Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,

11 Sanjit A. Seshia
1 UC Berkeley

T EECS 144/244

45 Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury,
S. A. Seshia, All rights reserved

Formal Specification: Temporal Logic

12
B0 1o e g
ﬁ i il :
LD DL bt ok LRI i it]

specification

RTL manual
SOESE design

netlist

; Is the
Library/ .
module logic design
generators optimization . Cons|st(?n_t
with the original
netlist specification?
physical Is what I think | want

design

what | really want?

Today’s Lecture

Formal (mathematical) Specification

How do you formally state

what your design should do?

Temporal Logic

o A mathematical way to express properties of a
system over time

E.g., Behavior of an FSM or Hybrid System

o Many flavors of temporal logic
Propositional temporal logic (we will study this)
Real-time temporal logic

o Amir Pnueli won ACM Turing Award, in part, for the
idea of using temporal logic for specification

Example: Specification of the SpaceWire Protocol
(European Space Agency standard)

8.5.2.2 ErrorReset

a. The ErrorReset state shall be entered after a system reset, after link operation
is terminated for any reason or if there i1s an error during link initialization.

b. In the ErrorReset state the Transmitter and Receiver shall all be reset.

¢. Whentheresetsignal is de-asserted the ErrorReset state shall be left uncondi-
tionally after a delay of 6,4 ps (nominal) and the state machine shall move to
the ErrorWait state.

d. Whenever the reset signal is asserted the state machine shall move
immediately to the ErrorReset state and remain there until the reset signal
is de-asserted.

Current status of property specification in HW

Usage of formal property specification languages is
becoming widespread

— 68% in 2007 (John Cooley, DVCon’07)
— Properties often called “assertions”

Properties are used not just in formal verification, but also
in simulation

— “Assertion-Based Verification” (ABV)

Some property specification languages: PSL/Sugar,
System Verilog Assertions (SVA), OVA, OVL, etc.

All of these are just ways of writing variants of
Temporal Logic

Lecture Outline

Behavior/Trace/Execution

Specifying Properties: Safety vs. Liveness

Temporal Logic (its 2 main flavors)

Synthesizing Monitors from Properties

Execution Trace of a State Machine

An execution trace is a sequence of the form

q0, 491,492,493, ...,

where g; = (x;,5;,y;) where s; is the state at step j, x; is
the input valuation at step j, and y; is the output valuation
at step j. Can also write as

xo/y0 n/m 0/n
50 > 81 > 52 L W

Propositional Logic on Traces

A propositional logic formula p holds for a trace

4o, 91, 92, 43, ---;
if and only if it holds for gp.

This may seem odd, but we will provide temporal logic oper-

ators to reason about the trace.

10

Linear Temporal Logic (LTL)

LTL formulas: Statements about an execution trace
q0, 41, 42, 435 -- -,

p holds in go
Go ¢ holds for every suffix of the trace
F¢ $ holds for some suffix of the trace
Xo ¢ holds for the trace g;,42,---
01Ud2 1 l:IO|dS fo_r all suffi3<s of the trace
until a suffix for which ¢2 holds.

Here, p is propositional logic formula and ¢ is either a
propositional logic or an LTL formula.

11

Linear Temporal Logic (LTL)

LTL formulas: Statements about an execution trace

g0, 41, 42, 43, »-«,
P proposition
Go globally
F¢ finally, future, eventually
Xo next state
6,02 until

Here, p is propositional logic formula and ¢ is either a
propositional logic or an LTL formula.

12

First LTL Operator: G (Globally)
The LTL formula Gp holds for a trace

q0, 91, 42, 43, ---,

if and only if it holds for every suffix of the trace:

q0, 91, 42, 43, ---
q1; 92, 43, ---
g2, 43, --.

qs, ---

If p is a propositional logic formula, this means it holds for
each g;.

13

Second LTL Operator: F (Eventually, Finally)

The LTL formula Fp holds for a trace

QO! ql! qz! Q3! |

if and only if it holds for some suffix of the trace:

qo, g1, 92, 43, -
q1: 42, 43, -
g2, ¢3; ---

F35 2an

If p is a propositional logic formula, this means it holds for
some g;.

14

Propositional Linear Temporal Logic

LTL operators can apply to LTL formulas as well as to
propositional logic formulas.

E.g. Every input x is eventually followed by an output y

G(x = Fy)
s
Globally
(at any point |n time)
If x occugirs
It is eventually followed by y

15

Every input x is eventually followed by an output y

The LTL formula G{x => Fy) holds for a trace

qo, G1, 42, 435+«

if and only if it holds for any suffix of the trace where x holds,
there is a suffix of that suffix where y holds:

da, 91, 42, 43, ...
q1; 42, 43, --- y holds

x holds 42, 93, ---
g3, -

16

Third LTL Operator: X (Next)

The LTL formula Xp holds for a trace

q0; 91, 92, 43, ---,

if and only if it holds for the suffix 41, g2, g3, -..
q0, 91, 92, 43, ---
q1, 42, 43, .-

q2; 43, ---
g3y v

17

Fourth LTL Operator: U (Until)
The LTL formula p1Ups holds for a trace

q0, 4915 925 43 ---,

if and only if p» holds for some suffix of the trace, and py
holds for all previous suffixes:

qdo, 91, 92, 43, ---
g1, 42, 43, .-
q2, 43, ---

g3, ---
m holds

p2 holds (and maybe p; also)

18

Examples: What do they mean?

Remember:
Gp p holds in all states

°GFp F hold tuall
e p p holds eventually
p holds infinitely often Xp p holds in the next state
oFGp
Eventually, p holds henceforth
0G(p=>Fq)

Every p is eventually followed by a q
oF(p=>(XXaq))
Every p is followed by a g two steps later

19

Temporal Operators & Relationships

G, F, X, U: All express properties along system traces

oCan you express G p purely in terms of F, p, and
Boolean operators ?

Gp=—F-

o How about F in terms of U?
Fo¢=trueU d

o What about X in terms of G, F, or U?

Cannot be done

20

Examples in Temporal Logic

“No more than one processor (in a 2-processor system)
should have a cache line in write mode”

wr, / wr, are respectively true if processor 1/ 2 has
the line in write mode

“The grant signal must be asserted at some time after
the request signal is asserted”

Signals: grant, req

“A request signal must receive an acknowledge and the
request should stay asserted until the acknowledge
signal is received”

Signals: req, ack
21

Safety vs. Liveness

Safety property

“something bad must not happen”
E.g.: system should not crash
Finite length error trace

Liveness property
“something good must happen”

E.g.: every packet sent must be received at its
destination

Infinite length error trace

22

Asserts in PSL/Sugar (Verilog flavor)

G (req =2 X(X(X grant))))
assert always req - next[3] (grant);

G(req = X (ack U grant))
assert always req - next (ack until grant);

23

From Temporal Logic to Monitors

A monitor for a temporal logic formula
IS a state machine

represents all the behaviors that satisfy the temporal
logic formula

Why are monitors useful?

24

Monitor for G p, p a Boolean formula

el

'p

25

Monitor for F p, p a Boolean formula

26

Monitor for GFp, p a Boolean formula

27

Some User Reactions

“We're using SVA. | expect new RTL to be as littered with
assertions as the Wisconsin countryside is littered with cheese
shops & taverns.”

Make it easy to write and embed in RTL

“Started using Sugar PSL and OVA. Not clear yet as to the
advantages. You have to debug the assertions, too!”
Specifications must be debugged too!

“We use 0-In assertions. | would say that our current maturity with
the O-In tools puts us at 50% efficiency. In some instances the
assertions have little to no value. In some instances they are

essential.” 1raining and improved scalability needed

What more can one say!)
Compiled by John Cooley, at DVCon’'05

