

Metric

A metric on a set A is a function $d: A \times A \rightarrow R$ where for all $a, b, c \in A$ 1. d(a, b) = d(b, a)2. $d(a, b) = 0 \Leftrightarrow a = b$ 3. $d(a, b) + d(b, c) \ge d(a, c)$ Exercise: Show that these properties imply that for all $a, b \in A$, $d(a, b) \ge 0$ Metric space: (A, d)Let 13: 19

The Cantor Metric

Given the tag set $T = R \times N$ use only the time stamps. Let $d: [T \rightarrow V] \times [T \rightarrow V] \rightarrow R$ such that for all $s, s' \in [T \rightarrow V]$, $d(s, s') = 1/2^{\tau}$ where τ is the time stamp of the least tag *t* where $s(t) \neq s'(t)$. That is, either one is defined and the other not at *t* or both are defined but are not equal.

Technicality

In the set $S = [T \rightarrow V]$, we could have a signal *s* that has, for example, an event at all integer time stamps (positive and negative), and we could compare it against a signal *s'* that has no events at all.

$$d(s, s') = \infty$$

This is problematic. We can avoid these problems by excluding from the set S all signals that have infinite distance from the empty signal. All such signals have an earliest event.

Example 2	
Consider a sequence $\{s_1, s_2,\}$ where	
$s_n = \{((i, 0), v) \mid i \in \{1, 2, \dots, n\}\}$	
Is this sequence Cauchy? Yes $d(s_n, s_m) = 1/2^{\min(m, n) + 1} \rightarrow 0$	
Does the sequence converge? To what? Yes. To $\{((i, 0), v) \mid i \in \{1, 2,\}\}$	
	Lee 13: 40

Strict Causality Ensures Liveness of a Feedback Composition

A composition of causal actors without directed cycles is itself a causal actor. With cycles, we need:

 A monotonic actor F is strictly causal if for all sets of input signals S_i, the corresponding set of output signals S_o = F(S_i) either consists only of total signals (defined over all T) or

$$\bigcap_{s \in S_i} \operatorname{dom}(s) \subset \bigcap_{s \in S_o} \operatorname{dom}(s) \,.$$

(\subset denotes strict subset). If *F* is a strictly causal actor with one input and one output, then $F(s_{\perp}) \neq s_{\perp}$. *F* must "come up with something from nothing."

