
Fundamental Algorithms 
for System Modeling, 
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury, 
Sanjit A. Seshia
UC Berkeley
EECS 144/244
Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury,          
S. A. Seshia, All rights reserved

Lec 3: Boolean Algebra and Logic Optimization - 1

Thanks to S. Devadas, K. Keutzer, S. Malik, R. Rutenbar for several slides
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Reduce Sequential Ckt Optimization 
to Combinational Optimization

B
Flip-flops

Combinational
Logic

inputs outputs

Optimize the size/delay/etc. of the combinational circuit

(viewed as a Boolean network)
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Outline of Topics

Basics of Boolean algebra

Two-level logic optimization

Multi-level logic optimization

Boolean function representation: BDDs
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Definitions – 1: What is a Boolean function?
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Definitions – 1: What is a Boolean function?

Let B = {0, 1} and Y = {0, 1}

Input variables:  X1, X2 … Xn

Output variables:  Y1, Y2 … Ym

A logic function ff (or ‘Boolean’ function, 
switching function) in n inputs and         
m outputs is a map
ff:  Bn Ym
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Definition used in Logic Optimization

Let B = {0, 1} and Y = {0, 1, 2}

Input variables:  X1, X2 … Xn

Output variables:  Y1, Y2 … Ym

A logic function ff (or ‘Boolean’
function, switching function) in n
inputs and m outputs is a map
ff:  Bn Ym

don’t care – aka “X”
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The Boolean n-Cube, Bn
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Definitions – 2: ON/OFF/DC sets

If a logic function ff maps some input b ∈ Bn to a 2
on some output i then function is incompletely 
specified, else completely specified

OFF-SETi ⊆ Bn, the set of all input values
for which ffi(x) = 0

DC-SETi ⊆ Bn, the set of all input values
for which ffi(x) = 2

ON-SETi ⊆ Bn, the set of all input
values for which ffi(x) = 1
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Literals: What is a literal?
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Literals

Green – ON-set
Red – OFF-set
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Boolean Formulas -- Syntax
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“Semantic” Description of Boolean Function

EXAMPLE: Truth table form of an incompletely 
specified function

ff:  B3 Y2

Y1:  ON-SET1   =   {000, 001, 100, 101, 110}
OFF-SET1 =   {010, 011}
DC-SET1 =   {111}

X1 X2 X3 Y1 Y2

0   0    0       1    1
0   0    1       1    0
0   1    0       0    1
0   1    1       0    1
1   0    0       1    0
1   0    1       1    2
1   1    0       1    1
1   1    1       2    1
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Operations on Logic Functions

(1)Complement:   f            f
interchange ON and OFF-SETS

(2)Product (or intersection or logical AND)
h = f · g (what happens to ON/OFF sets?) 

(3)Sum (or union or logical OR):
h = f + g  (ON/OFF sets?)
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CNF and DNF

CNF: Conjunctive Normal Form  (product of sums: POS)

DNF: Disjunctive Normal Form (sum of products: SOP)

CNF  DNF: what is the worst-case blow up?

How about DNF  CNF?
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Cube

A cube is a conjunction (AND) of literals

Examples: (set of variables = {a,b,c,d})

ab

abd

abcd

A cube is a logic function (also view as set)
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2-level Minimization: Minimizing SOP (DNF)

F1 =  A B + A B D + A B C D
+ A B C D + A B + A B D

F1 = B + D + A C + A C

minimum representation

0 0 - - 1
0 1 - 1 1
0 1 0 0   1
1 1 1 0   1
1 0 - - 1
1 1 - 1    1

- 0 - - 1
- - - 1 1
0 - 0 - 1
1 - 1 - 1

Inputs Outputs

(number of cubes, literals)
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Implicants

An implicant of f is a cube p that does not 
intersect the OFF-SET of f
p  ⊆ fON ∪ fDC
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Prime Implicants

An implicant of f is a cube p that does not 
intersect the OFF-SET of f
p  ⊆ fON ∪ fDC

A prime implicant of f is an implicant p such 
that
(1)  No other implicant q contains it             
(i.e. p ⊆ q)
(2)  p ⊆ fDC

A minterm is a fully specified implicant
e.g.,  011, 111 (not 01-)
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Examples of Implicants/Primes

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

000, 00- are implicants, but not primes ( -0- )

1-1    

0-0
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Prime and Irredundant Covers

A cover is a set of cubes  C such that
C   fON and   C  ⊆ fON ∪ fDC

All of the ON-set is covered by C

C is contained in the ON-set and Don’t Care Set

A prime cover is a cover whose cubes are all prime 
implicants

An irredundant cover is a cover C such that removing 
any cube from C results in a set of cubes that no 
longer covers the function (ON-set)
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover. 
1 1 -

EECS 144/244, UC Berkeley: 24

Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?



EECS 144/244, UC Berkeley: 25

Minimum covers

Defn: A minimum cover is a cover of minimum 
cardinality

Theorem: There exists a minimum cover that is 
a prime and irredundant cover.

Why?
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Minimum covers

Defn: A minimum cover is a cover of minimum 
cardinality

Theorem: There exists a minimum cover that is 
a prime and irredundant cover.

Given any cover C
(a)  if redundant, not minimum
(b)  if any cube q is not prime, replace q with 
prime p ⊇ q and continue until all cubes 
prime; it is a minimum prime cover
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?

What is a minimum prime and 
irredundant cover for the function?
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover.   Is it prime?

Is it irredundant?
Is it minimum?
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover.   Is it prime?

Is it irredundant?
Is it minimum?

What about
- 0 -
1 - -

EECS 144/244, UC Berkeley: 30

The Quine-McCluskey Method: Exact Minimization

Step 1: List all minterms in ON-SET and DC-SET

Step 2: Use a prescribed sequence of steps to 
find all the prime implicants of the function

Step 3: Construct the prime implicant table

Step 4: Find a minimum set of prime implicants
that cover all the minterms
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Espresso Algorithm: Heuristic Minimization

ESPRESSO (F, DC) {
F is ON-SET, DC is Don’t Care Set
1. R = U  - (F ∪ DC)            U is universe cube
2. n = |F|
3. F = Reduce (F, DC);  // reduce implicants in F 

to non-prime cubes
4. F = Expand (F, R); // expand cubes to prime 

implicants
5. F = Irredundant (F, DC); // extract minimal 

cover of prime implicants
6. If |F| < n  goto 2, else, post-process & exit
}
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Multi-level Logic Optimization

2-level optimization is a ‘solved’ problem:

Espresso is considered the last word on the topic

But most circuits are not two-level!

Need techniques to optimize size of multi-level circuits

 Size measured in terms of number of literals, depth of 
the circuit, etc.


