1. Suppose V is some set and $S = V^{**}$ is the set of finite and infinite sequences of elements of V. This exercise explores some of the properties of the CPO S^n with the pointwise prefix order, for some non-negative integer n.

(a) Show that any two elements $a, b \in S^n$ that have an upper bound have a least upper bound.

(b) Let $U \subset S^n$ be such that no two distinct elements of U are joinable. Prove that for all $s \in S^n$ there is at most one $u \in U$ such that $u \subseteq s$.

(c) Given $s \in S^n$, suppose that $Q(s) \subset S^n$ is a joinable set where for all $q \in Q(s), q \subseteq s$. Then show that there is an s' such that $s = (\forall Q(s)).s'$.

Solution.

(a) Let c be an upper bound of a and b. The $a \subseteq c$ and $b \subseteq c$. Under the pointwise prefix order, this implies that $\pi_i(a) \subseteq \pi_i(c)$ and $\pi_i(b) \subseteq \pi_i(c)$ for each $i \in \{1, \ldots, n\}$. Since $\pi_i(a)$ and $\pi_i(b)$ are ordinary sequences, if they are both prefixes of the same sequence $\pi_i(c)$, then it must be that either $\pi_i(a) \subseteq \pi_i(b)$ or $\pi_i(b) \subseteq \pi_i(a)$. We can construct a $d \in S^n$ where $\pi_i(d)$ is defined to be $\pi_i(b)$ if $\pi_i(a) \subseteq \pi_i(b)$, and is defined to be $\pi_i(a)$ otherwise, for each $i \in \{1, \ldots, n\}$. Then clearly d is an upper bound of a and b, and moreover, $\pi_i(d) \subseteq \pi_i(c)$ for each $i \in \{1, \ldots, n\}$, so d is a least upper bound under the pointwise prefix order.

(b) Note first that the theorem is trivially true for $n = 0$. For $n > 0$, assume to the contrary that you have two distinct $u, u' \in U$ such that $u \subseteq s$ and $u' \subseteq s$ for some $s \in S^n$. Then s is an upper bound for $\{u, u'\}$. From part (a), $\{u, u'\}$ has a least upper bound, and hence u and u' are joinable, contradicting the assumption that no two distinct elements of U are joinable.

(c) It is sufficient to show that $\forall Q(s) \subseteq s$. Note first this is trivially true for $n = 0$, so we henceforth assume $n > 0$. Consider each dimension $i \in \{1, \ldots, n\}$. For each such i, there is a $q \in Q(s)$ such that $\pi_i(\forall Q(s)) = \pi_i(q)$. We know that $\pi_i(q) \subseteq \pi_i(s)$, so we conclude that $\pi_i(\forall Q(s)) \subseteq \pi_i(s)$ for each such i. Hence, $\forall Q(s) \subseteq s$.

\[\Box\]

2. Consider the model shown in figure[1]. Assume that data types are all $V = \{0, 1\}$. Assume f is a dataflow actor that implements an identity function and that Const is an actor that produces an infinite sequence $(0, 0, 0, \cdots)$. Obviously, the overall output of this model should be this same infinite sequence. The box labeled g indicates a composite actor. Find firing rules and firing function g for the composite actor to satisfy conditions 1 and 3 covered in class. Note that the composite actor has one input and two outputs.

Solution. Let $U = \{(0), (1), \bot\}$ be the set of firing rules. Note that subsets $\{(0), \bot\}$ and $\{(1), \bot\}$ are joinable. Notice that the greatest lower bound of each of these sets is \bot, so the
first part of rule 3 is satisfied. Let g be defined so that

$$g((0)) = ((0), \bot) \quad (1)$$
$$g((1)) = ((1), \bot) \quad (2)$$
$$g(\bot) = (\bot, (0)) \quad (3)$$

Note that this firing function yields, as desired, and infinite sequence $(0, 0, 0, \cdots)$. Note now that if $u = (0)$ and $u' = \bot$, then

$$g(u)g(u') = g(u')g(u).$$

The same is true if $u = (1)$ and $u' = \bot$, so the rest of rule 3 is satisfied. □

3. **Extra credit.** In theory, dataflow models with only boolean data types, switch, select, and logic functions are Turing complete. A simple function that should be implementable, but is not easy to implement using such primitives, is one that, given a sequence (v_1, v_2, \cdots) produces a sequence where every block of five inputs is reversed, yielding $(v_5, v_4, v_3, v_2, v_1, v_{10}, v_9, \cdots)$.

I am looking for elegant dataflow models using the dynamic dataflow (DDF) director in Ptolemy II (under ExperimentalDirectors). An extension of this would use integer data types and given three sequences $v = (v_1, v_2, \cdots)$, (n_1, n_2, \cdots), and (m_1, m_2, \cdots) that would behave as follows: for every integer $i > 0$, it would consume n_i tokens from v and push them onto a stack, then pop m_i tokens from the stack (reversing their order) and produce them on the output. I am looking for an elegant dataflow model that performs this function. Note that I do not have a solution to this problem.

Solution. I got several solutions, all with nice ideas. The one I like the best is given by Xiaojun Liu. It can be found at:

http://embedded.eecs.berkeley.edu/concurrency/homework/Dataflow/XiaojunLiu_ExtraCredit.xml

![Figure 1: A model.](image)