, …)

Lee 12: 16

Design in DE: Some Useful Actors

When a token is received

on the input port, it is

stored in the queue.

When the trigger port

receives a token, the

oldest element in the

queue is output. If there is

no element in the queue

when a token is received

on the trigger port, then

no output is produced.

Like the Queue, except

that a serviceTime

parameter provides a

lower bound on the time

between outputs.

Merge is deterministic in DE.

Like a

register in

digital

circuits.

When triggered by an

input, output the previous

input. Is this useful in

feedback loops?

6

Lee 12: 17

Signals in DE

A signal in DE is a partial function a : T A , where A is

a set of possible event values (a data type and an

element indicating “absent”), and T is a totally ordered

set of tags that represent time stamps and ordering of

events at the same time stamp.

In a DE model, all signals share the same domain T, but

they may have different ranges A.

Lee 12: 18

Executing Discrete Event Systems

Maintain an event queue, which is an ordered set of

events.

Process the least event in the event queue by sending

it to its destination port and firing the actor containing

that port.

Questions:

How to get fast execution when there are many events

in the event queue…

What to do when there are multiple simultaneous

events in the event queue…

7

Lee 12: 19

Zeno Signals

Eventually, execution
stops advancing time.
Why?

Note that if the Ramp is set to produce
integer outputs, then eventually the
output will overflow and become
negative, which will cause an exception.

Lee 12: 20

Taking Stock

The discrete-event model of computation is useful for

modeling and design of time-based systems.

In DE models, signals are time-stamped events, and

events are processed in chronological order.

Simultaneous events and Zeno conditions create

subtleties that the semantics will have to deal with.

8

Lee 12: 21

First Attempt at a Model for Signals

Lee 12: 22

This model is not rich enough because it does not allow a signal to

have multiple events at the same time.

First Attempt at a Model for Signals

9

Lee 12: 23

Example Motivating the Need for Simultaneous

Events Within a Signal

Newton’s Cradle:

Steel balls on strings

Collisions are events

Momentum of the middle ball has three values at
the time of collision.

This example has continuous dynamics as well

(I will return to this)

Other examples:

Batch arrivals at a queue.

Software sequences abstracted as instantaneous.

Transient states.

Lee 12: 24

A Better Model for Signals:

Super-Dense Time

This allows signals to have a sequence of values at any real time t.

10

Lee 12: 25

Super Dense Time

Lee 12: 26

Events and Firings

Operationally, events are processed by presenting all

input events at a tag to an actor and then firing it.

However, this is not always possible!

11

Lee 12: 27

Discrete Signals

A signal s is discrete if there is an order embedding from

its tag set (s) (the tags for which it is defined and not

abent) to the integers (under their usual order).

A system S (a set of signals) is discrete if there is an

order embedding from its tag set (s) to the integers

(under their usual order).

Lee 12: 28

Terminology: Order Embedding

Given two posets A and B, an order embedding is a

function f : A B such that for all a, a' A ,

a a' f (a) f (a')

Exercise: Show that if A and B are two posets, and

f : A B is an order embedding, then f is one-to-one.

12

Lee 12: 29

Examples

1. Suppose we have a signal s whose tag set is

{(, 0) | R }

 (this is a continuous-time signal). This signal is not

discrete.

2. Suppose we have a signal s whose tag set is

{(, 0) | Rationals }

 This signal is also not discrete.

Lee 12: 30

A Zeno system is

not discrete.

The tag set here includes { 0, 1, 2, …}

and { 1, 1.25, 1.36, 1.42, …} .

Exercise: Prove that this system is not discrete.

13

Lee 12: 31

Is the following system discrete?

Lee 12: 32

Discreteness is Not a Compositional Property

Given two discrete signals s, s' it is not necessarily true

that S = { s, s' } is a discrete system.

Putting these two signals

in the same model

creates a Zeno condition.

14

Lee 12: 33

Question 1:

Can we find necessary and/or sufficient conditions to

avoid Zeno systems?

Lee 12: 34

Question 2:

In the following model, if f2 has no delay, should f3 see
two simultaneous input events with the same tag? Should
it react to them at once, or separately?

In Verilog, it is nondeterministic. In VHDL, it sees a
sequence of two distinct events separated by “delta time”
and reacts twice, once to each input. In the Ptolemy II DE
domain, it sees the events together and reacts once.

15

Lee 12: 35

Example

In the following segment of a model, clearly we wish that

the VariableDelay see the output of Rician when it

processes an input from CurrentTime.

Lee 12: 36

Question 3:

What if the two sources in the following model deliver an

event with the same tag? Can the output signal have

distinct events with the same tag?

Recall that we require that a signal be a partial function

s : T V , where V is a set of possible event values (a

data type), and T is a totally ordered set of tags.

16

Lee 12: 37

One Possible Semantics for DE Merge

Lee 12: 38

Implementation of DE Merge

private List pendingEvents;

fire() {

 foreach input s {

 if (s is present) {

 pendingEvents.append(event from s);

 }

 }

 if (pendingEvents has events) {

 send to output (pendingEvents.first);

 pendingEvents.removeFirst();

 }

 if (pendingEvents has events) {

 post event at the next index on the event queue;

 }

}

17

Lee 12: 39

Question 4:

What does this mean?

The Merge presumably does not introduce delay, so what

is the meaning of this model?

Lee 12: 40

Conclusions

Discrete-event models compose components that

communicate timed events. They are widely used for

simulation (of hardware, networks, and complex systems).

Superdense time uses tags that have a real-valued time-

stamp and a natural number index, thus supporting
sequences of causally-related simultaneous events.

A discrete system is one where the there is an order

embedding from the set of tags in the system to the

integers.

