Fundamental Algorithms

Model Checking

for System Modeling,
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanjit A. Seshia
UC Berkeley

EECS 144/244

Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury, S. A.
Seshia, All rights reserved

Model Checking

G(p > Xq)

N

/

W4

q‘ ‘IO

| Model Checker |

/
N

Yes, property satisfied

no
q

Outline

Computation Tree Logic and why it is useful for
model checking

Model Checking with BDDs
Bounded Model Checking with SAT

Labelled State Transition Graph

= R

(ao—) @‘ Q%?

“Kripke structure”
Infinite Computation Tree

Temporal Logic

Linear Temporal Logic (LTL)
Properties expressed over a single time-line

Computation Tree Logic (CTL, CTL*)

Properties expressed over a tree of all possible
executions

CTL* gives more expressiveness than LTL

CTL is a subset of CTL* that is easier to verify
than arbitrary CTL*

Computation Tree Logic (CTL*)

Introduce two new operators called “Path quantifiers”
A p : Property p holds along all computation paths
E p : Property p holds along at least one path
Example:
“From any state, it is possible to get to the reset state ”

A G (EFreset)

CTL: Every F, G, X, U must be preceded by either an A or
akE

- E.g., Can’t write A (FG p)

LTL is just like having an “A” on the outside

Why CTL?

Verifying LTL properties turns out to be
computationally harder than CTL

Exponential in the size of the LTL expression

—linear for CTL

For both, verification is linear in the size of the
state graph

CTL as away to approximate LTL

_AGEFp isweakerthan GFp Good for finding bugs...

Lo

— AF AG p isstrongerthan FGp

Good for verifying
O? @ '.p O correctness...

CTL Model Checking

So, we've decided to do CTL model checking.

What are the algorithms?

Recap: Reachability Analysis

Given:
1. A Boolean formula corresponding to initial states R,
)

To find: All states reachable from R,in 1, 2, 3, ...
transitions (clock ticks)

Strategy: Denote set of states reachable from R, in k (or
less) clock ticks as Ry

Ria(8") = Ri(s%) + 3s { R(s). 8(s,s")}

10

Backwards Reachability Analysis

Given:
1. A Boolean formula corresponding to error states E,
2. 3

To find: All states that can reach E;in 1, 2, 3, ...
transitions (clock ticks)

Strategy: Denote set of states reachable from E; in k (or
less) clock ticks as E,

Evia(s)= El(s) + 3s* { E(s?). 8(s,s)}

11

Verification of G p

Corresponding CTL formulais AGp

— Remember that p is a function of s

Forward Reachability Analysis:
— Check if any R (s) . p'(s) is true for any s
Backward Reachability Analysis:
—SetE,=p’
— Check if E,(S) . Ry(S) is true for any s

12

Model Checking Arbitrary CTL

Need only consider the following types of CTL
properties:

EXp
EGp
E(pUQq)

Why? & all others are expressible using above
AGp="?
AG(p=2> (AFq))="?

13

Model Checking CTL Properties

We define a general recursive procedure called
“Check” to do this

— Performs fixpoint computation

Definition of Check:

— Input: A CTL property IT (and implicitly, 8)
— Output: A Boolean formula B representing the set of
states satisfying IT

If B(S).Ry(s)!=0,thenIIis true (in the initial state)

14

The “Check” procedure

Cases:
If ITis a Boolean formula, then Check(IT) =IT
Else:
— IT=EX p, then Check(IT) = CheckEX(Check(p))
— IT=E(p U Qq), then
Check(IT) = CheckEU(Check(p), Check(q))
— IT=E G p, then Check(IT) = CheckEG(Check(p))

Note: What are the arguments to CheckEX, CheckEU,
CheckEG? CTL properties?

15

CheckEX

CheckEX(p) returns a set of states such that p
is true in their next states

How to write this?

16

CheckEU

CheckEU(p, q) returns a set of states, each of which
is such that

Either q is true in that state

Or p is true in that state and you can get fromitto a
state in which p U q is true

Seems like circular reasoning!

But it works out: using an recursive computation like
in reachability analysis

— We compute a series of approximations leading to the
right answer

17

CheckEU

CheckEU(p, q) returns a set of states, each of which
is such that

Either q is true in that state

Or p is true in that state and you can get from it to a
state in which p U q is true

Let Z, be our initial approximation to the answer to
CheckEU(p, q)

Zi(s)={a(s) +[p(s). Axs*{8(s,x,s%).2Z4(s)}]}

What’'s a good choice for Z,? Why will this terminate?

18

Summary

EGp computed similarly

Definition of Check:

— Input: A CTL property IT (and implicitly, &)

— Output: A Boolean formula B representing the set of
states satisfying IT

All Boolean formulas represented “symbolically” as
BDDs

— “Symbolic Model Checking”

19

B O u n d ed MO d el Ch eC kl n g [Biere, Clarke, Cimatti, Zhu99]

Given

— A finite state machine M (“transition system”)
—A property p
Determine

—Does M allow a counterexample to p of k
transitions or fewer?

This problem can be translated o a SAT problem

20

Models

Transition system described by a set of
constraints

Model:
g=anab
a g c'=p C={
b} p c g=anb,
P=gvec,
p=gvc c=p
}

Each circuit element is a constraint
note: a=a; anda' = a;,

21

Properties

We restrict our attention to safety properties.
Characterized by:

— Initial condition R,
— Final condition E (representing “error" states)
A counterexample is a path from a state
satisfying R, to state satisfying E, where
every transition satisfies C.

22

Unfolding

Unfold the model k times:
U =Cy;ACiA..AC,

]] 9
Ry ° ° ELI’T_IT Ex

» Use SAT solver to check satisfiability of

- A satisfying assignment is a counterexample
of k steps

23

BMC applications

Debugging:
— Can find counterexamples using a SAT solver
Proving properties:
— Only possible if abound on the length of the shortest
counterexample is known.

¢ |.e., we need a diameter bound. The diameter is
the maximum length of the shortest path between
any two states.

— Worst case is exponential. Obtaining better bounds
is sometimes possible, but generally intractable.

24

New Developments in SAT-based MC

SAT-based bounded model checking has scaled to
thousands of state bits and is very useful for
debugging

— Can verify LTL properties too

Unbounded model checking is now also possible with
SAT

— interpolation-based model checking

But on some problems, BDD-based model checking is
still better

25

