
l 1

Fundamental Algorithms for
System Modeling, Analysis,
and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanjit A. Seshia
UC Berkeley
EECS 144/244
Fall 2011

With thanks to R. K. Brayton, K. Keutzer, N. Shenoy, and A. Kuehlmann

Copyright © 2010-11,
E. A. Lee, J. Roydhowdhury, S. A. Seshia, All rights reserved

Lecture N: Retiming

EECS 144/244, UC Berkeley: 2

Retiming Tradeoffs

[Shenoy, 1997]

a"

b"

6"
4"

1"

1"

1"
2"

2"

2"

clock period ="
registers ="

l 2

EECS 144/244, UC Berkeley: 3

Retiming Tradeoffs

a"

b"

5"
4"

1"

1"

1"
2"

2"

2"

clock period ="
registers ="

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 4

Retiming Tradeoffs

a"

b" 1"

1"

1"
2"

2"

2"

clock period ="
registers ="

4"
3"

[Shenoy, 1997]

l 3

EECS 144/244, UC Berkeley: 5

Retiming Tradeoffs

a"

b" 1"

1"

1"
2"

2"

2"

clock period ="
registers ="

2"
4"

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 6

Goals of Retiming
Possible goals:
•  Minimize clock period (min-period retiming)
•  Minimize number of registers (min-area retiming)
•  Minimize number of registers for a target clock period

(constrained min-area retiming)

 a

b

6
4
6
4

5
4
5
4

1

1

1
2

2

2

clock period =
registers =

4
3
4
3

2
4
2
4

[Shenoy, 1997]

l 4

EECS 144/244, UC Berkeley: 7

Abstraction

a"

b"

6"
4"

1"

1"

1"
2"

2"

2"

clock period ="
registers ="

EECS 144/244, UC Berkeley: 8

Abstraction - Graph

Nodes: circuit elements
Node weights: delay

Dummy node for fanout

l 5

EECS 144/244, UC Berkeley: 9

Abstraction - Registers

Nodes: circuit elements
Node weights: delay

Dummy node for fanout

EECS 144/244, UC Berkeley: 10

Abstraction - Registers

Arc weights indicate registers

1

1

1

1

0

0

0 0 0

0 0 0

0

0 0
0

0
0

l 6

EECS 144/244, UC Berkeley: 11

Abstraction - Environment

1

1

1

1

0

0

0
0 0

0 0 0

0

0 0
0

0

0

EECS 144/244, UC Berkeley: 12

Cutset – Divides the Graph in Two

1

1

1

1

0

0

0
0 0

0 0 0

0

0 0
0

0

0

l 7

EECS 144/244, UC Berkeley: 13

Retiming: Add a register on all arcs crossing the
cutset in one direction, and subtract a register from
all arcs crossing the cutset in the other direction.

1

1

1-1=0

1-1=0

0

0

0
0

0
0+1=1

0

0

0 0
0

0

0

0+1=1

EECS 144/244, UC Berkeley: 14

Recall: Retiming Tradeoffs

[Shenoy, 1997]

a"

b"

6"
4"

1"

1"

1"
2"

2"

2"

clock period ="
registers ="

l 8

EECS 144/244, UC Berkeley: 15

Recall: Retiming Tradeoffs

a"

b"

5"
4"

1"

1"

1"
2"

2"

2"

clock period ="
registers ="

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 16

Simplest cutset surrounds one node

1

1

1-1=0

1-1=0
0

0

0
0

0

0+1=1 0

0

0 0
0

0

0
0

l 9

EECS 144/244, UC Berkeley: 17

Recall: Retiming Tradeoffs

a"

b"

5"
4"

1"

1"

1"
2"

2"

2"

clock period ="
registers ="

[Shenoy, 1997]

EECS 144/244, UC Berkeley: 18

Recall: Retiming Tradeoffs

a"

b" 1"

1"

1"
2"

2"

2"

clock period ="
registers ="

4"
3"

[Shenoy, 1997]

l 10

EECS 144/244, UC Berkeley: 19

For each node v, define r (v) = # of registers moved
from the outputs to the inputs.

1

1

1-1=0

1-1=0
0

0

0
0

0

0+1=1 0

0

0 0
0

0

0
0

r (v) = -1

v

A retiming is now an
assignment r (v) for every
node v such that the weight of
every arc is non-negative.

EECS 144/244, UC Berkeley: 20

Problem Setup

•  For a path p: v0 v1 v2 … vk , ei = (vi , vi+1)

•  Clock cycle

∑

∑
−

=

=

=

=

1

0

0

)()(

)()(
k

i
i

k

i
i

ewpw

vdpd endpoints) (includes

)}({max
0)(:

pdc
pwp =

=

For example on right: c = ?

0

3 3

0

0
0

0
2

7

l 11

EECS 144/244, UC Berkeley: 21

•  For a path p: v0 v1 v2 … vk , ei = (vi , vi+1)

•  Clock cycle

∑

∑
−

=

=

=

=

1

0

0

)()(

)()(
k

i
i

k

i
i

ewpw

vdpd endpoints) (includes

)}({max
0)(:

pdc
pwp =

=

For example on right: c = 13

Path with

w(p)=0 0

3 3

0

0
0

0
2

7

(delay of longest path without registers)

Problem Setup

EECS 144/244, UC Berkeley: 22

•  Thus in the example, r(u) = -1, r(v) = -1 results in

•  For a path p: s→t, Wr(p) = w(p) + r(t) - r(s)
•  Retiming

–  r: V→Z, an integer vertex labeling
–  wr(e) = w(e) + r(v) - r(u) for edge e = (u,v)
–  A retiming r is legal if wr(e) ≥ 0, ∀ e ∈ E

Basic Operation

v u
0

3 3

0

0
0

0
2

7

v u
0

3 3

0

1
1

0
1

7

l 12

EECS 144/244, UC Berkeley: 23

Retiming - Assumptions

•  Each loop in circuit contains at least one register
•  Circuit uses single clock and edge-triggered elements

(identical skew)
•  Gate delay is constant (and non-negative)
•  Registers are ideal (set-up, drive independent of

load)
•  Any power-up state of the design can be safely

handled by the environment (initial state assumption)

EECS 144/244, UC Berkeley: 24

Retiming - Formulation

•  Come up with r(v) values: Assign integers to each
vertex so that objective is met

•  Valid retiming constraints

a" b"
e"

w (e) = w(e)"r"

r(b)"

+ r(b)"

r(a)"

- r(a)"

a" b"
e"

w (e) = w(e)"r" > 0" > 0"

a" b"

p"

w (p) = w(p) + r(b) - r(a)"r"

l 13

EECS 144/244, UC Berkeley: 25

Retiming for Minimum Clock Cycle

–  Problem Statement: (Minimum cycle time)
–  Given G(V, E, d, w), find a Legal retiming r so that

 (A)

 is minimized
–  2 important matrices

• Register weight matrix

• Delay matrix

 (B)

)}({max
0)(:

pdc
pWp r =

=

}:)(min{),(vupwvuW p⎯→⎯=

)},()(,:)(max{),(vuWpwvupdvuD p =⎯→⎯=

1),(),(≥⇒> vuWcvuD

EECS 144/244, UC Berkeley: 26

Retiming for Minimum Clock Period

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0
0 2 0 0
0 2 2 0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10 13 3 10
7 10 13 7

V2 v1

v0 0

3 3

0

0
0

0
2

7
W – register path weight matrix,
min # of registers on all paths
between u and v

D – path delay matrix, max delay
among all paths between u and v
with W(u,v) (minimum) registers

V3

Note that the D matrix indicates that the least possible clock period is 7, and a
period of 13 will obviously work, so the minimum clock period is between 7 and 13,
inclusive. Binary search of these possibilities will work.

l 14

EECS 144/244, UC Berkeley: 27

Conditions for Retiming

•  Suppose we need to check if a retiming exists for a clock cycle α
•  Legal retiming: wr(e) ≥ 0 for all e. Hence

 wr(e) = w(e) + r(v) - r(u) ≥ 0 or
 r (u) - r (v) ≤ w (e)

•  For all paths p: u → v such that d(p) ≥ α, we require wr(p) ≥ 1
–  Thus

€

1≤ wr(p) = wr (ei)
i= 0

k−1

∑

= [w(
i= 0

k−1

∑ ei) + r(vi+1) − r(vi)]

= w(p) + r(vk) − r(v0)
= w(p) + r(v) − r(u)

Or take the least w(p) (tightest constraint) r(u)-r(v) ≤ W(u,v)-1

i.e. there are many paths p, choose the p that gives tightest constraint

Note: we just need to apply it to (u, v) such that D(u,v) > α

EECS 144/244, UC Berkeley: 28

•  All constraints in “difference of 2 variables” form
•  How to solve?

Solving the Constraints

Consider our example for α = 7

Legal: r(u)-r(v)≤w(e)

0)()(
0)()(
0)()(
0)()(
2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr
vrvr
vrvr
vrvr
vrvr

1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(

23

13

32

12

02

31

01

30

≤−
≤−
−≤−

≤−
−≤−
−≤−
−≤−

≤−

vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr

D>7:
r(u)-r(v)≤W(u,v)-1

V2 v1

v0 0

3 3

0

0
0

0
2

7

V3

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0
0 2 0 0
0 2 2 0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10 13 3 10
7 10 13 7

Notice that these constraints
are unaffected by adding or
subtracting any constant to/
from all r(vi). Why?

l 15

EECS 144/244, UC Berkeley: 29

Constraint graph has one arc for each difference-of-two-variables
inequality.

Solving the Constraints:
Construct a Constraint Graph

Legal: r(u)-r(v)≤w(e)

0)()(
0)()(
0)()(
0)()(
2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr
vrvr
vrvr
vrvr
vrvr

1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(

23

13

32

12

02

31

01

30

≤−
≤−
−≤−

≤−
−≤−
−≤−
−≤−

≤−

vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr

D>7:
r(u)-r(v)≤W(u,v)-1

r(v1) r(v0)

r(v3) r(v2)

0

1 1

1

1

1

-1

0,-1

0,-1

-1

2

EECS 144/244, UC Berkeley: 30

A solution to the constraints, if it exists: r (vi) is the minimum path weight
from the dummy node to node r (vi).
No solution exists if there are cycles with negative weight. Why?

Solving the Constraints:
Add a dummy start node to the constraint graph

Legal: r(u)-r(v)≤w(e)

0)()(
0)()(
0)()(
0)()(
2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr
vrvr
vrvr
vrvr
vrvr

1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(

23

13

32

12

02

31

01

30

≤−
≤−
−≤−

≤−
−≤−
−≤−
−≤−

≤−

vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr

D>7:
r(u)-r(v)≤W(u,v)-1

r(v1) r(v0)

r(v3) r(v2)

0

1 1

1

1

1

-1

0,-1

0,-1

-1

2

0
0
0

0

l 16

EECS 144/244, UC Berkeley: 31

Cannot use Dijkstra’s algorithm, which works to find minimum path
weights only if the weights all have the same sign.
Bellman-Ford can detect where there are cycles with negative weight.

Solving the Constraints:
Use the Bellman-Ford Algorithm: O(|V|3)

Legal: r(u)-r(v)≤w(e)

0)()(
0)()(
0)()(
0)()(
2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr
vrvr
vrvr
vrvr
vrvr

1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(

23

13

32

12

02

31

01

30

≤−
≤−
−≤−

≤−
−≤−
−≤−
−≤−

≤−

vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr

D>7:
r(u)-r(v)≤W(u,v)-1

r(v1) r(v0)

r(v3) r(v2)

0

1 1

1

1

1

-1

0,-1

0,-1

-1

2

0
0
0

0

A solution is r(v0) = r(v3) = 0, r(v1) = r(v2) = -1

-1

-1

0

0

Notice that this algorithm
will only yield non-
positive values of r(vi).
Why is this OK?

EECS 144/244, UC Berkeley: 32

Retiming Solution

To find the minimum cycle time, do a binary search among the
entries of the D matrix 0(⏐V⏐3log⏐V⏐)

Retime
Clock period
 = 3+3+7=13

Clock period= 7

V2 v1

v0 0

3 3

0

0
0

0
2

7

V2 v1

v0 0

3 3

0

1
1

0
1

7

V3

V3

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0
0 2 0 0
0 2 2 0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10 13 3 10
7 10 13 7

l 17

EECS 144/244, UC Berkeley: 33

Drawbacks of this Algorithm

l  Requires W/D matrix computation
l  O(|V|2) clock period constraints, most of which are redundant
l  Average case is worst case

Fortunately, there’s another algorithm we can use:
l  “relaxation-based” algorithm called FEAS
l  See: [Shenoy, 1997]

EECS 144/244, UC Berkeley: 34

Applications beyond circuits

1

1

1

1

0
0

0
0 0

0 0 0
0

00
0

0

0

In a dataflow graph, nodes represent actors, which fire when input tokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

l 18

EECS 144/244, UC Berkeley: 35

Applications beyond circuits

1

1

1

1

0
0

0
0 0

0 0 0
0

00
0

0

0

In a dataflow graph, nodes represent actors, which fire when input tokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

Fire!

EECS 144/244, UC Berkeley: 36

Applications beyond circuits

1

1

0

0

1
1

1
1 0

0 0 0
0

00
0

0

0

In a dataflow graph, nodes represent actors, which fire when input tokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

l 19

EECS 144/244, UC Berkeley: 37

Applications beyond circuits

1

1

0

0

1
1

1
1 0

0 0 0
0

00
0

0

0

In a dataflow graph, nodes represent actors, which fire when input tokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

Fire!

EECS 144/244, UC Berkeley: 38

Applications beyond circuits

1

1

0

0

0
0

0
0 1

1 0 0
0

00
0

0

0

In a dataflow graph, nodes represent actors, which fire when input tokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

l 20

EECS 144/244, UC Berkeley: 39

Applications beyond circuits

1

1

0

0

0
0

0
0 1

1 0 0
0

00
0

0

0

In a dataflow graph, nodes represent actors, which fire when input tokens
are available. Firing performs a computation that takes time. Weights
represent initial tokens. Retiming can be interpreted as a preamble to a
periodic schedule, and may have the goal of maximizing parallelism so that
the dataflow graph executes fast on a multicore machine.

Fire!

EECS 144/244, UC Berkeley: 40

After retiming

1

1

0

0

0
0

0
0 0

0 1 0
0

00
0

0

0

After retiming the graph, may be able to construct a better (faster) parallel
schedule that will be executed periodically.

l 21

EECS 144/244, UC Berkeley: 41

References

1.  Leiserson, C. E. and J. B. Saxe (1983). "Optimizing
synchronous systems." Journal of VLSI and Computer
Systems: pp. 41-67.

2.  Leiserson, C. E. and J. B. Saxe (1991). "Retiming
synchronous circuitry." Algorithmica 6(1): pp. 5-35.

3.  Shenoy, N. (1997). "Retiming: Theory and practice."
Integration, the VLSI Journal 22: pp. 1-21.

