
Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanjit A. Seshia
UC Berkeley
EECS 144/244
Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury,
S. A. Seshia, All rights reserved

Lec 3: Boolean Algebra and Logic Optimization - 1

Thanks to S. Devadas, K. Keutzer, S. Malik, R. Rutenbar for several slides

EECS 144/244, UC Berkeley: 2

RTL Synthesis Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

HDL
Simulation/
Verification

K. Keutzer

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

FSM,
Verilog,
VHDL

Boolean circuit/network

Boolean circuit/network

Graph / Rectangles

EECS 144/244, UC Berkeley: 3

Reduce Sequential Ckt Optimization
to Combinational Optimization

B
Flip-flops

Combinational
Logic

inputs outputs

Optimize the size/delay/etc. of the combinational circuit

(viewed as a Boolean network)

EECS 144/244, UC Berkeley: 4

Logic Optimization

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Real
Library

Generic
Library

EECS 144/244, UC Berkeley: 5

Outline of Topics

Basics of Boolean algebra

Two-level logic optimization

Multi-level logic optimization

Boolean function representation: BDDs

EECS 144/244, UC Berkeley: 6

Definitions – 1: What is a Boolean function?

EECS 144/244, UC Berkeley: 7

Definitions – 1: What is a Boolean function?

Let B = {0, 1} and Y = {0, 1}

Input variables: X1, X2 … Xn

Output variables: Y1, Y2 … Ym

A logic function ff (or ‘Boolean’ function,
switching function) in n inputs and
m outputs is a map
ff: Bn Ym

EECS 144/244, UC Berkeley: 8

Definition used in Logic Optimization

Let B = {0, 1} and Y = {0, 1, 2}

Input variables: X1, X2 … Xn

Output variables: Y1, Y2 … Ym

A logic function ff (or ‘Boolean’
function, switching function) in n
inputs and m outputs is a map
ff: Bn Ym

don’t care – aka “X”

EECS 144/244, UC Berkeley: 9

The Boolean n-Cube, Bn

EECS 144/244, UC Berkeley: 10

Definitions – 2: ON/OFF/DC sets

If a logic function ff maps some input b ∈ Bn to a 2
on some output i then function is incompletely
specified, else completely specified

OFF-SETi ⊆ Bn, the set of all input values
for which ffi(x) = 0

DC-SETi ⊆ Bn, the set of all input values
for which ffi(x) = 2

ON-SETi ⊆ Bn, the set of all input
values for which ffi(x) = 1

EECS 144/244, UC Berkeley: 11

Literals: What is a literal?

EECS 144/244, UC Berkeley: 12

Literals

Green – ON-set
Red – OFF-set

EECS 144/244, UC Berkeley: 13

Boolean Formulas -- Syntax

EECS 144/244, UC Berkeley: 14

“Semantic” Description of Boolean Function

EXAMPLE: Truth table form of an incompletely
specified function

ff: B3 Y2

Y1: ON-SET1 = {000, 001, 100, 101, 110}
OFF-SET1 = {010, 011}
DC-SET1 = {111}

X1 X2 X3 Y1 Y2

0 0 0 1 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 2
1 1 0 1 1
1 1 1 2 1

EECS 144/244, UC Berkeley: 15

Operations on Logic Functions

(1)Complement: f f
interchange ON and OFF-SETS

(2)Product (or intersection or logical AND)
h = f · g (what happens to ON/OFF sets?)

(3)Sum (or union or logical OR):
h = f + g (ON/OFF sets?)

EECS 144/244, UC Berkeley: 16

CNF and DNF

CNF: Conjunctive Normal Form (product of sums: POS)

DNF: Disjunctive Normal Form (sum of products: SOP)

CNF  DNF: what is the worst-case blow up?

How about DNF  CNF?

EECS 144/244, UC Berkeley: 17

Cube

A cube is a conjunction (AND) of literals

Examples: (set of variables = {a,b,c,d})

ab

abd

abcd

A cube is a logic function (also view as set)

EECS 144/244, UC Berkeley: 18

2-level Minimization: Minimizing SOP (DNF)

F1 = A B + A B D + A B C D
+ A B C D + A B + A B D

F1 = B + D + A C + A C

minimum representation

0 0 - - 1
0 1 - 1 1
0 1 0 0 1
1 1 1 0 1
1 0 - - 1
1 1 - 1 1

- 0 - - 1
- - - 1 1
0 - 0 - 1
1 - 1 - 1

Inputs Outputs

(number of cubes, literals)

EECS 144/244, UC Berkeley: 19

Implicants

An implicant of f is a cube p that does not
intersect the OFF-SET of f
p ⊆ fON ∪ fDC

EECS 144/244, UC Berkeley: 20

Prime Implicants

An implicant of f is a cube p that does not
intersect the OFF-SET of f
p ⊆ fON ∪ fDC

A prime implicant of f is an implicant p such
that
(1) No other implicant q contains it
(i.e. p ⊆ q)
(2) p ⊆ fDC

A minterm is a fully specified implicant
e.g., 011, 111 (not 01-)

EECS 144/244, UC Berkeley: 21

Examples of Implicants/Primes

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

000, 00- are implicants, but not primes (-0-)

1-1

0-0

EECS 144/244, UC Berkeley: 22

Prime and Irredundant Covers

A cover is a set of cubes C such that
C  fON and C ⊆ fON ∪ fDC

All of the ON-set is covered by C

C is contained in the ON-set and Don’t Care Set

A prime cover is a cover whose cubes are all prime
implicants

An irredundant cover is a cover C such that removing
any cube from C results in a set of cubes that no
longer covers the function (ON-set)

EECS 144/244, UC Berkeley: 23

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover.
1 1 -

EECS 144/244, UC Berkeley: 24

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

EECS 144/244, UC Berkeley: 25

Minimum covers

Defn: A minimum cover is a cover of minimum
cardinality

Theorem: There exists a minimum cover that is
a prime and irredundant cover.

Why?

EECS 144/244, UC Berkeley: 26

Minimum covers

Defn: A minimum cover is a cover of minimum
cardinality

Theorem: There exists a minimum cover that is
a prime and irredundant cover.

Given any cover C
(a) if redundant, not minimum
(b) if any cube q is not prime, replace q with
prime p ⊇ q and continue until all cubes
prime; it is a minimum prime cover

EECS 144/244, UC Berkeley: 27

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

What is a minimum prime and
irredundant cover for the function?

EECS 144/244, UC Berkeley: 28

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover. Is it prime?

Is it irredundant?
Is it minimum?

EECS 144/244, UC Berkeley: 29

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover. Is it prime?

Is it irredundant?
Is it minimum?

What about
- 0 -
1 - -

EECS 144/244, UC Berkeley: 30

The Quine-McCluskey Method: Exact Minimization

Step 1: List all minterms in ON-SET and DC-SET

Step 2: Use a prescribed sequence of steps to
find all the prime implicants of the function

Step 3: Construct the prime implicant table

Step 4: Find a minimum set of prime implicants
that cover all the minterms

EECS 144/244, UC Berkeley: 31

Espresso Algorithm: Heuristic Minimization

ESPRESSO (F, DC) {
F is ON-SET, DC is Don’t Care Set
1. R = U - (F ∪ DC) U is universe cube
2. n = |F|
3. F = Reduce (F, DC); // reduce implicants in F

to non-prime cubes
4. F = Expand (F, R); // expand cubes to prime

implicants
5. F = Irredundant (F, DC); // extract minimal

cover of prime implicants
6. If |F| < n goto 2, else, post-process & exit
}

EECS 144/244, UC Berkeley: 32

Multi-level Logic Optimization

2-level optimization is a ‘solved’ problem:

Espresso is considered the last word on the topic

But most circuits are not two-level!

Need techniques to optimize size of multi-level circuits

 Size measured in terms of number of literals, depth of
the circuit, etc.

