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Lecture 13: Semantics of Discrete Event Systems 
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We Seek Semantics that Give Meaning to 

Feedback and Help Rule Out Zeno 
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Mathematical Framework 

Let the set of all signals be A = [T  V ] where T is a 

totally ordered set and V  is a set of values. Let an actor 

be a function f : A n  A m . What are the constraints on 

these functions such that: 

1. Compositions of actors are determinate. 

2. Feedback compositions have a meaning.  

3. We can rule out Zeno behavior. 
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A Feedback Design Pattern 

In this model, a sensor produces measurements that are combined with 

previous measurements using an exponential forgetting function. 

The feedback loop makes it impossible to present the Register actor with 

all its inputs at any tag before firing it. 

trigger input port 
data input port 
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Solving Feedback Loops 

Possible solutions: 

1. Find algebraic solution 

2. All actors have time delay 

3. Some actors have time delay,  
and every directed loop must have an actor with time delay. 

4. All actors have delta delay 

5. Some actors have delta delay  
and every directed loop must have an actor with delta delay. 

Although each of these solutions is used, all are problematic. 

The root of the problem is simultaneous events. 
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Consider “Find Algebraic Solution” 

This solution is used by Simulink, but is ill posed. 

Consider: 

This has two solutions: 
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Consider “All Actors Have Time Delay” 

If all actors have time delay, this produces either: 

• Event with value 1 followed by event with value 2, or 

• Event with value 1 followed by event with value 3. 

(the latter if signal values are persistent). 

Neither of these is likely what we want. 
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Consider “All Actors Have Delta Delay” 

With delta delays, if an input event is ((t, n), v), the corresponding 

output event is ((t, n+1), v’). Every actor is assumed to give a delta 

delay. 

This style of solution is used in VHDL. 
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Consider “All Actors Have Delta Delay” 

If all actors have a delta delay, this produces either: 

• Event with value 1 followed by event with value 2, or 

• Event with value 1 followed by event with value 3  

(the latter if signal values are persistent, as in VHDL). 

Again, neither of these is likely what we want. 

Lee 13: 10 

More Fundamental Problem: Delta Delay 

Semantics is Not Compositional 

The top composition of two actors will have a two delta delays, 

whereas the bottom abstraction has only a single delta delay. 

Under delta delay semantics, a composition of two actors 

cannot have the semantics of a single actor.  
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Consider “Some actors have time delay,  

and every directed loop must have an actor with 

time delay.” 

Any non-zero time delay imposes an upper bound on the rate at 

which sensor data can be accepted. Exceeding this rate will 

produce erroneous results. 
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Consider “Some actors have delta delay,  

and every directed loop must have an actor with 

delta delay.” 

The output of the Register actor must be at least one index later 

than the data input, hence this actor has at least a delta delay. 

To schedule this, could break the feedback loop at actors with delta 

delay, then do a topological sort. 

trigger input port 
data input port 
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Naïve Topological Sort is not Compositional 

Does this composite actor have a 

delta delay or not? 

Breaking loops where an actor has a delta delay and 

performing a topological sort is not a compositional 

solution: 
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Ptolemy Solution: No Required Delay, and 

Feedback Loops Have (Unique) Least Fixed 

Points Semantics 

Given an input event ((t, n), v), the corresponding output event is  

((t, n), v’). The actor has no delay. 

The challenge now is to establish a determinate semantics and a 

scheduling policy for execution. 

Output is a 

single event 

with value 3.0 
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Fixed-Point Semantics at a Tag Handles 

Simultaneous Events 

By default, an actor produces events with the same time as the input 

event. But in this example, we expect (and need) for the BooleanSwitch to 

“see” the output of the Bernoulli in the same “firing” where it sees the event 

from the PoissonClock. Events with identical time stamps are also ordered, 

and reactions to such events follow data precedence order. 
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Fixed-Point Semantics at a Tag Handles 

Feedback 

Data precedence analysis has to take into account the non-strictness of 

this actor (that an output can be produced despite the lack of an input). 
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Semantics of DE 

At a particular tag value, we assume SR semantics (least 

fixed point on a flat CPO). 

What about across tags? Two alternatives for a 

semantics of the dynamics of DE: 

•  Metric spaces 

•  Fixed points on a CPO 
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Discrete-Event Semantics  

First Approach: Metric Spaces 

Cantor metric: 

where   is the earliest time where x and y differ. 

  

x 

y 
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Metric 

A metric on a set A is a function d : A  A  R where  

for all  a , b , c  A  

1. d ( a , b ) = d ( b , a ) 

2. d ( a , b ) = 0  a = b  

3. d ( a , b ) + d ( b , c )  d ( a , c ) 

Exercise: Show that these properties imply that 

for all  a , b  A ,   d ( a , b )  0  

Metric space: ( A , d )  
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Variations on Metrics 

Ultrametric: Replace property 3 with: 

3. max (d ( a , b ), d ( b , c ))  d ( a , c ) 

Exercise: Prove that an ultrametric is a metric. 

Partial Metric: Replace properties 2 and 3 with: 

2. d ( a , a )  d ( a , b ) 

3. d ( a , b ) + d ( b , c ) - d ( b , b )  d ( a , c ) 

In a partial metric,  a  is the “closest” object to itself. 
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The Cantor Metric 

Given the tag set T = R  N  use only the time stamps. Let  

d : [T  V ]  [T  V ]  R 

such that for all s, s'  [T  V ] , 

d ( s , s'  ) = 1/2  

where  is the time stamp of the least tag t where  
s(t)  s' (t). That is, either one is defined and the other not 
at t or both are defined but are not equal.  
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The Cantor Metric is an Ultrametric 

Need to show that for all signals  a , b , c  [T  V ],  

1.   d ( a , b ) = d ( b , a ) 

2.   d ( a , b ) = 0  a = b  

3.   max (d ( a , b ), d ( b , c ))  d ( a , c ) 

(1) and (2) are obvious. To show (3), assume without loss 

of generality that d ( a , b )  d ( b , c ). This means that a 

and b differ earlier than b and c. Suppose that  

a and b differ first at time . Since a and b differ earlier 

than b and c, then prior to , b and c are identical. Thus, a 

and c must be identical prior to  so  d ( a , c ) must be 

smaller than or equal to  d ( a , b ). QED  
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Causality 

Causal: For all signals s and s' 

d ( f (s) , f (s' ))  d ( s , s' ) 

Strictly causal: For all signals s and s' 

s  s'      d ( f (s) , f (s' )) < d ( s , s' ) 

Delta causal: There exists a real number  < 1 such that 

for all signals s and s' 

s  s'      d ( f (s) , f (s' ))   d ( s , s' ) 
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Examples 

Simple functional actor: 

This actor is causal but not strictly causal or delta causal. 

Time delay with non-zero delay: 

This actor is delta causal. 
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Source and Sink Actors 

Consider Actor1. Its function is f 1: A
1  A0  where 

A0  is a singleton set (a set with one element). Such a 

function is always delta causal with    = 0. 

Consider Actor2. Its function is f 1: A
0  A1. Such a 

function is again always delta causal with    = 0. 

In fact, the function can only yield one possible output 

signal, since its domain has size 1. 
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Extending to Multiple Inputs/Outputs 

Consider a function f : A n  A m , where A = [T  V ] 

The input is a tuple of signals ( a1, a2, …, an ). 

Extend the Cantor metric to handle tuples: 

d (( a1, a2, …, an ),( b1, b2, …, bn ))  

= min( d (a1, b1), …, d (an,  bn ))  

The resulting function is still an ultrametric. 
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Example: Merge Actor 

Recall that for input 

s1 = {… ((t, 0), v1), ((t, 1), v2), …) 

s2 = {… ((t, 0), q1), ((t, 1), q2), …) 

the output is: 

s3 = {… ((t, 0), v1), ((t, 1), q1), ((t, 2), v2), ((t, 3), q2), …) 

This actor is causal but not strictly causal, and the 

operations on indexes do not appear in the semantics. 

s1  

s2  

s3  
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Parallel Composition of Actors 

If f1 and f2 are causal (strictly causal, delta causal), then 

so is f1  f2 . 

What if f1 is causal and f2 is delta causal? 
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Cascade Composition of Actors 

If f1 and f2 are causal (strictly causal, delta causal), then 

so is f1 ° f2 . 

What if f1 is causal and f2 is delta causal? 
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More Interesting Composition 

If f1 and f2 are causal (strictly causal, delta causal), then 

so is the following composition: 

Question: What if f1 is causal and f2 is delta causal? 
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Technicality 

In the set S = [T  V ] , we could have a signal s that has, 

for example, an event at all integer time stamps (positive 

and negative), and we could compare it against a signal 

s'  that has no events at all.  

d ( s , s'  ) =  

This is problematic. We can avoid these problems by 

excluding from the set S all signals that have infinite 

distance from the empty signal.  All such signals have an 

earliest event. 
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Fixed Point Theorem 3 

Let (S n = [T  V ]n, d )  be a metric space and  f : S n  S n  

be a strictly causal function. Then f  has at most one fixed 

point. 

Proof: It is enough to show that 

s  s'     f (s)  s  or  f (s')  s'. 

Suppose to the contrary that 

s  s' and f (s) = s and f (s') = s' 

But this is not possible because it would imply that 

 d (s, s' ) = d ( f (s), f (s' )) < d (s, s' ) . 
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Determinacy 

Fixed-Point Theorem 3 takes care of determinacy. There 

can be no more than one behavior. 

Can we find that behavior? 
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Fixed Point Theorem 4 

(Banach Fixed Point Theorem) 

Let (S n = [T  V ]n, d )  be a complete metric space and   

f : S n  S n  be a delta causal function. Then f  has a 

unique fixed point, and for any point s  S n , the following 

sequence converges to that fixed point: 

s1 = s, s2 = f (s1), s3 = f (s2), … 

This means no Zeno!    Two issues: 

   Any starting point? 

   Complete metric space?  
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Construction of a Fixed Point: Example 

Suppose f  is a delay by one time unit, such that 

s' = f (s) 

where for each event  e = (t, v)  s  where t = (  , n),  
there is an event e' = (t', v)  s'  where t' = (  + 1 , n). 

Suppose we start with a “lucky guess” s = . This is the 
only fixed point, so we converge immediately.  

Suppose we start with an “unlucky guess” s = {((0,0), 0)}. 
As we iterate f, the event gets further out in the future, 
and the signal “converges” to s = .  
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Complete Metric Spaces 

A Cauchy sequence {s1, s2 , …} is an infinite sequence 

where 

d ( sn, sm )  0 as n, m    

A complete metric space ( X , d ) is one where every 

Cauchy sequence has a limit in X. 
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Example 1 

Consider a sequence {s1, s2 , …} where 

sn = {((n, 0), v)} 

Is this sequence Cauchy? 

Does the sequence converge? To what? 
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Example 1 

Consider a sequence {s1, s2 , …} where 

sn = {((n, 0), v)} 

Is this sequence Cauchy? Yes 

d (sn , sm ) = 1/2 min (m, n)  0 

Does the sequence converge? To what? Yes. To  

lim (sn) =  
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Example 2 

Consider a sequence {s1, s2 , …} where 

sn = {((i, 0), v) | i  {1, 2, … , n}} 

Is this sequence Cauchy? 

Does the sequence converge? To what? 
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Example 2 

Consider a sequence {s1, s2 , …} where 

sn = {((i, 0), v) | i  {1, 2, … , n}} 

Is this sequence Cauchy? Yes 

d (sn , sm ) = 1/2 min (m, n) + 1  0 

Does the sequence converge? To what? Yes. To 

{((i, 0), v) | i  {1, 2, … }} 
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Example 3 

Consider a sequence {s1, s2 , …} where 

sn = {(( i, 0), v) | i  {1, 2, … , n}, i = 1 - 1/i} 

Is this sequence Cauchy? 

Does the sequence converge? To what? 
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Example 3 

Consider a sequence {s1, s2 , …} where 

sn = {(( i, 0), v) | i  {1, 2, … , n}, i = 1 - 1/i} 

Is this sequence Cauchy? No 

d (sn , sm ) > 1/2 

Does the sequence converge? To what? No. Exercise. 
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Completeness of DE Signals 

The set of n-tuples of discrete-event signals under the Cantor metric 

is a complete metric space. 

Proof (sketch): We need to show that every Cauchy sequence 

converges.  Given a Cauchy sequence {s1, s2 , …}, for any tag t with 

time stamp   > 0, there is a subsequence {sn , sn + 1 , …}, for some  

n > 0, of signals that are identical up to and including tag t. Let s be 

the sequence obtained by letting its value at each tag t be that 

identical value (or absence, if all signals in the subsequence have 

no event at t). This is clearly a signal (or tuple of signals). Then it is 

easy to show that the Cauchy sequence converges to s. 

    Thanks to Adam Cataldo for this proof. 
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Summary: Semantics of Composition 

Banach fixed point theorem: 

• Contraction map has a unique fixed point 

• Execution procedure for finding that fixed point 
• Successive approximations to the fixed point 

If the components 

are deterministic, 

the composition is 
deterministic. 
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Result: Zeno Systems 

Theorem: If every directed cycle contains a delta-causal 

component, then the system is non-Zeno. 
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Semantics of DE 

At a particular tag value, we assume SR semantics (least 

fixed point on a flat CPO). 

What about across tags? Two alternatives for a 

semantics of the dynamics of DE: 

•  Metric spaces 

•  Fixed points on a CPO 
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Second Approach (X. Liu): Prefix Order 

Lee 13: 48 

Monotonic and Continuous Functions 

Every continuous function is monotonic, and behaves as follows: 

Extending the input (in time or tags) can only extend the output. 
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Recall Fixed-Point Theorem 

Start with empty signals. 

Iteratively apply function F. 

Converge to the unique solution. 

Lee 13: 50 

Summary: Existence and Uniqueness of the 

Least Fixed Point Solution. 

s  S N 

Under our execution policy, 

actors are usually (Scott) 

continuous. 
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But: Need to Worry About Liveness: 

Deadlocked Systems 

Existence and uniqueness of a solution is not enough. 

The least fixed point of this system consists of empty 

signals.  It is deadlocked! 
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Another Liveness Concern: 

Zeno Systems 

DE systems may have 

an infinite number of 

events in a finite amount 

of time. These “Zeno 

systems” can prevent 

time from advancing. 

In this case, our execution policy 

fails to implement the Knaster-

Tarski constructive procedure 

because some of the signals are 

not total. 
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Liveness 

A signal is total if it is defined for all tags in T. 

A model with no inputs is live if all signals are total. 

A model with inputs is live if all input signals are total 
implies all signals are total. 

Liveness ensures freedom from deadlock and Zeno. 

Whether a model is live is, in general, undecidable. 

We have developed a useful sufficient condition based 
on causality that ensures liveness. 

Lee 13: 54 

Causality Ensures Liveness 

of an Actor 

Causality does not imply continuity and continuity does not imply 

causality. Continuity ensures existence and uniqueness of a least 

fixed point, whereas causality ensures liveness. 
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Strict Causality Ensures Liveness of a Feedback 

Composition  
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Continuity, Liveness, and Causality 

This gives us sufficient, but not necessary condition for 

freedom deadlock and Zeno. 
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Recall Deadlocked System 

The feedback loop has no strictly causal actor. 
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Feedback Loop that is Not Deadlocked 

This feedback loop also has no strictly causal actor, unless… 

We aggregate the two actors as shown into one. 
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Operational Semantics 

1. Topologically sort actors according to paths that do 
not increment tags. 

2. Start with a set of events on signals taken from the 
event queue that all have the same tag. 

3. Iterate to find a fixed-point value for all signals at that 
tag (absent or having a value). 

4. Continue with the next smallest tag in the event 
queue. 
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Extension of Discrete-Event Modeling for  

Wireless Sensor Nets 

VisualSense extends 

the Ptolemy II discrete-
event domain with 

communication between 
actors representing 

sensor nodes being 

mediated by a channel, 
which is another actor. 

The example at the left 

shows a grid of nodes 

that relay messages 
from an initiator (center) 

via a channel that 

models a low (but non-
zero) probability of long 

range links being viable. 
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Distributed Discrete Event (DDE) Models 

(Chandy/Misra style) 

This is the “Chandy and Misra” style of distributed discrete events 

[1979], which compared to Croquet and Time Warp [Jefferson, 

1985], is “conservative.” 
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Example: PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

Distributed execution under DE semantics, with “model time” 

and “real time” bound at sensors and actuators. 

Input time stamps are 

 real time 

Input time stamps are 

 real time 

Output time stamps 

are  real time 

Output time stamps 

are  real time 



32 

Lee 13: 63 

Other Interesting Possibilities for Distributed 

Discrete Events 

Time-Warp (Jefferson) 

Optimistic computation 

Backtracking 

Croquet (Reed) 

Optimistic computation 

Replication of computation 

Voting algorithm (Lamport) 
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Summary 

Superdense time defines a tag to be a time and an 
index. 

Fixed point semantics on a flat CPO (like SR) at 
each tag. 

Discrete systems require execution at a subset of 
tags that is order isomorphic with an initial 
segment of the natural numbers. 

Operational semantics: Choose the next tag in the 
event queue and find a fixed point. 

Denotational semantics: Metric space and CPO 
approaches both available, and yield proofs of 
liveness for different subsets of models. 


