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Lecture N: Retiming 
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Retiming Tradeoffs 

[Shenoy, 1997] 
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Retiming Tradeoffs 
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Goals of Retiming 
Possible goals: 
•  Minimize clock period (min-period retiming) 
•  Minimize number of registers (min-area retiming) 
•  Minimize number of registers for a target clock period  

(constrained min-area retiming) 
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Abstraction 
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Abstraction - Graph 

Nodes: circuit elements 
Node weights: delay 

Dummy node for fanout 
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Abstraction - Registers 

Nodes: circuit elements 
Node weights: delay 

Dummy node for fanout 
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Abstraction - Registers 

Arc weights indicate registers 
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Abstraction - Environment 
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Cutset – Divides the Graph in Two 
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Retiming: Add a register on all arcs crossing the 
cutset in one direction, and subtract a register from 
all arcs crossing the cutset in the other direction. 

1 

1 

1-1=0 

1-1=0 

0 

0 

0 
0 

0 
0+1=1 

0 

0 

0 0 
0 

0 

0 

0+1=1 

EECS 144/244, UC Berkeley: 14 

Recall: Retiming Tradeoffs 

[Shenoy, 1997] 
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Simplest cutset surrounds one node 
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Recall: Retiming Tradeoffs 
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For each node v, define r (v) = # of registers moved 
from the outputs to the inputs. 
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A retiming is now an 
assignment r (v) for every 
node v such that the weight of 
every arc is non-negative. 

EECS 144/244, UC Berkeley: 20 

Problem Setup 

•  For a path p: v0 v1 v2 … vk , ei = (vi , vi+1) 

•  Clock cycle 
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•  For a path p: v0 v1 v2 … vk , ei = (vi , vi+1) 
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(delay of longest path without registers) 

Problem Setup 
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•  Thus in the example, r(u) = -1, r(v) = -1 results in 

•  For a path p: s→t, Wr(p) = w(p) + r(t) - r(s) 
•  Retiming 

–  r: V→Z, an integer vertex labeling 
–  wr(e) = w(e) + r(v) - r(u) for edge e = (u,v) 
–  A retiming r is legal if wr(e) ≥ 0, ∀ e ∈ E 

Basic Operation 
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Retiming - Assumptions 

•  Each loop in circuit contains at least one register 
•  Circuit uses single clock and edge-triggered elements 

(identical skew) 
•  Gate delay is constant (and non-negative) 
•  Registers are ideal (set-up, drive independent of 

load) 
•  Any power-up state of the design can be safely 

handled by the environment (initial state assumption) 
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Retiming - Formulation 

•  Come up with r(v) values: Assign integers to each 
vertex so that objective is met 

•  Valid retiming constraints 
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Retiming for Minimum Clock Cycle 

–  Problem Statement: (Minimum cycle time) 
–  Given G(V, E, d, w), find a Legal retiming r so that  

 
                                                              (A) 

     
   is minimized 
–  2 important matrices 

• Register weight matrix 

• Delay matrix 

                                                                          (B) 
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Retiming for Minimum Clock Period 
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W – register path weight matrix, 
min # of registers on all paths 
between u and v 
 
D – path delay matrix, max delay 
among all paths between u and v 
with W(u,v) (minimum) registers 

V3 

Note that the D matrix indicates that the least possible clock period is 7, and a 
period of 13 will obviously work, so the minimum clock period is between 7 and 13, 
inclusive. Binary search of these possibilities will work. 
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Conditions for Retiming 

•  Suppose we need to check if a retiming exists for a clock cycle α 
•  Legal retiming: wr(e) ≥ 0 for all e. Hence  

 wr(e) = w(e) + r(v) - r(u) ≥ 0 or 
                  r (u) - r (v) ≤ w (e) 

•  For all paths p: u → v such that d(p) ≥ α, we require wr(p) ≥ 1 
–  Thus 

€ 

1≤ wr(p) = wr (ei)
i= 0

k−1

∑

= [w(
i= 0

k−1

∑ ei) + r(vi+1) − r(vi)]

= w(p) + r(vk ) − r(v0)
= w(p) + r(v) − r(u)

Or take the least w(p) (tightest constraint)   r(u)-r(v) ≤ W(u,v)-1 

i.e. there are many paths p, choose the p  that gives tightest constraint 

Note: we just need to apply it to (u, v) such that D(u,v) > α 
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•  All constraints in “difference of 2 variables” form  
•  How to solve? 

Solving the Constraints 

Consider our example for α = 7 

Legal: r(u)-r(v)≤w(e) 
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Notice  that these constraints 
are unaffected by adding or 
subtracting any constant to/
from all r(vi). Why? 
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Constraint graph has one arc for each difference-of-two-variables 
inequality. 

Solving the Constraints:  
Construct a Constraint Graph 

Legal: r(u)-r(v)≤w(e) 
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A solution to the constraints, if it exists: r (vi) is the minimum path weight 
from the dummy node to node r (vi). 
No solution exists if there are cycles with negative weight. Why? 

Solving the Constraints:  
Add a dummy start node to the constraint graph 
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Cannot use Dijkstra’s algorithm, which works to find minimum path 
weights only if the weights all have the same sign. 
Bellman-Ford can detect where there are cycles with negative weight. 

Solving the Constraints:  
Use the Bellman-Ford Algorithm:  O(|V|3) 
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Notice  that this algorithm 
will only yield non-
positive values of r(vi).  
Why is this OK? 
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Retiming Solution 

To find the minimum cycle time, do a binary search among the 
entries of the D matrix 0(⏐V⏐3log⏐V⏐) 
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Drawbacks of this Algorithm 

l  Requires W/D matrix computation 
l  O(|V|2) clock period constraints, most of which are redundant 
l  Average case is worst case 
 
Fortunately, there’s another algorithm we can use: 
l  “relaxation-based” algorithm called FEAS 
l  See: [Shenoy, 1997] 
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Applications beyond circuits 
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In a dataflow graph, nodes represent actors, which fire when input tokens 
are available. Firing performs a computation that takes time. Weights 
represent initial tokens. Retiming can be interpreted as a preamble to a 
periodic schedule, and may have the goal of maximizing parallelism so that 
the dataflow graph executes fast on a multicore machine. 
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Applications beyond circuits 
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After retiming 

1

1

0

0

0
0

0
0 0

0 1 0
0

00
0

0

0

After retiming the graph, may be able to construct a better (faster) parallel 
schedule that will be executed periodically. 
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