
Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanjit A. Seshia
UC Berkeley
EECS 144/244
Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury, S. A.
Seshia, All rights reserved

Model Checking

2

Model Checking

G(p X q)
Yes, property satisfied

no
pq p

q

Model Checker

3

Outline

Computation Tree Logic and why it is useful for
model checking

Model Checking with BDDs

Bounded Model Checking with SAT

4

Labelled State Transition Graph

p q

q r r

“Kripke structure”

p q

p q

q r r

rr

. . .

Infinite Computation Tree

5

Temporal Logic

Linear Temporal Logic (LTL)

Properties expressed over a single time-line

Computation Tree Logic (CTL, CTL*)

Properties expressed over a tree of all possible
executions

CTL* gives more expressiveness than LTL

CTL is a subset of CTL* that is easier to verify
than arbitrary CTL*

6

Computation Tree Logic (CTL*)

Introduce two new operators called “Path quantifiers”

A p : Property p holds along all computation paths

E p : Property p holds along at least one path

Example:

“From any state, it is possible to get to the reset state ”

CTL: Every F, G, X, U must be preceded by either an A or
a E
– E.g., Can’t write A (FG p)

LTL is just like having an “A” on the outside

A G (E F reset)

7

Why CTL?

Verifying LTL properties turns out to be
computationally harder than CTL

Exponential in the size of the LTL expression

– linear for CTL

For both, verification is linear in the size of the
state graph

8

CTL as a way to approximate LTL

– AG EF p is weaker than G F p

p

Good for finding bugs...

Good for verifying
correctness...

p p

– AF AG p is stronger than F G p

9

CTL Model Checking

So, we’ve decided to do CTL model checking.

What are the algorithms?

10

Recap: Reachability Analysis

Given:

1. A Boolean formula corresponding to initial states R0

2.

To find: All states reachable from R0 in 1, 2, 3, …
transitions (clock ticks)

Strategy: Denote set of states reachable from R0 in k (or
less) clock ticks as Rk

Rk+1(s+) = Rk(s+) + ∃ s { Rk(s) . (s, s+) }

11

Backwards Reachability Analysis

Given:

1. A Boolean formula corresponding to error states E0

2.

To find: All states that can reach E0 in 1, 2, 3, …
transitions (clock ticks)

Strategy: Denote set of states reachable from E0 in k (or
less) clock ticks as Ek

Ek+1(s) = Ek(s) + ∃ s+ { Ek(s+) . (s, s+) }

12

Verification of G p

Corresponding CTL formula is AGp

– Remember that p is a function of s

Forward Reachability Analysis:

– Check if any Rk(s) . p’(s) is true for any s

Backward Reachability Analysis:

– Set E0 = p’

– Check if Ek(s) . R0(s) is true for any s

13

Model Checking Arbitrary CTL

Need only consider the following types of CTL
properties:

E X p

E G p

E (p U q)

Why? all others are expressible using above

A G p = ?

A G (p (A F q)) = ?

14

Model Checking CTL Properties

We define a general recursive procedure called
“Check” to do this

– Performs fixpoint computation

Definition of Check:

– Input: A CTL property (and implicitly,)

– Output: A Boolean formula B representing the set of
states satisfying

If B(s) . R0(s) != 0, then is true (in the initial state)

15

The “Check” procedure

Cases:

If is a Boolean formula, then Check() =

Else:

– = EX p, then Check() = CheckEX(Check(p))

– = E(p U q), then

Check() = CheckEU(Check(p), Check(q))

– = E G p, then Check() = CheckEG(Check(p))

Note: What are the arguments to CheckEX, CheckEU,
CheckEG? CTL properties?

16

CheckEX

CheckEX(p) returns a set of states such that p
is true in their next states

How to write this?

17

CheckEU

CheckEU(p, q) returns a set of states, each of which
is such that

Either q is true in that state

Or p is true in that state and you can get from it to a
state in which p U q is true

Seems like circular reasoning!

But it works out: using an recursive computation like
in reachability analysis

– We compute a series of approximations leading to the
right answer

18

CheckEU

CheckEU(p, q) returns a set of states, each of which
is such that

Either q is true in that state

Or p is true in that state and you can get from it to a
state in which p U q is true

Let Z0 be our initial approximation to the answer to
CheckEU(p, q)

Zk(s) = { q(s) + [p(s) . ∃ x,s+ { (s, x, s+) . Zk-1(s+) }] }

What’s a good choice for Z0? Why will this terminate?

19

Summary

EGp computed similarly

Definition of Check:

– Input: A CTL property (and implicitly,)

– Output: A Boolean formula B representing the set of
states satisfying

All Boolean formulas represented “symbolically” as
BDDs

– “Symbolic Model Checking”

20

Bounded Model Checking

Given

– A finite state machine M (“transition system”)

– A property p

Determine

– Does M allow a counterexample to p of k
transitions or fewer?

This problem can be translated to a SAT problem

[Biere, Clarke, Cimatti, Zhu99]

21

Models

Transition system described by a set of
constraints

a
b cp

g

Each circuit element is a constraint
note: a = at and a' = at+1

g = a b

p = g c

c' = p

Model:

C = {
g = a b,
p = g c,
c' = p

}

22

Properties

We restrict our attention to safety properties.

Characterized by:

– Initial condition R0

– Final condition E (representing “error" states)

A counterexample is a path from a state
satisfying R0 to state satisfying E, where
every transition satisfies C.

23

Unfolding

Unfold the model k times:

Uk = C0 C1 ... Ck-1

a
b

cp

g a
b

cp

g a
b

cp

g
...R0 Ek

• Use SAT solver to check satisfiability of
R0 Uk Ek

• A satisfying assignment is a counterexample
of k steps

24

BMC applications

Debugging:

– Can find counterexamples using a SAT solver

Proving properties:

– Only possible if a bound on the length of the shortest
counterexample is known.

• I.e., we need a diameter bound. The diameter is
the maximum length of the shortest path between
any two states.

– Worst case is exponential. Obtaining better bounds
is sometimes possible, but generally intractable.

25

New Developments in SAT-based MC

SAT-based bounded model checking has scaled to
thousands of state bits and is very useful for
debugging

– Can verify LTL properties too

Unbounded model checking is now also possible with
SAT

– interpolation-based model checking

But on some problems, BDD-based model checking is
still better

