1. (20 points)
Consider the circuit given below.
Delays of gates are indicated in the picture. There are no edge (wire) delays.

(a) Ignoring whether paths are true or false, what is the longest path in the circuit? What is the next longest path? Also state the lengths of these paths.

(b) Is there a statics sensitizable (SS) path in this circuit? (If so, state the path.) Explain your answer.

(c) Is there a statically co-sensitizable (SC) path that is not statically sensitizable? (If so, state the path.) Explain your answer.

(d) Which is the longest true path in the above circuit? Why, and what is its length?

2. (40 points)
Using the stub code given as part of this assignment, implement efficient polynomial-time algorithms for the problems listed below. Ignore issues of true/false paths for this question. Test cases are supplied with the stub code, including the simple circuit used in Problem 1.
(a) Find the longest path in a circuit (DAG).
You can implement the algorithm covered in class. If you use a different algorithm, you must state it clearly and prove its correctness and polynomial-time complexity.
A longest path algorithm is implemented in the Perl Graph module, you can use this for comparison.

(b) Find the k longest paths in a circuit, where k is an input to the program.
You can implement the algorithm covered in class. If you use a different algorithm, you must state it clearly (using precise pseudo-code) and prove its correctness (see below*) and polynomial-time complexity.

(c) Give a polynomial-time algorithm to count the total number of paths in a DAG. Prove its correctness and running time. Implement this algorithm as a function in the provided stub code.

(d) Give an algorithm to find all paths in a circuit whose lengths are within ϵ of the longest, where ϵ is an input parameter. Prove its correctness and state conditions under which your algorithm will run in polynomial time. Implement the algorithm as a function in the provided code.

Clearly document your code. It should conform to the input-output interface described by the GSI during the Sep. 13 discussion.

* Aside: By “prove its correctness”, we mean that you should give a mathematical argument for why your algorithm is correct. It need not be an extremely detailed proof, but it should include all the key insights.

For example, here is a “proof” for why the CPM algorithm given in class for finding the longest path in a DAG is correct:

- Topological sort ensures that all predecessors of a vertex v are visited before v is visited.
- We wish to compute the longest distance from source s to sink f, $d(f)$. $d(s) = 0$ and for any vertex v, $d(v)$ is given by

$$d(v) = \max_{\text{all predecessors } u \text{ of } v} [d(u) + w(u, v)]$$

Due to the topological sort, the algorithm computes $d(u)$ for any predecessor u of v before computing $d(v)$.
(to make this argument really rigorous, you can use a proof by induction, but that additional detail need not be provided)

3. (25 points)
Consider the circuit shown below, with circles representing components and rectangles rep-
resenting registers. Delays associated with circuit components are shown in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>22</td>
<td>10</td>
<td>18</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

For the following questions, you may do the calculations by hand, or you may write a program to automate the calculations.

(a) (8 points) Draw the retiming graph abstraction for the circuit shown above and compute the \(W \) and \(D \) matrices.
(b) (5 points) Before retiming, what is the minimum clock period at which this circuit can be run?
(c) (12 points) Is there a retiming that will allow this circuit to run with a clock period of 23? If so, find the retiming. If not, explain why there is no retiming.

4. (5 Bonus points just for answering this question)
Describe the top three interesting technical insights you gained about system design, modeling and analysis from the reading assigned for the first lecture (the IEEE Solid State Circuits special issue).