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Model Checking
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Outline

Computation Tree Logic and why it is useful for 
model checking

Model Checking with BDDs

Bounded Model Checking with SAT
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Labelled State Transition Graph
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Temporal Logic

Linear Temporal Logic (LTL)

Properties expressed over a single time-line

Computation Tree Logic (CTL, CTL*)

Properties expressed over a tree of all possible 
executions

CTL* gives more expressiveness than LTL

CTL is a subset of CTL* that is easier to verify 
than arbitrary CTL*
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Computation Tree Logic (CTL*)

Introduce two new operators called “Path quantifiers”

A p : Property p holds along all computation paths

E p : Property p holds along at least one path

Example: 

“From any state, it is possible to get to the reset state ”

CTL: Every F, G, X, U must be preceded by either an A or 
a E
– E.g., Can’t write A (FG p)

LTL is just like having an “A” on the outside

A G ( E F reset )
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Why CTL?

Verifying LTL properties turns out to be 
computationally harder than CTL

Exponential in the size of the LTL expression

– linear for CTL

For both, verification is linear in the size of the 
state graph
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CTL as a way to approximate LTL

– AG EF p   is weaker than  G F p

p

Good for finding bugs...

Good for verifying 
correctness...

p p

– AF AG p   is stronger than  F G p
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CTL Model Checking

So, we’ve decided to do CTL model checking.

What are the algorithms?
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Recap: Reachability Analysis

Given: 

1. A Boolean formula corresponding to initial states R0

2. 

To find: All states reachable from R0 in 1, 2, 3, …
transitions (clock ticks)

Strategy: Denote set of states reachable from R0 in k (or 
less) clock ticks as Rk

Rk+1(s+) =    Rk(s+)   +  ∃ s  {  Rk(s) .  (s, s+) }
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Backwards Reachability Analysis

Given: 

1. A Boolean formula corresponding to error states E0

2. 

To find: All states that can reach E0 in 1, 2, 3, …
transitions (clock ticks)

Strategy: Denote set of states reachable from E0 in k (or 
less) clock ticks as Ek

Ek+1(s) =    Ek(s)   +  ∃ s+ {  Ek(s+) .  (s, s+) }
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Verification of G p

Corresponding CTL formula is AGp

– Remember that p is a function of s

Forward Reachability Analysis:

– Check if any Rk(s) . p’(s)  is true for any s

Backward Reachability Analysis:

– Set E0 = p’

– Check if Ek(s) . R0(s) is true for any s  
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Model Checking Arbitrary CTL

Need only consider the following types of CTL 
properties:

E X p

E G p

E ( p U q )

Why?  all others are expressible using above

A G p = ?

A G ( p  ( A F q ) ) = ?
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Model Checking CTL Properties

We define a general recursive procedure called 
“Check” to do this

– Performs fixpoint computation

Definition of Check:

– Input: A CTL property  (and implicitly, )

– Output: A Boolean formula B representing the set of 
states satisfying 

If  B(s) . R0(s) != 0, then  is true (in the initial state)
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The “Check” procedure

Cases:

If  is a Boolean formula, then Check() = 

Else:

–  = EX p, then Check() = CheckEX(Check(p))

–  = E(p U q), then

Check() = CheckEU(Check(p), Check(q))

–  = E G p, then Check() = CheckEG(Check(p))

Note: What are the arguments to CheckEX, CheckEU, 
CheckEG? CTL properties?
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CheckEX

CheckEX(p) returns a set of states such that p 
is true in their next states

How to write this? 
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CheckEU

CheckEU(p, q) returns a set of states, each of which 
is such that

Either q is true in that state

Or p is true in that state and you can get from it to a 
state in which p U q is true

Seems like circular reasoning!

But it works out: using an recursive computation like 
in reachability analysis

– We compute a series of approximations leading to the 
right answer
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CheckEU

CheckEU(p, q) returns a set of states, each of which 
is such that

Either q is true in that state

Or p is true in that state and you can get from it to a 
state in which p U q is true

Let Z0 be our initial approximation to the answer to 
CheckEU(p, q)

Zk(s) = { q(s)  + [ p(s) .  ∃ x,s+ { (s, x, s+) . Zk-1(s+) }  ] }

What’s a good choice for Z0? Why will this terminate?
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Summary

EGp computed similarly

Definition of Check:

– Input: A CTL property  (and implicitly, )

– Output: A Boolean formula B representing the set of 
states satisfying 

All Boolean formulas represented “symbolically” as 
BDDs

– “Symbolic Model Checking”
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Bounded Model Checking

Given

– A finite state machine M (“transition system”)

– A property p

Determine

– Does M allow a counterexample to p of k 
transitions or fewer?

This problem can be translated to a SAT problem

[Biere, Clarke, Cimatti, Zhu99]
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Models

Transition system described by a set of 
constraints

a
b cp

g

Each circuit element is a constraint
note:  a = at and a' = at+1

g = a  b

p = g  c

c' = p

Model:

C = {
g = a  b,
p = g  c,
c' = p

}
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Properties

We restrict our attention to safety properties.

Characterized by:

– Initial condition R0

– Final condition E   (representing “error" states)

A counterexample is a path from a state 
satisfying R0 to state satisfying E, where 
every transition satisfies C.
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Unfolding

Unfold the model k times:

Uk = C0  C1  ...  Ck-1

a
b

cp

g a
b

cp

g a
b

cp

g
...R0 Ek

• Use SAT solver to check satisfiability of
R0  Uk  Ek

• A satisfying assignment is a counterexample 
of k steps
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BMC applications

Debugging:

– Can find counterexamples using a SAT solver

Proving properties:

– Only possible if a bound on the length of the shortest 
counterexample is known.

• I.e., we need a diameter bound. The diameter is 
the maximum length of the shortest path between 
any two states.

– Worst case is exponential. Obtaining better bounds 
is sometimes possible, but generally intractable.
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New Developments in SAT-based MC

SAT-based bounded model checking has scaled to 
thousands of state bits and is very useful for 
debugging

– Can verify LTL properties too

Unbounded model checking is now also possible with 
SAT

– interpolation-based model checking

But on some problems, BDD-based model checking is 
still better


