Fundamental Algorithms for
System Modeling, Analysis,
and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanijit A. Seshia

UC Berkeley
EECS 144/244
Fall 2011

With thanks to R. K. Brayton, K. Keutzer, N. Shenoy, and A. Kuehimann

Copyright © 2010-11,
E. A. Lee, J. Roydhowdhury, S. A. Seshia, All rights reserved

Lecture N: Retiming

Retiming Tradeoffs

-
b _I 1 E
2
5 —
-
2
clock period = 6 I

# registers = 4

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 2

Y|



Retiming Tradeoffs

a
b 1 ‘ 1
2 p—
2
1
D
clock period = 5 I
# registers = 4
[Shenoy, 1997]
EECS 144/244, UC Berkeley: 3
Retiming Tradeoffs
a
b 1 ‘ 1
2 —
2
D—
2
clock period = I
# registers =

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 4

o2



Retiming Tradeoffs

a
b 1 1
2 p—
2
1
clock period = 2 I
# registers = 4

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 5

Goals of Retiming

Possible goals:
Minimize clock period (min-period retiming)
Minimize number of registers (min-area retiming)

Minimize number of registers for a target clock period
(constrained min-area retiming)

[Shenoy, 1997] EECS 144/244, UC Berkeley: 6

o3



Abstraction

o~ ‘
o 1

-

EECS 144/244, UC Berkeley: 7

Abstraction - Graph

Nodes: circuit elements
/ Node weights: delay

Dummy node for fanout

EECS 144/244, UC Berkeley: 8

o4



Abstraction - Registers

Nodes: circuit elements
/ Node weights: delay

Dummy node for fanout

EECS 144/244, UC Berkeley: 9

Abstraction - Registers

1

!

Arc weights indicate registers

EECS 144/244, UC Berkeley: 10

o5



Abstraction - Environment

environment

EECS 144/244, UC Berkeley: 11

Cutset — Divides the Graph in Two

environment

EECS 144/244, UC Berkeley: 12

'15)



Retiming: Add a register on all arcs crossing the
cutset in one direction, and subtract a register from
all arcs crossing the cutset in the other direction.

environment

EECS 144/244, UC Berkeley: 13

Recall: Retiming Tradeoffs

/

\
a_,‘ \
b-:-l 1 N
I : 2
\
\

\

\ ’ 2

N\

N - 7
clock period = 6 I
# registers = 4

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 14

o/



Recall: Retiming Tradeoffs

. AN
/ \
/
a [
| 1 |
b~ , 1
| 2
\
\ 1
\ / ‘ >
N ’ 2
N -~_ 7
clock period = 5
# registers = 4

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 15

Simplest cutset surrounds one node

environment

EECS 144/244, UC Berkeley: 16

o8



Recall: Retiming Tradeoffs

N\
a /, \\
\
b 1 1
1 I
|
/
1 N )
S e
clock period = 5
# registers = 4

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 17

Recall: Retiming Tradeoffs

/7 N\
\
a II \
1
b I 1
|
\ 1
1
1 N P
N L 4
clock period = 4
# registers = 3

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 18

9



For each node v, define r (v) = # of registers moved

from the outputs to the inputs. o
A retiming is now an

assignment r (v) for every

r (V_)_= -1 node v such that the weight of
0 s \X every arc is non-negative.

environment

EECS 144/244, UC Berkeley: 19

Problem Setup
* Forapathp:vovivy ... v, €, = (v;, viiy)
k
d(p)= Y d(v,) (includesendpoints)

=

W(p) = 2 W)

» Clock cycle ©
m d i
c = max 0
> 0 , O

For example on right: ¢ = ?

EECS 144/244, UC Berkeley: 20

e10



Problem Setup
* Forapathp:vyvivy ... v, €= (v;, viiy)
k
d(p)= Y d(v,) (includesendpoints)

i=

w(p) = EW(%)

» Clock cycle

c- max {d(p)} @ .

pw(p)=0
(delay of longest path without registers) 2

Path with
w(p)=0

For example on right: ¢ = 13

EECS 144/244, UC Berkeley: 21

Basic Operation

* Thus in the example, r(u) = -1, r(v) = -1 results in

, © o ©
‘ 1
@ OO @ 1u \/
U \/ 1
> @ , O © , 0

* For a path p: s—t, W, (p) = w(p) + r(t) - r(s)

* Retiming
— r: V—=Z, an integer vertex labeling
— w,(e) =w(e) + r(v) - r(u) for edge e = (u,v)
— Aretiming ris legal if w(e)=0,Ve € E

EECS 144/244, UC Berkeley: 22

e11



Retiming - Assumptions

Each loop in circuit contains at least one register

Circuit uses single clock and edge-triggered elements
(identical skew)

Gate delay is constant (and non-negative)

Registers are ideal (set-up, drive independent of
load)

Any power-up state of the design can be safely
handled by the environment (initial state assumption)

EECS 144/244, UC Berkeley: 23

Retiming - Formulation

Come up with r(v) values: Assign integers to each
vertex so that objective is met

Valid retiming constraints

w_ () =w(e) +r(b) -r(a) >0 W, (p) = w(p) + r(b) - r(a)

EECS 144/244, UC Berkeley: 24

e12



Retiming for Minimum Clock Cycle

: (Minimum cycle time)
— Given G(V, E, d, w), find a Legal retiming r so that

c=max {d(p)} ®»

pWr(p)=0

is minimized

* Register weight matrix
W(u,v) =min{w(p):u—+—v}
* Delay matrix
D(u,v) =max{d(p) : u—=—v,w(p) =W (u,v)}

D(u,v)>c=>W(u,v) =1 (8)
EECS 144/244, UC Berkeley: 25

Retiming for Minimum Clock Period

V3 W — register path weight matrix,
0 min # of registers on all paths
0 between u and v

D — path delay matrix, max delay
2 (3] 0 (3] among all paths between u and v

v V2 with W(u,v) (minimum) registers
VOV1V2V3 VO V1V2V3
VO 036 13
VA1 133 6 13
V2 101133 10
V3 710137

Note that the D matrix indicates that the least possible clock period is 7, and a
period of 13 will obviously work, so the minimum clock period is between 7 and 13,
inclusive. Binary search of these possibilities will work.

EECS 144/244, UC Berkeley: 26

e13



Conditions for Retiming

» Suppose we need to check if a retiming exists for a clock cycle o
* Legal retiming: w,(e) = 0 for all e. Hence
w(e)=w(e)+r(v)-r(u)=0or
ru)-r(v)=sw(e)
* Forall paths p: u — v such that d(p) = o, we require w,(p) = 1
— Thus

k-1
l=w.(p)= Ewr(e,.)
i=0
k-1

= Vwle) +r(v,.) - r()]

=0
=w(p)+r(v,)-r(v,)
=w(p)+r(v)-r(u)

Or take the least w(p) (tightest constraint) r(u)-r(v) = W(u,v)-1
i.e. there are many paths p, choose the p that gives tightest constraint

Note: we just need to apply it to (u, v) such that D(u,v) > a
EECS 144/244, UC Berkeley: 27

Solving the Constraints

« All constraints in “difference of 2 variables” form
* How to solve?

VO VI V2 V3 VO V1 V2V3
Consider our example for o =7

VO 036 13

V1 133 6 13

D>7: V2 1013 3 10

710137

Legal: r(u)-r(v)=sw(e) r(u)-r(v)sW(u,v)-1 V3
r(vy)—r(v,) =2 r(vy)—-r(vy) =<1
r()-r(v,)=<0 r(v)—r(v,)=-1 -
r(v)-r(v;) <0 r(v))—-r(v;)=-1 0 ©
r(vy)-r(v;) <0 r(vy)-r(v,)=-1 Y o) 0 N
r(v;)-r(v,) =0 r(vy)-r(v,) =1

Notice that these constraints r(Vz) - I’(V3) <-1 v1

are unaffected by adding or r(v ) - I"(V ) <1
p 3 1

subtracting any constant to/

from all r(v;). Why? r(v3) - V(Vz) <1

EECS 144/244, UC Berkeley: 28

el4



Solving the Constraints:
Construct a Constraint Graph

Constraint graph has one arc for each difference-of-two-variables
inequality.

r(v)-r(v,)=<0

fi 1
ez r(vy)=r(vy)s-1 4 0,-1
r(vy)=r(v,) <0 |

r(v,)-r(v) =1
r(v,)-r(vy) = -1

r(v;)-r(y) =1 A

r(vy)-r(v,) =1 1

EECS 144/244, UC Berkeley: 29

Solving the Constraints:
Add a dummy start node to the constraint graph

A solution to the constraints, if it exists: r (v;) is the minimum path weight
from the dummy node to node r (v;).
No solution exists if there are cycles with negative weight. Why?
Legal: r(u)-r(v)=w(e) D>7:
r(u)-r(v)=W(u,v)-1 A
r(v)-r(v)=2
r(v,)-r(v;) =1
r(v)-r(v,)=0 F) = r(v,) < -
r(v)-r(v;)<0 : 0
r(v,)-r(v;) =<0
r(v;)-r(v,) <0

r(vy)-r(v,) =<1 1

EECS 144/244, UC Berkeley: 30

e15



Solving the Constraints:
Use the Bellman-Ford Algorithm: O(|V|3)

Cannot use Dijkstra’ s algorithm, which works to find minimum path
weights only if the weights all have the same sign.

Bellman-Ford can detect where there are cycles with negative weight.

Legal: r(u)-r(v)=w(e) rD(:)7-.r(v)<W(u V)1
r(vo)_r(vl)S2 I"(V)—I"(;)<1,
r(vl)—r(v2)50 I"(VO)—I"(V3):—1
r(v)-r(v;) <0 r(vl)—r(vo):—l
r(v,)-r(v;) =0 : '

r(vy)-r(v)=-1
I E0 )y st

Notice that this algorittm  7(v,) —=7(v;) = -1

will only yield non- ” —r <1
positive values of r(v;). () =r(v)
Why is this OK? r(v;)=r(vy) <1

A solution is r(vy) = r(vs) = 0, r(v4) = r(v,) = -1
EECS 144/244, UC Berkeley: 31

Retiming Solution

To find the minimum cycle time, do a binary search among the
entries of the D matrix O(| V |3log |V |)

V3
g 0 VO V1 V2 V3 VO V1V2V3
o ’
v ° VO 036 13
2 V1 133 6 13
o1 0 © V2 101133 10
! V2 V3 710137
Clock period
=3+3+7=13 .
Retime
©"
0
1
vO o 1 Clock period= 7
1
-
v1 V2

EECS 144/244, UC Berkeley: 32

e16



Drawbacks of this Algorithm

Requires W/D matrix computation

O(|V|?) clock period constraints, most of which are redundant
Average case is worst case

Fortunately, there’ s another algorithm we can use:
“relaxation-based” algorithm called FEAS
See: [Shenoy, 1997]

EECS 144/244, UC Berkeley: 33

Applications beyond circuits

In a dataflow graph, nodes represent actors, which fire when input fokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

environment

EECS 144/244, UC Berkeley: 34

e17



Applications beyond circuits

In a dataflow graph, nodes represent actors, which fire when input fokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

environment

EECS 144/244, UC Berkeley: 35

Applications beyond circuits

In a dataflow graph, nodes represent actors, which fire when input fokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

environment

EECS 144/244, UC Berkeley: 36

e18



Applications beyond circuits

In a dataflow graph, nodes represent actors, which fire when input fokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

environment

EECS 144/244, UC Berkeley: 37

Applications beyond circuits

In a dataflow graph, nodes represent actors, which fire when input fokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

environment

EECS 144/244, UC Berkeley: 38

e19



Applications beyond circuits

In a dataflow graph, nodes represent actors, which fire when input fokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

environment

EECS 144/244, UC Berkeley: 39

After retiming

After retiming the graph, may be able to construct a better (faster) parallel
schedule that will be executed periodically.

environment

EECS 144/244, UC Berkeley: 40

020



References

1. Leiserson, C. E. and J. B. Saxe (1983). "Optimizing
synchronous systems." Journal of VLSI and Computer
Systems: pp. 41-67.

2. Leiserson, C. E. and J. B. Saxe (1991). "Retiming
synchronous circuitry." Algorithmica 6(1): pp. 5-35.

3. Shenoy, N. (1997). "Retiming: Theory and practice."
Integration, the VLSI Journal 22: pp. 1-21.

EECS 144/244, UC Berkeley: 41

o2



