
Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanjit A. Seshia
UC Berkeley
EECS 144/244
Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury,
S. A. Seshia, All rights reserved

Formal Specification: Temporal Logic

2

Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the
design

consistent
with the original
specification?

Is what I think I want
what I really want?

3

Today’s Lecture

Formal (mathematical) Specification

How do you formally state

what your design should do?

4

Temporal Logic

 A mathematical way to express properties of a
system over time
 E.g., Behavior of an FSM or Hybrid System

 Many flavors of temporal logic
 Propositional temporal logic (we will study this)

 Real-time temporal logic

 Amir Pnueli won ACM Turing Award, in part, for the
idea of using temporal logic for specification

5

Example: Specification of the SpaceWire Protocol
(European Space Agency standard)

6

Current status of property specification in HW

Usage of formal property specification languages is
becoming widespread

– 68% in 2007 (John Cooley, DVCon’07)
– Properties often called “assertions”

Properties are used not just in formal verification, but also
in simulation

– “Assertion-Based Verification” (ABV)

Some property specification languages: PSL/Sugar,
System Verilog Assertions (SVA), OVA, OVL, etc.

All of these are just ways of writing variants of
Temporal Logic

8

Lecture Outline

Behavior/Trace/Execution

Specifying Properties: Safety vs. Liveness

Temporal Logic (its 2 main flavors)

Synthesizing Monitors from Properties

9

Execution Trace of a State Machine

10

Propositional Logic on Traces

11

Linear Temporal Logic (LTL)

LTL formulas: Statements about an execution trace

Here, p is propositional logic formula and is either a
propositional logic or an LTL formula.

formula meaning

12

Linear Temporal Logic (LTL)

LTL formulas: Statements about an execution trace

Here, p is propositional logic formula and is either a
propositional logic or an LTL formula.

formula mnemonic

proposition

globally

finally, future, eventually

next state

until

13

First LTL Operator: G (Globally)

14

Second LTL Operator: F (Eventually, Finally)

15

Propositional Linear Temporal Logic

LTL operators can apply to LTL formulas as well as to
propositional logic formulas.

E.g. Every input x is eventually followed by an output y

Globally

(at any point in time)

If x occurs

It is eventually followed by y

16

Every input x is eventually followed by an output y

x holds
y holds

17

Third LTL Operator: X (Next)

18

Fourth LTL Operator: U (Until)

19

Examples: What do they mean?

 G F p
p holds infinitely often

 F G p
Eventually, p holds henceforth

 G(p => F q)
Every p is eventually followed by a q

 F(p => (X X q))
Every p is followed by a q two steps later

Remember:

Gp p holds in all states

Fp p holds eventually

Xp p holds in the next state

20

Temporal Operators & Relationships

G, F, X, U: All express properties along system traces

Can you express G p purely in terms of F, p, and
Boolean operators ?

 How about F in terms of U?

 What about X in terms of G, F, or U?

Cannot be done

21

Examples in Temporal Logic

“No more than one processor (in a 2-processor system)
should have a cache line in write mode”
• wr1 / wr2 are respectively true if processor 1 / 2 has

the line in write mode

“The grant signal must be asserted at some time after
the request signal is asserted”
• Signals: grant, req

“A request signal must receive an acknowledge and the
request should stay asserted until the acknowledge
signal is received”
• Signals: req, ack

22

Safety vs. Liveness

Safety property

“something bad must not happen”

E.g.: system should not crash

Finite length error trace

Liveness property

“something good must happen”

E.g.: every packet sent must be received at its
destination

Infinite length error trace

23

Asserts in PSL/Sugar (Verilog flavor)

G (req X(X(X grant))))

assert always req next[3] (grant);

G(req X (ack U grant))

assert always req next (ack until grant);

24

From Temporal Logic to Monitors

A monitor for a temporal logic formula

is a state machine

represents all the behaviors that satisfy the temporal
logic formula

Why are monitors useful?

25

Monitor for G p, p a Boolean formula

! p

Error

Start
p

26

Monitor for F p, p a Boolean formula

p

Seen p

Start
! p

27

Monitor for GFp, p a Boolean formula

p

Seen p

Start
! p

28

Some User Reactions

“We're using SVA. I expect new RTL to be as littered with
assertions as the Wisconsin countryside is littered with cheese
shops & taverns.”

“Started using Sugar PSL and OVA. Not clear yet as to the
advantages. You have to debug the assertions, too!”

“We use 0-In assertions. I would say that our current maturity with
the 0-In tools puts us at 50% efficiency. In some instances the
assertions have little to no value. In some instances they are
essential.”

“Awesome Baby!!!!!!!!! Use PSL and they are very useful. ”

Compiled by John Cooley, at DVCon’05

Make it easy to write and embed in RTL

Specifications must be debugged too!

Training and improved scalability needed

What more can one say!

