Timing Analysis

Thanks to Kurt Keutzer for several slides
Why Does Timing Analysis Matter?

• (Clock) Speed is one of the major performance metrics for digital circuits

Timing Analysis = the process of verifying that a chip meets its speed requirement

• Determine fastest permissible clock speed (e.g. 1 GHz) by determining delay of longest path from register to register (e.g. 1ns.)
Must find:
Longest path in the control-flow graph (CFG)
Enzymatic Pathway Synthesis
(Synthetic Biology)

Saurabh Srivastava et al.,
ACT project, UC Berkeley
Timing Analysis for Circuits

• Consider a signal in a clocked design:
 • The value varies between one (high-voltage) and zero (low-voltage)
 • Changes can occur at different times in each cycle
 • Time required for change depends on input patterns
 • May not change at all in some cycles
 • May make multiple changes before settling to a final value
Static Timing Analysis

• “Static” means we are not doing simulation (dynamic)
• Consider the worst case
 • Assume that signal becomes *stable* at latest possible time
 • Assume signal becomes *unstable* at the earliest possible time

Real circuits are made from gates made out of transistors....
Timing Analysis: Basic Model

• Set up/Cycle time: Does data always reach a stable value at all latch inputs in time for the clock to capture it?
 • Look at late mode timing, or longest path

• Hold time: Does data always stay stable at all latch inputs long enough after the clock to get stored?
 • Determine this by looking at early mode timing, or shortest path

\[
T_{\text{clock1}} \quad \text{cycle time}
\]
\[
T_{\max} \leq T
\]

\[
T_{\text{clock1}} \quad \text{setup time}
\]
\[
T_{\max} + T_{\text{setup}} \leq T
\]

\[
T_{\text{clock1}} \quad \text{hold time}
\]
\[
T_{\min} \geq T_{\text{hold}} + T_{\text{skew}}
\]
Timing Analysis: Topological and Functional

• Do we worry about “gate function”?
 • Logical timing analysis: **YES**, We care “false path”
 • Topological timing analysis: **NO**, we only worry about the delay through the paths => overestimate
We will Learn

• False path v.s. True path
 • Static Sensitization
 • Static Co-sensitization

• Algorithms to find the longest path in a DAG
 • Incremental longest path in a DAG
 • Top k longest paths in a DAG

• Sequential synthesis: Retiming*
False Paths (consider Transition Mode)

A path is false if it cannot be responsible for the delay of a circuit.

Graph model implies path of length 6

Length of sensitized path = 5
False Paths

A path is false if it cannot be responsible for the delay of a circuit.

Graph model implies path of length 6

Length of sensitized path = 5
False vs. True Paths

• TRUE path = one that can be responsible for the delay of a circuit

• Need techniques to find whether a path is TRUE or FALSE
The Fixed Delay Model: Constant Delay for Each Gate (or Wire)

Transition delay is 0, for both input transitions. Consider the “faster” circuit
Paradoxical Behavior with the Transition Model?

Transition delay is 0, for both input transitions. Consider the “faster” circuit.
Problems with Fixed Delay + Transition Model

1. Transition model can be tricky to reason about
2. Fixed gate delays are unrealistic, due to manufacturing process variations

- More realistic delay model: Lower and upper bounds
- Perform timing analysis for a whole family of circuits that share the same lower/upper bounds
Fixed Delays \rightarrow Bounded Delays

Want algorithms that report the **critical path delay** of the **slowest circuit** in the circuit family.

Delay of 6 for the above circuit for transition model (longest path that can propagate a transition)
Floating-Mode Delay Model

Input transition \rightarrow Single input vector condition

Pessimistic, but easier to compute
Floating-Mode Delay Model

Assume an input pair \(<v_1, v_2> \) has been applied, but we only look at \(v_2 \) -- i.e. node values are unknown until set by \(v_2 \) (pessimistic because we assume any \(v_1 \) can be adversarially selected, to reason about long paths).

Assume the 1 at the input of the AND arrives before the 0 (even if in reality it arrives later and the gate output stays at 0 throughout, and no path is sensitized).
Roadmap for rest of lecture

• Consider conditions under which paths are TRUE or FALSE under the *floating-mode delay model with fixed delays*

• + under floating-mode model, fixed and bounded delays yield same worst-case circuit delay (for same upper bounds)

• + worst-case delay under floating-mode model is upper bound on that under the transition model
Controlling and Non-Controlling Values

• A **controlling value** at a gate input is the value that determines the output value of that gate irrespective of the other input value.

• (the output value is called a **controlled** value)

• A **controlling** value for an AND gate is 0 and for an OR gate is 1. (The controlled values are 0 and 1 resp.)

• A **non-controlling** value for an AND gate is 1 and for an OR gate is 0.

• What about NAND and NOR gates?
Static Sensitization

Definition: A path is statically sensitized by a vector V, if along each gate on the path, *if* the gate output is a controlled value, the input corresponding to the path is the *only* input with a controlling value.

Input vector 100X statically sensitizes red path.
Static Sensitization

Static sensitization is **sufficient** for a path to be responsible for the delay of a circuit.

WHY?

Input vector 100X statically sensitizes red path
Definition: A path is statically sensitized by a vector V, if along each gate on the path, if the gate output is a controlling value, the input corresponding to the path is the only input with a controlling value.
Is this path statically sensitizable?

No, red path is NOT statically sensitizable (work this out)
More on Static Sensitization

Are paths a,d,f,g and b,d,f,g statically sensitizable? Are they true paths?
Static Sensitization is too strong

A true path (one that is responsible for delay of a circuit) need not be statically sensitizable

Paths a,d,f,g and b,d,f,g are NOT statically sensitizable. But they are TRUE paths.
Static Co-sensitization

Definition: A path is statically co-sensitized by a vector V, if the input corresponding to the path presents a *controlling value* at each gate along the path whose output is a controlled value. Not necessarily the ONLY controlling value.
Static Co-sensitization

Definition: A path is statically co-sensitized by a vector V, if the input corresponding to the path presents a controlling value at each gate along the path whose output is a controlling value.

Not necessarily the ONLY controlling value

Paths a,d,f,g and b,d,f,g are statically co-sensitizable
Static Co-sensitization and Delay

Static co-sensitization is **necessary** for a path to be responsible for the delay of a circuit. (WHY?)

Is it sufficient?
Static Co-sensitization and Delay

Static co-sensitization is **necessary** for a path to be responsible for the delay of a circuit.

But NOT sufficient

Path of length 6 is statically co-sensitized
Delay of circuit is 5 (as observed earlier)
Summary

Static sensitization (SS) sufficient for true path, but not necessary
Static co-sensitization (SC) necessary for true path, but not sufficient
Determining whether a path is SS/SC can be formulated as a SAT problem
Modeling Timing in a Combinational Circuit

• Arrival time in green

Interconnect delay in red

Gate delay in blue

What’s the right mathematical object to use to represent this physical object?
Use a labeled directed graph

$G = \langle V, E \rangle$

Vertices represent gates, primary inputs and primary outputs

Edges represent wires

Labels represent delays

Now what do we do with this?
Modeling - 2

- Find longest path in a directed graph $G = <V,E>$

- What sort of directed graph do we have?

- Is this in the standard form for a longest/shortest path problem?
Split Nodes into Edges

The diagram illustrates the process of splitting nodes into edges in a graph. The nodes are labeled with values, and the edges are labeled with probabilities. The splitting process involves breaking down complex nodes into simpler ones, as shown in the examples provided.
Problem: Find the longest (critical) path from source s to sink f.
Naïve Approach: Enumerate Paths

How many paths in this example?
In the worst case?

Problem:
Find the longest path from source s to sink f.
Algorithm 1: Longest path in a DAG

Critical Path Method [Kirkpatrick 1966, IBM JRD]

Let \(w(u,v) \) denote weight of edge from \(u \) to \(v \)

Steps:
1. Topologically sort vertices
 order: \(v_1, v_2, \ldots, v_n \) \(v_1 = s, \ v_n = ? \)
2. For each vertex \(v \), compute
 \(d(v) = \) length of longest path from source \(s \) to \(v \)
 \(d(v_1) = 0 \)
 For \(i = 2..n \)
 \(d(v_i) = \max \text{ all incoming edges } (u, v_i) \) \(d(u) + w(u,v_i) \)
Algorithm 1: Longest path in a DAG

Critical Path Method [Kirkpatrick 1966, IBM JRD]

Let $w(u,v)$ denote weight of edge from u to v

Steps:

1. Topologically sort vertices
 - order: v_1, v_2, \ldots, v_n \hspace{1cm} $v_1 = s$, $v_n = f$

2. For each vertex v, compute
 - $d(v)$ = length of longest path from source s to v
 - $d(v_1) = 0$
 - For $i = 2..n$
 - $d(v_i) = \max_{\text{all incoming edges } (u, v_i)} d(u) + w(u, v_i)$

Run the CPM on our example

Time Complexity?

$O(m+n)$
Algorithm 2: Incremental longest path in a DAG

Suppose only a few weights/nodes/edges change. How do we recompute the longest path efficiently?

Exercise: READ HANDOUT
Algorithm 3: Top k longest paths in a DAG

Often, we don’t want just the longest path

Want to find the top k longest paths

How to do this efficiently? (i.e., polynomial in n, m, k)

Key insight/idea:
• The 2nd longest path shares a prefix with the longest path.
• From each node along longest path, keep track of the “next longest” route to sink f.
Algorithm 3: Top k longest paths in a DAG

Pre-compute phase:
1. $\delta(v) = \text{length of longest path from vertex } v \text{ to sink } f.$
 How to compute? Complexity?
2. At each vertex v: order successor vertices u_1, u_2, \ldots, u_k by decreasing $\text{cost}(u_i) = w(v, u_i) + \delta(u_i)$
3. Compute ‘branch’ slacks at v: $bs_i(v) = \text{cost}(u_i) - \text{cost}(u_{i+1})$
 $bs_k(v) = \text{cost}(u_k)$
Algorithm 3: Top k longest paths in a DAG

Pre-compute phase:
1. $\delta(v) = \text{length of longest path from vertex } v \text{ to sink } f$.
 How to compute? Complexity?
2. At each vertex v: order successor vertices u_1, u_2, \ldots, u_k by decreasing cost(u_i) = $w(v, u_i) + \delta(u_i)$
3. Compute ‘branch’ slacks at v: $bs_i(v) = \text{cost}(u_i) - \text{cost}(u_{i+1})$
 $bs_k(v) = \text{cost}(u_k)$

Main phase:
1. Let longest path $p = s, v_1, v_2, \ldots, v_r, f$
2. For 2nd (next) longest, order nodes according to branch slacks: $bs_1(s), bs_1(v_1), \ldots, bs_1(v_r)$, and pick the smallest. The corresponding successor indicates the next longest path.
3. For 3rd longest, add nodes along 2nd longest to the ordered node list, maintaining order. Go back to step 2 (check ‘next’ branch slack). (see handout for details)
Example: Top k longest paths in a DAG
Example: Top k longest paths in a DAG

![DAG diagram](image-url)
Bibliography

• E. A. Lee and S. A. Seshia, Chapter 15 of “Introduction to Embedded Systems”, http://leeseshia.org