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Hybrid systems

A hybrid system is a tuple
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Hybrid system semantics

A hybrid time basis τ is a finite or an infinite sequence of intervals

Ij = {t ∈ R : tj ≤ t ≤ t
′
j}

where tj ≤ t′j and t′j = tj+1
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Hybrid systems execution
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Applications

• Abstract uninteresting dynamics
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Digitally controlled PLL
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Need for an interchange format

• Hybrid Systems (HS) have proven to be a powerful design representation for system

-level design.

• There has been a proliferation of tool for simulation, verification and synthesis of HS

but...

• ... all based on different models.

• The need for and interchange format (IF) is very much felt.
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Need for an interchange format

• Hybrid Systems (HS) have proven to be a powerful design representation for system

-level design.

• There has been a proliferation of tool for simulation, verification and synthesis of HS

but...

• ... all based on different models.

• The need for and interchange format (IF) is very much felt.

• We presented a proposal for an IF (HSCC2005).

• We have defined its semantics (HSCC2006).

• Here we summarize our findings and justify our choices.
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Interchange Formats in EDA
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Interchange Formats in EDA: a Brief History

• Electronic Design Interchange Format (EDIF)
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• Electronic Design Interchange Format (EDIF)

• Library Exchange Format / Design Exchange Format (LEF / DEF)
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Interchange Formats in EDA: a Brief History

• Electronic Design Interchange Format (EDIF)

• Library Exchange Format / Design Exchange Format (LEF / DEF)

• Berkeley Logic Interchange Format (BLIF)

• Hybrid System Interchange Format (HSIF)
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Interchange Format: Approaches

• An interchange format only defines the syntax of a common data structure (first version

of EDIF):

– very flexible,

– ambiguous.
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Interchange Format: Approaches

• An interchange format only defines the syntax of a common data structure (first version

of EDIF):

– very flexible,

– ambiguous.

• An interchange Format defines the common model of computation (BLIF,HSIF):

– unambiguous. BLIF uses a model that is universal for logic but it is used for a

restricted domain (boolean algebra). HSIF allows direct analysis of models, but in

HS there is a great degree of semantic differences across tools.

– Not flexible. It reduces the degree of freedom of the tools that share the date using
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Interchange Format: Approaches

• An interchange format only defines the syntax of a common data structure (first version

of EDIF):

– very flexible,

– ambiguous.

• An interchange Format defines the common model of computation (BLIF,HSIF):

– unambiguous. BLIF uses a model that is universal for logic but it is used for a

restricted domain (boolean algebra). HSIF allows direct analysis of models, but in

HS there is a great degree of semantic differences across tools.

– Not flexible. It reduces the degree of freedom of the tools that share the date using

the format.

• An interchange format has a formal abstract semantics that can be refined into concrete

semantics

– An interchange format must be capable of capturing the largest possible class of

models in use today and even tomorrow

– At the same time has to have precise semantics to avoid ambiguity.
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The Big Picture
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Interchange Format Syntax and Abstract Semantics
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Preliminary Definitions

Valuations of variables : Given a variable with name v, its value is denoted by val(v).

Valuation of tuples of variables : If V is the tuple (v1, ..., vn) then val(V ) =

(val(v1), ..., val(vn)).

Valuation of sets of variables : If V is the set {v1, ..., vn} then its valuation is the

multi-set val(V ) = {val(v1), ..., val(vn)}.

Valuations domain : For a set of variables V , the set of all possible valuations of V is

denoted by R(V ).

Lifting : Given a subset D ⊆ R(V ) and V ′ ⊇ V , the lifting of D to V ′ is given by the

operator L(V ′)(D) = {p′ ∈ R(V ′) : p′|V ∈ RV }.
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Definition of a Hybrid System: Syntax

A hybrid system is a tuple H = (V, E,D, I, σ, ω, ρ) where:
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Definition of a Hybrid System: Syntax

A hybrid system is a tuple H = (V, E,D, I, σ, ω, ρ) where:

• V = {v1, ..., vn} is a set of variables,

• E = {e1, ..., em} is a set of equations in the variables V ,

• D ⊆ 2R(V ) is a set of domains, or regions, of the possible valuations of the variables

V ,

• I ⊆ N is a set of indexes,

• σ : 2R(V ) → 2I is a function that associates a set of indexes to each domain

• ω : I → 2E is a function that associates a set of equations to each index,

• ρ : 2R(V )×2R(V )×R(V ) → 2R(V ) is a function to reset the values of the variables.

• Vt = {vt1, ..., vtn} is a set of temporary variables,

• π : E → {1, 2, . . . , |E|} is an equation ordering function.
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Syntax Example

A bouncing ball can be modeled as a hybrid system with V = {y, v}, E = {v̇ =

−g, ẏ = v}. There are two domains: D1 = {{val(y), val(v)} : val(y) ≤ 0 ∧
val(v) < 0} and D2 = {{val(y), val(v)} : val(y) > 0}, hence D = {D1, D2};

I = {1}, σ(D1) = σ(D2) = {1}, ω(1) = E. The reset function is defined as follows:

ρ(D2, D1, val(V )) = {val(y),−εval(v)}.
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Definition of a Hybrid System: Semantics

The semantics of a hybrid system H is defined by the tuple

(H, B, T, resolve, init, update) where:
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Definition of a Hybrid System: Semantics

The semantics of a hybrid system H is defined by the tuple

(H, B, T, resolve, init, update) where:

• H is a hybrid system;

• B is a set of pairs (γ, t) where γ ∈ R(H.V ) is a multi-set of possible values of the

hybrid system variables and t ∈ R+ is a time stamp;

• T is a time stamper:

– selects the next time stamp,

– decides whether a new pair (val, t) can be added to the set B;

• resolve, init and update are three algorithms.
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Time Stamper Automaton
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Time Stamper Automaton

• Initialization: B = (V0, 0).
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Time Stamper Automaton

• Initialization: B = (V0, 0).

• Set of actions: next, resolve, init, update.
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Time Stamper Automaton

• Initialization: B = (V0, 0).

• Set of actions: next, resolve, init, update.

• Set of conditions: true, false, error thresholds, domainchange.
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Time Stamper Automaton

• Initialization: B = (V0, 0).

• Set of actions: next, resolve, init, update.

• Set of conditions: true, false, error thresholds, domainchange.

• Valuation and time stamp acceptance: B = B ∪ (V(V ), t).
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Resolve Algorithm

resolve(t)

D′ ⇐ {D ∈ D | val(Vt) ∈ D} // Compute the set of active domains.

I ⇐ ∅, Et ⇐ ∅
I ⇐ ∪D∈D′σ(D) // Collect all active dynamics and components.

for all i ∈ I do

Et = Et ∪ ω(i) // Collect all active equations.

end for

sort(Et, π) // Order the equations.

for all ei ∈ Et do

solve(ei,t)

end for

D′′ ⇐ {D ∈ D | val(Vt) ∈ D} // Set of active domains after the computation.

markchange(D′, D′′) // Check if the set of active domains has changed.
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Refinement into Concrete Semantics

• Define the time stamper automaton: conditions and actions

– Multiple iterations for fixed point or event detection

• Define the next function

– Different algorithm to decide the next time stamp

• Define the domainchange function

– Different transition semantics

• Define the solve function

– Different integration methods
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Composition and Hierarchy
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Running Example

(a) Half-wave rectifier (b) Block diagram of the half-wave rectifier
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Composition of Hybrid Systems

Given H1 = (V1, Vt1, E1,D1, I1, σ1, ω1, ρ1, π1) and

H2 = (V2, Vt2, E2,D2, I2, σ2, ω2, ρ2, π2), H = H1 || H2 is such that:
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Composition of Hybrid Systems

Given H1 = (V1, Vt1, E1,D1, I1, σ1, ω1, ρ1, π1) and

H2 = (V2, Vt2, E2,D2, I2, σ2, ω2, ρ2, π2), H = H1 || H2 is such that:

• V = V1 ∪ V2, Vt = Vt1 ∪ Vt2, E = E1 ∪ E2, D = L(V )(D1) ∪ L(V )(D2)

• I = {1, ..., |I1| + |I2|}

• ∀D ∈ 2R(V ), σ(D) = σ1(D|V1) ∪ (σ2 + |I1| + 1)(D|V2) where (σ + k)(D) =

{n + k : n ∈ σ(D)} is a shifting of the indexes;
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ω(i) = ω1(i), if 1 ≤ i ≤ |I1|,
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• V = V1 ∪ V2, Vt = Vt1 ∪ Vt2, E = E1 ∪ E2, D = L(V )(D1) ∪ L(V )(D2)

• I = {1, ..., |I1| + |I2|}

• ∀D ∈ 2R(V ), σ(D) = σ1(D|V1) ∪ (σ2 + |I1| + 1)(D|V2) where (σ + k)(D) =

{n + k : n ∈ σ(D)} is a shifting of the indexes;

•
ω(i) = ω1(i), if 1 ≤ i ≤ |I1|,
ω(i) = ω2(i − |I1|), if |I1| + 1 ≤ i ≤ |I1| + |I2|

• π(e) =



π1(e) if e ∈ E1

π2(e) + |I2| + 1 if e ∈ E2
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Composition of Hybrid Systems

Given H1 = (V1, Vt1, E1,D1, I1, σ1, ω1, ρ1, π1) and

H2 = (V2, Vt2, E2,D2, I2, σ2, ω2, ρ2, π2), H = H1 || H2 is such that:

• V = V1 ∪ V2, Vt = Vt1 ∪ Vt2, E = E1 ∪ E2, D = L(V )(D1) ∪ L(V )(D2)

• I = {1, ..., |I1| + |I2|}

• ∀D ∈ 2R(V ), σ(D) = σ1(D|V1) ∪ (σ2 + |I1| + 1)(D|V2) where (σ + k)(D) =

{n + k : n ∈ σ(D)} is a shifting of the indexes;

•
ω(i) = ω1(i), if 1 ≤ i ≤ |I1|,
ω(i) = ω2(i − |I1|), if |I1| + 1 ≤ i ≤ |I1| + |I2|

• π(e) =



π1(e) if e ∈ E1

π2(e) + |I2| + 1 if e ∈ E2

•
ρ(Di, Dj, val(V )) = L(V )(ρ1(Di|V1

, Dj|V1
, val(V1))∪

L(V )(ρ2(Di|V2
, Dj|V2

, val(V2))
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Composition Example
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Composition Example

diode = Rd || Id

• diode.V = {va, vk, id},

• diode.E = {e1, e2},

• diode.D = {D1, D2},

• I = {1, 2},

• diode.σ(D1) = {1},

diode.σ(D2) = {2},

• ω(1) = e1, ω(2) = e2,
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Representing Hierarchy

(c) Rect = vs || (Rd || I0) ||GND ||SUB ||
(R || C)
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Representing Hierarchy

(c) Rect = vs || (Rd || I0) ||GND ||SUB ||
(R || C)

(d) Component Tree (e) Scheduler Tree

Let G : SN → 2SN be a function that associates to each scheduler the set of its

children, and let Π : SN → {1, ..., |SN |} be a global ordering of the nodes. Let

I : C → S be a function that associates to each component it’s scheduler.
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Scheduler’s resolve Algorithm

resolve(t)

children ⇐ G(s)
if children = ∅ then

// s is a leaf, proceed to solve the equations and end recursion
D′ ⇐ {D ∈ I−1(s).D | val(I−1(s).Vt) ∈ D}
J ⇐ ∪D∈D′s.σ(D)
Et ⇐ ∪i∈Js.ω(i)
Et ⇐ sort(Et, s.π)
for all ei ∈ Et do
solve(ei, t)

end for
markchange ( D′, val(I−1(s).Vt) )

else
// s is not a leaf, continue the recursion

children ⇐ sort(children, Π)
for all si ∈ children do

si.resolve(t)

end for
end if

Alessandro Pinto, U.C. Berkeley, “Interchange Semantics for Hybrid System Models”, Padova, March 3, 2006



Scheduler’s resolve Algorithm

resolve(t)

children ⇐ G(s)
if children = ∅ then

// s is a leaf, proceed to solve the equations and end recursion
D′ ⇐ {D ∈ I−1(s).D | val(I−1(s).Vt) ∈ D}
J ⇐ ∪D∈D′s.σ(D)
Et ⇐ ∪i∈Js.ω(i)
Et ⇐ sort(Et, s.π)
for all ei ∈ Et do
solve(ei, t)

end for
markchange ( D′, val(I−1(s).Vt) )

else
// s is not a leaf, continue the recursion

children ⇐ sort(children, Π)
for all si ∈ children do

si.resolve(t)

end for
end if

Alessandro Pinto, U.C. Berkeley, “Interchange Semantics for Hybrid System Models”, Padova, March 3, 2006



Scheduler’s resolve Algorithm

resolve(t)

children ⇐ G(s)
if children = ∅ then

// s is a leaf, proceed to solve the equations and end recursion
D′ ⇐ {D ∈ I−1(s).D | val(I−1(s).Vt) ∈ D}
J ⇐ ∪D∈D′s.σ(D)
Et ⇐ ∪i∈Js.ω(i)
Et ⇐ sort(Et, s.π)
for all ei ∈ Et do
solve(ei, t)

end for
markchange ( D′, val(I−1(s).Vt) )

else
// s is not a leaf, continue the recursion

children ⇐ sort(children, Π)
for all si ∈ children do

si.resolve(t)

end for
end if

Alessandro Pinto, U.C. Berkeley, “Interchange Semantics for Hybrid System Models”, Padova, March 3, 2006



Examples and Conclusions
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Examples

Structure of

CheckMate programs Structure of HyTech programs

Structure of HyVisual programs
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Conclusions and Future Work

• We have presented an abstract semantics for hybrid systems. It can be refined by

specifying:

– the time stamper automaton

– the functions domainchange, solve, next

• We have shown how the structure of hybrid systems can be captured in the interchange

semantics.

• We have implemented a prototype of the half-wave rectifier in Metropolis and can

be downloaded at http://embedded.eecs.berkeley.edu/hyinfo.

• Future work:

– Implementation of a Metropolis library for the interchange format;

– Integration of a DAE solver (in collaboration with Jaijeet Roychowdhury, University

of Minnesota)

– Implementation of translators to/from known tools
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