Boolean Function Representations

- Syntactic: e.g.: CNF, DNF (SOP), Circuit
- Semantic: e.g.: Truth table, Binary Decision Tree, BDD
Reduced Ordered BDDs

- Introduced by Randal E. Bryant in mid-80s
 - IEEE Transactions on Computers 1986 paper is one of the most highly cited papers in EECS
- Useful data structure to represent Boolean functions
 - Applications in logic synthesis, verification, program analysis, AI planning, ...
- Commonly known simply as BDDs
 - Lee [1959] and Akers [1978] also presented BDDs, but not ROBDDs
- Many variants of BDDs have also proved useful
- Links to coding theory (trellises), etc.

RoadMap for this Lecture

- Cofactor of a Boolean function
- From truth table to BDD
- Properties of BDDs
- Operating on BDDs
- Variants
Cofactors

- A Boolean function F of n variables x_1, x_2, \ldots, x_n
 \[F : \{0,1\}^n \rightarrow \{0,1\} \]
- Suppose we define new Boolean functions of $n-1$ variables as follows:
 \[F_{x_1}(x_2, \ldots, x_n) = F(1, x_2, x_3, \ldots, x_n) \]
 \[F_{x_1'}(x_2, \ldots, x_n) = F(0, x_2, x_3, \ldots, x_n) \]
- F_{x_i} and $F_{x_i'}$ are called cofactors of F.
 F_{x_i} is the positive cofactor, and $F_{x_i'}$ is the negative cofactor.

Shannon Expansion

- $F(x_1, \ldots, x_n) = x_i \cdot F_{x_i} + x_i' \cdot F_{x_i'}$
- Proof?
 \[
 \begin{align*}
 \text{Case-splitting} \\
 x_i = 1 : \quad \text{LHS} &= F(x_1, \ldots, 1, \ldots, x_n) \\
 \text{RHS} &= F_{x_i} \\
 x_i = 0 : \quad \text{...}
 \end{align*}
 \]
Shannon expansion with many variables

- \(F(x, y, z, w) = \)
 \(xy F_{xy} + x'y F_{x'y} + xy' F_{xy'} + x'y' F_{x'y'} \)

Properties of Cofactors

- Suppose you construct a new function \(H \) from two existing functions \(F \) and \(G \): e.g.,
 - \(H = F' \)
 - \(H = F.G \)
 - \(H = F + G \)
 - Etc.

- What is the relation between cofactors of \(H \) and those of \(F \) and \(G \)?
Very Useful Property

- Cofactor of NOT is NOT of cofactors
- Cofactor of AND is AND of cofactors
- ...
- Works for any binary operator

\(\text{\textit{k-ary}} \)

BDDs from Truth Tables

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram (ROBDD, simply called BDD)
Example: Odd Parity Function

Edge labels along a root-leaf path form an assignment to a, b, c, d

Binary Decision Tree

Nodes & Edges

- How is F related to χ, F_1, F_2?

 $F = \chi F_2 + \chi' F_1$
Ordering: variables appear in same order from root to leaf along any path

Each node is some cofactor of the function

Reduction

- Identify Redundancies

- 3 Rules:
 1. Merge equivalent leaves
 2. Merge isomorphic nodes
 3. Eliminate redundant tests
Merge Equivalent Leaves

\[\text{"a" is either 0 or 1} \]

Merge Isomorphic Nodes

\[\text{Redirect} \]

\[\text{stays same down here} \]
Eliminate Redundant Tests

Example
Example

Final ROBDD for Odd Parity Function

\[
\begin{align*}
\text{2n-1 non-terminal nodes}
\end{align*}
\]
Example of Rule 3

What can BDDs be used for?

- Uniquely representing a Boolean function
 - And a Boolean function can represent sets
- Symbolic simulation of a combinational (or sequential) circuit
- Equivalence checking and verification
 - Satisfiability (SAT) solving
- Finding / counting all solutions to a SAT (combinatorial) problem
- Operations on “quantified” Boolean formulas
(RO)BDDs are canonical

• Theorem (R. Bryant): If G, G' are ROBDD's of a Boolean function f with k inputs, using same variable ordering, then G and G' are identical.

Set $S = \{e_1, e_2, e_3, \ldots, e_N\}$

$e_i = \langle 0001011 \ldots \rangle = \langle x_1 x_2 \ldots x_k \rangle$

$k = \lceil \log N \rceil$

$S = \text{ON-SET}(f)$

$f(x_1, \ldots, x_k) = \begin{cases} 1 & \text{if } \langle x_1, x_2, \ldots, x_k \rangle \in S \\ 0 & \text{o.w.} \end{cases}$

characteristic Boolean f^* of S
Sensitivity to Ordering

• Given a function with \(n \) inputs, one input ordering may require exponential # vertices in ROBDD, while other may be linear in size.

• Example: \(f = x_1 x_2 + x_3 x_4 + x_5 x_6 \)
 \(x_1 < x_2 < x_3 < x_4 < x_5 < x_6 \)

Constructing BDDs in Practice

• Strategy: Define how to perform basic Boolean operations
• Build a few core operators and define everything else in terms of those

Advantage:
• Less programming work
• Easier to add new operators later by writing “wrappers”
Core Operators

- Just two of them!
 1. Restrict(Function F, variable v, constant k)
 • Shannon cofactor of F w.r.t. v=k
 2. ITE(Function I, Function T, Function E)
 • “if-then-else” operator

ITE

- Just like:
 - “if then else” in a programming language
 - A mux in hardware
- ITE(I(x), T(x), E(x))
 - If I(x) then T(x) else E(x)
The ITE Function

- $\text{ITE}(I(x), T(x), E(x))$
-
 $= I(x) \cdot T(x) + I'(x) \cdot E(x)$

What good is the ITE?

- How do we express
 - NOT?
 - OR?
 - AND?
How do we implement ITE?

• Divide and conquer!

• Use Shannon cofactoring…
• Recall: Operator of cofactors is Cofactor of operators…

ITE Algorithm

ITE (bdd I, bdd T, bdd E) {
 if (terminal case) { return computed result; }
 else { // general case
 Let x be the topmost variable of I, T, E;
 PosFactor = ITE(I_x, T_x, E_x);
 NegFactor = ITE(I_x', T_x', E_x');
 R = new node labeled by x;
 R.low = NegFactor; // R.low is 0-child of R
 R.high = PosFactor; // R.high is 1-child of R
 Reduce(R);
 return R;
 }
}
Terminal Cases (complete these)

- $\text{ITE}(1, T, E) =$
- $\text{ITE}(0, T, E) =$
- $\text{ITE}(I, T, T) =$
- $\text{ITE}(I, 1, 0) =$
- \ldots

General Case

- Still need to do cofactor (Restrict)

- How hard is that?
 - Which variable are we cofactoring out? (2 cases)
Practical Issues

• Previous calls to ITE are cached
 – “memoization”

• Every BDD node created goes into a “unique table”
 – Before creating a new node R, look up this table
 – Avoids need for reduction

Sharing: Multi-Rooted DAG

• BDD for 4-bit adder: 5 output bits → 5 Boolean functions
• Each output bit (of the sum & carry) is a distinct rooted BDD
• But they share sub-DAGs
More on BDDs

• Circuit width and bounds on BDD size (reading exercise – slide summary posted)
• Dynamically changing variable ordering
• Some BDD variants

Sifting

• Dynamic variable re-ordering, proposed by R. Rudell
• Based on a primitive “swap” operation that interchanges x_i and x_{i+1} in the variable order
 – Key point: the swap is a local operation involving only levels i and $i+1$
• Overall idea: pick a variable x_i and move it up and down the order using swaps until the process no longer improves the size
 – A “hill climbing” strategy
Some BDD Variants

• Free BDDs (FBDDs)
 – Relax the restriction that variables have to appear in the same order along all paths
 – How can this help? → smaller BDD
 – Is it canonical? → NO

Some BDD Variants

• MTBDD (Multi-Terminal BDD)
 – Terminal (leaf) values are not just 0 or 1, but some finite set of numerical values
 – Represents function of Boolean variables with non-Boolean value (integer, rational)
 • E.g., input-dependent delay in a circuit, transition probabilities in a Markov chain
 – Similar reduction / construction rules to BDDs
Some BDD packages

- CUDD – from Colorado University, Fabio Somenzi’s group
 - We will use the PerlDD front-end to CUDD in HW3
- BuDDy – from IT Univ. of Copenhagen

Reading

- Bryant’s 1992 survey paper is required reading (posted on the website)
- Optional reading: you can check out Don Knuth’s chapter on BDDs (available off his website)