
Processor Local Bus Functional Model Toolkit

User’s Manual

Version 4.9.2

SA-14-2542-11

Eleventh Edition (June 2003)

This edition of Processor Local Bus Functional Model Toolkit User’s Manual applies to the IBM PLB toolkit, until
otherwise indicated in new versions or application notes.

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the products in this publication, whether individually or as one or more groups, will
meet your requirements or that the publication or the accompanying product descriptions are error-free.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or program(s) described in this publication at any time.

It is possible that this publication may contain references to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country. Any reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM’s licensed program. You can use any functionally equivalent program instead.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the written permission of IBM.

Requests for copies of this publication and for technical information about IBM products should be made to your
IBM Authorized Dealer or your IBM Marketing Representative.

Address comments about this publication to:

IBM Corporation
Department YM5A
P.O. Box 12195
Research Triangle Park, NC 27709

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

 Copyright International Business Machines Corporation 1996, 2003. All rights reserved

4 3 2 1

Notice to U.S. Government Users – Documentation Related to Restricted Rights – Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Patents and Trademarks

IBM may have patents or pending patent applications covering the subject matter in this publication. The
furnishing of this publication does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904, United States
of America.

The following terms are trademarks of IBM Corporation:

IBM
CoreConnect
Other terms which are trademarks are the property of their respective owners.

Contents

Figures . ix
Tables. xi
About This Book . xiii

Chapter 1. PLB Toolkit Overview .1
PLB Toolkit Features . 2

PLB Features . 2

PLB Implementation . 4

Chapter 2. PLB Toolkit Environment .5
Bus Functional Compiler and ReadMe Files . 5

Example Test Case File . 5

VHDL/Verilog Files . 6

VHDL/Verilog Files for Crossbar Arbiter (with crossbar monitor) . 7

Chapter 3. PLB Toolkit Test Bench .9
Programmable PLB Data Bus Width and Automatic Replication . 9

Instantiating PLB Slave Designs Under Test . 10

Instantiating PLB Master Designs Under Test . 10

VHDL Signal Types . 10

IEEE Packages . 10

Chapter 4. PLB Bus Functional Compiler .12
Simulator Configuration . 12

Declarations File Access . 12

Invoking the Bus Functional Compiler . 13

Initializing the Bus Functional Models . 13

Chapter 5. PLB Bus Models .14
Running the 4X Bus Models in 3X Mode . 15

PLB Master Model . 16
Master Model Operation . 17
Decode Unit . 17
Internal Master Data Memory . 18
Command Modes . 18
Burst Operations . 19
Conversion Cycles with Different PLB Device Sizes . 20
General Purpose and Branch Processor Registers . 20
ALU Instructions . 20
Branch Instructions . 21

PLB Slave Model . 22
Slave Model Operation . 23
Slave Bus Commands and Modes . 23
Version 4.9.2 Contents v

Command Modes . 23
Internal Slave Data Memory Structure and Look-Up Algorithms . 24
Ordered Write Cycles (PLB_ordered) . 25
Internal Slave Memory Checking) . 26
Burst Modes . 26
Conversion Cycles with Different PLB Device Sizes . 26
Pipeline Modes . 27

PLB Monitor . 27

Chapter 6. PLB Bus Functional Language .29
BFM Device Configuration Commands . 29

Set_Device () Command . 29

PLB Alias Commands . 29
Set_Alias () Command . 30

PLB Master Commands . 30
Configure () Command . 30

BFL Mode Configuration Parameters . 30
Automatic Command Mode Configuration Parameters . 30
Automatic Data Mode Configuration Parameters . 34

Mem_Init () Command . 34
Reg_Init () Command . 35
Read () and Write () Bus Cycle Commands . 35
Mem_Update () Command . 37
Reg_Update () Command . 38
Send () Command . 38
Wait () Command . 38
Branch () Command . 39
Move () Command . 39
Compare () Command . 40
Add () Command . 40
Sub () Command . 40
AND () Command . 40
OR () Command . 41
Shift_left() Command . 41
Shift_right() Command . 41

PLB Slave Commands . 41
Configure () Command . 42

BFL Mode Configuration Parameters . 42
Automatic Command Mode Configuration Parameters . 44
Automatic Data Mode Configuration Parameters . 45

Mem_Init () Command . 46
Read_Response (), Write_Response () Commands . 46
Merr_Init () Commands . 47
Mem_Check () Command . 48

PLB Monitor Commands . 48
Configure () Command . 48
vi Processor Local Bus Functional Model Toolkit Version 4.9.2

Configuration Parameters . 48
Read / Write() Commands . 50

Sample Monitor Read/Write BFL . 50
Report() Command . 51

Chapter 7. PLB Bus Timing .53
Read Transfers . 53

Write Transfers . 55

Transfer Abort . 56

Back-to-Back Read Transfers . 57

Back-to-Back Write Transfers . 59

Back-to-Back Read - Write - Read - Write Transfers . 61

Four-word Line Read Transfers . 63

Four-word Line Write Transfers . 65

Four-word Line Read Followed By Four-word Line Write Transfers . 67

Chapter 8. PLB Compliance Checks .69
Monitor Model . 69

Terminology . 69

Address Map Set-up Error . 69

Slave Interface/PLB Core OR Logic Error . 69

Signal Summary Table . 70

Master Interface Checks . 72
Mn_request . 72
Mn_priority(0:1) . 72
Mn_busLock . 72
Mn_RNW . 73
Mn_BE(0:3) . 73
Mn_size(0:3) . 74
Mn_type(0:2) . 75
Mn_TAttribute . 75
Mn_lockErr . 75
Mn_ABus/Mn_UABus . 76
Mn_abort . 76
Mn_wrDBus(0: PLB DATA BUS WIDTH) . 76
Mn_rdBurst . 77
Mn_wrBurst . 77
PLB_MnAddrAck . 78
PLB_MnRearbitrate . 78
PLB_MnWrDAck . 78
PLB_MnRdDAck . 79
PLB_MnRdWdAddr(0:3) . 79
PLB_MnBusy . 79
PLB_MRdErr/PLB_MWrErr . 79
PLB_MSSize . 79
Version 4.9.2 Contents vii

PLB_MnTimeout . 80

Slave Interface Checks . 80
PLB_PAValid . 80
PLB_SAValid . 80
Sln_addrAck . 81
Sln_wait . 82
Sln_rearbitrate . 82
PLB_rd/wrpendReq . 82
PLB_MasterID(0:3) . 82
PLB_rd/wrpendPri(0:1) . 83
PLB_reqPri(0:1) . 83
PLB_wrDBus . 83
Sln_wrDAck . 83
Sln_wrComp . 84
Sln_wrBTerm . 84
Sln_rdDBus . 84
Sln_rdWdAddr(0:3) . 85
Sln_rdDAck . 85
Sln_rdComp . 85
Sln_rdBTerm . 86
Sln_MBusy(0:15) . 86
Sln_Mrd/wrErr(0:15) . 86

PLB Interface Checks . 87
PLB_RNW . 87
PLB_BE . 87
PLB_size(0:3) . 87
PLB_type . 88
PLB_TAttribute . 88
PLB_lockErr . 88
PLB_ABus/PLB_UAbus . 89
PLB_busLock . 89
PLB_rdBurst . 90
PLB_wrBurst . 90
PLB_rdPrim . 90
PLB_wrPrim . 91
PLB_Abort . 91
PLB_SrdDbus . 91

Time Out Handshake Checks (For 3.x PLB) . 91
PLB_MnWrBTerm . 91
PLB_MnRdBTerm . 92
PLB_MnErr . 92

Index . 93
viii Processor Local Bus Functional Model Toolkit Version 4.9.2

Figures

Figure 1. Processor Local Bus Interconnection . 1
Figure 2. Physical Implementation of the PLB . 4
Figure 3. PLB Toolkit Testbench(plb_complex.vhd/.v) . 9
Figure 4. PLB Master Interface. 16
Figure 5. PLB Master Model . 17
Figure 6. PLB Slave Interface. 22
Figure 7. PLB Monitor Interface . 28
Figure 8. Read Transfers . 53
Figure 9. Write Transfers . 55
Figure 10. Transfer Abort . 56
Figure 11. Back-to-Back Read Transfers . 57
Figure 12. Back-to-Back Write Transfers . 59
Figure 13. Back-to-Back Read - Write - Read - Write. 61
Figure 14. Four Word Line Read . 63
Figure 15. Four Word Line Write . 65
Figure 16. Four Word Line Read followed by Four Word Line Write . 67
Version 4.9.2 Figures ix

x Processor Local Bus Functional Model Toolkit Version 4.9.2

Tables

Table 1. Summary of PLB Signals . 70
Table 2. Mn_type Values . 74
Table 3. Mn_size Values . 74
Table 4. PLB_type Values . 88
Version 4.9.2 Tables xi

xii Processor Local Bus Functional Model Toolkit Version 4.9.2

About This Book

This book begins with an overview followed by detailed information on Processor Local Bus
Functional Model Toolkit environment, testbench, bus functional compiler, models and language used
in simulation.

The Processor Local Bus Functional Model Toolkit features:

• Unit and subsystem level simulation of logic designs which comply with PLB architecture
specifications.

• VHDL and verilog source model solutions with simulator independence.

• Bus functional command definition which generates and responds to different transaction types
with varying delays.

• Bus functional compiler which generates model initialization files from bus functional commands.

• Bus protocol checking through the use of general purpose bus monitors.

• Read and write data checking in masters and slaves.

• Model inter-communication bus for event and transaction synchronization.

• Enables peripheral developers to verify and debug designs to assure bus compliance.

• Faster simulation run-times than PPC BFM or FFM to generate bus traffic.

• Allows ‘what if’ simulation scenarios using different master and slave configurations.

• Flexible and user-friendly bus functional language (BFL) for quick generation of a variety of bus
transactions.

• Hierarchical solution to verification.

Who Should Use This Book

This book is for hardware, software, and application developers who need to understand Core+ASIC
development and system-on-a-chip (SOC) designs. The audience should understand embedded
system design, operating systems, and the principles of computer organization.

Since the PLB model toolkit is designed to comply with the architectural specification, toolkit users
need to have a working level understanding of the architectural specification to be able to develop test
cases and simulate using the bus model toolkit. The user should also be familiar with UNIX type
operating systems, basic digital logic design and simulation, and the simulator which is used for the
verification process.

Related Publications

The following publications contain related information:

Processor Local Bus Architecture Specifications

On-Chip Peripheral Bus Architecture Specifications

Device Control Register Bus Architecture Specifications

Processor Local Bus Toolkit User’s Manual

On-Chip Peripheral Bus Toolkit User’s Manual
Version 4.9.2 About This Book xiii

Device Control Register Bus Toolkit User’s Manual

Processor Local Bus Arbiter Core User’s Manual

On-Chip Peripheral Bus Arbiter Core User’s Manual

PLB to OPB Bridge Core User’s Manual

OPB to PLB Bridge Core User’s Manual

How This Book is Organized

This book is organized as follows:

Chapter 1, “PLB Toolkit Overview”

Chapter 2, “PLB Toolkit Environment”

Chapter 3, “PLB Toolkit Test Bench”

Chapter 4, “PLB Bus Functional Compiler”

Chapter 5, “PLB Bus Models”

Chapter 6, “PLB Bus Functional Language”

Chapter 7, “PLB Bus Timing”

Chapter 8, “PLB Compliance Checks”

To help readers find material in these chapters, the book contains:

• “Contents” on page v

• “Figures” on page ix

• “Tables” on page xi

• “Index” on page 93
xiv Processor Local Bus Functional Model Toolkit Version 4.9.2

Chapter 1. PLB Toolkit Overview

Processor local bus (PLB) functional model toolkit provides unit and system level simulation and
verification of ASICs and logic designs which comply with PLB architecture specifications. The toolkit
enables the designer to accelerate the design cycle time by identifying and addressing possible
problems at an earlier stage of the design cycle.

The processor local bus (PLB) is designed to interface directly with the processor cores. The primary
goal of the PLB is to provide a standard interface between the processor cores and integrated bus
controllers such that a library of processor cores and bus controllers can be developed for use in the
Core+ASIC development. The PLB model toolkit facilitates unit and subsystem level simulation of
logic designs which comply with the PLB architecture. See the PLB architecture specifications for
more information.

Figure 1 demonstrates how the processor local bus is inter connected for the purpose of Core+ASIC
development or system-on-a-chip design.

As shown in Figure 1, the on-chip bus structure provides a link between the processor core and other
peripherals which consist of PLB and OPB master and slave devices.

The processor local bus (PLB) is the high performance bus used to access memory through the bus
interface units. The two bus interface units shown above: external peripheral controller and memory
controller are the PLB slaves. The processor core has two PLB master connections, one for
instruction cache and one for data cache. Attached to the PLB is also the direct memory access
(DMA) controller, which is a PLB master device used in data intensive applications to improve data
transfer performance.

Lower performance peripherals (such as OPB master, slave, and other internal peripherals) are
attached to the on-chip peripheral bus (OPB). A bridge is provided between the PLB and OPB to
enable data transfer by PLB masters to and from OPB slaves. In the above example we have two

O
n-

C
hi

p
P

er
ip

he
ra

l B
us

Processor Local Bus

OPB

P
LB

OPB

Internal

OPB
Master

Slave

Peripheral

PLB to OPB
Bridge

Figure 1. Processor Local Bus Interconnection

D
C

R
 B

us
D

C
R

 B
us

Arbiter

A
rb

ite
r

Processor Core

Data Instruction
Cache UnitCache Unit

OPB to PLB
Bridge

Memory Controller

SDRAM
Controller

External Peripheral Controller

External
Peripheral

External
Bus Master

DMA
Controller DCR Bus

SRAM
ROM

DCR Bus
Version 4.9.2 PLB Toolkit Overview 1

bridges, a PLB to OPB bridge which is a slave on the PLB and a master on the OPB and an OPB to
PLB bridge which is a slave on the OPB and a master on the PLB. OPB peripherals may also
comprise DMA peripherals.

The device control register (DCR) bus is used primarily for accessing status and control registers
within the various PLB and OPB masters and slaves. It is meant to off-load the PLB from the lower
performance status and control read and write transfers. The DCR bus architecture allows data
transfers among OPB peripherals to occur independently from, and concurrent with, data transfers
between the processor and memory, or among other PLB devices.

The toolkit allows users to initiate PLB master cycles and provide PLB slave responses through a bus
functional language which is parameterized according to the architectural specification. Data
checking and bus protocol monitoring also provide a way for users to automate the verification of PLB
designs under development. Source files in ASCII format are distributed with the toolkit, which include
behavioral models, programs, and documentation.

1.1 PLB Toolkit Features

PLB toolkit features:

• Unit and subsystem level simulation of logic designs which comply with PLB architecture
specifications.

• VHDL and verilog source model solutions with simulator independence.

• Bus functional command definition which generates and responds to different transaction types
with varying delays.

• Bus functional compiler which generates model initialization files from bus functional commands.

• Bus protocol checking through the use of general purpose bus monitors.

• Read and write data checking in masters and slaves.

• Model inter-communication bus for event and transaction synchronization.

• Enables peripheral developers to verify and debug designs to assure bus compliance.

• Faster simulation run-times than PPC BFM or FFM to generate bus traffic.

• Allows ‘what if’ simulation scenarios using different master and slave configurations.

• Flexible and user-friendly bus functional language (BFL) for quick generation of a variety of bus
transactions.

• Hierarchical solution to verification.

1.2 PLB Features

The PLB model toolkit enables the user to simulate the following PLB features.

• Separate address bus, read data bus and write data bus for each bus master. Shared address bus,
read data bus, and write data bus for all bus slaves.
2 Processor Local Bus Functional Model Toolkit Version 4.9.2

• Separate read data bus and write data bus transfer qualifiers allow overlap of read and write
transfers. Maximum bandwidth of the bus is two transfers per cycle when a read and write
operation is overlapped.

• Read operations may be pipelined allowing continuous bus utilization when a master is performing
back-to-back read operations. For continuous back-to-back read or write transfers, the maximum
bandwidth of the bus is one transfer per cycle.

• Byte enables specify bytes within a word allowing for byte, halfword, and word transfers as well as
unaligned halfword transfers and 3-byte transfers.

• Packing and unpacking of data is performed within each PLB slave. All masters and slaves attach
to the PLB as 128-bit, 64-bit, and 32-bit devices. Slaves may support 8-bit and 16-bit bus widths if
required. PLB protocol does not include support for halfword or byte devices. All transfer requests
for bytes within an aligned word will be transferred on the PLB in one data transfer cycle.

• A PLB master may request a16-byte, 32-byte, or 64-byte line of data. These requests will result in
data being transferred to the master in 4, 8, or 16 word transfers on the PLB. For non-line transfers,
transfer width will match the width of the requested data as indicated by the byte enables.

• PLB slaves provide a read word address(Sl_rdWdAddr) allowing bus slaves to fetch line data in
any order (that is, target word first or sequentially). All masters are required to sample the word
address for line read operations and steer the word to the appropriate location within the line based
on the word address from the slave. See PLB Architecture specification for more information

• Sequential burst protocol provides a mechanism for a master to request a burst of word, halfword,
or byte transfers to/from any slave.

• Abort signal provides the master the capability to abort a request late in the cycle.

• Guarded and unguarded memory transfers allow a slave device to enable or disable the
prefetching of instructions or data.

• Four levels of request priority for each master allow PLB implementations with various arbitration
schemes. Master may lock bus arbitration allowing for atomic operations.

• Slaves provide error reporting and busy acknowledge to each master on the PLB.
Version 4.9.2 PLB Toolkit Overview 3

1.3 PLB Implementation

The PLB implementation consists of a PLB core to which all masters and slaves are attached. The
logic within the PLB core consists of a central bus arbiter and the necessary bus control and gating
logic.

The PLB architecture supports up to sixteen master devices. However, PLB core implementations
supporting less than sixteen masters are allowed. The PLB architecture also supports any number of
slave devices. However, it should be noted that the number of masters and slaves attached to a PLB
core in a particular system will directly affect the performance of the PLB core in that system.

Figure 2 shows an example of the PLB connections for a system with three masters and three slaves.

OR

Bus

Status &
Control

Read
Data
Bus

Status &
Control

PLB

PLB

Master 1

Arbitration

Address
& Transfer
Qualifiers

Write
Data
Bus

PLB

Control

Central Bus Arbiter

Read
Data
Bus

Status &
Control

Address
& Transfer
Qualifiers

Write
Data
Bus

OR

Control

PLB

Bus
Control
& Gating
Logic

PLB

S
ha

re
d

B
us

Figure 2. Physical Implementation of the PLB

Slaves

Masters

Core
4 Processor Local Bus Functional Model Toolkit Version 4.9.2

Chapter 2. PLB Toolkit Environment

The PLB toolkit consists of a test bench, bus functional models, and a bus functional compiler. The
test bench instantiates the bus models, a reference PLB core, and design(s) under test.

The toolkit is intended to provide users with an environment in which they may initialize the toolkit
models and simulate with the ability to detect error conditions in PLB bus protocol and also in data
consistency. Test cases are written using a bus functional language which is described in “PLB Bus
Functional Language” on page 29.

Note 1: All user verification procedures and regressions should include a released and qualified PLB
core from the IBM Core+ASIC library which will be included in the target product silicon.

Note 2: It is recommended that all simulations use the PLB monitor to ensure PLB compliance. If the
monitor is not connected, the master model will not generate any requests and a warning
message will be reported by the master.

2.1 Bus Functional Compiler and ReadMe Files

The following files represent the bus functional compiler and a readme file.

• BFC

This Perl program parses the test cases written in the bus functional language and generates
command files which are used to control the bus functional models.

• README

This file provides information about the toolkit release including functional support level and any
known errata.

• UPDATE_LOG

This file provides information about changes in the toolkit release relative to the previous release.

2.2 Example Test Case File

• sample.bfl

This file is an example PLB BFL file. Note the path in the set_device command may be updated for
user simulator hierarchical structure specifications.

• sample_auto.bfl

This example BFL file contains two masters and one slave that demonstrate the use of auto mode.
It also shows how to use the move command, which switches a master from command mode to
auto mode.

• mon_init.bfl

This example BFL file contains monitor initialization statements for slave address range
initialization used in PLB Monitor checking code.
Version 4.9.2 PLB Toolkit Environment 5

2.3 VHDL/Verilog Files

The following list of files comprise the models and test bench of the PLB toolkit. The files should be
compiled in the order specified:

• plb_pkg.vhd/plb_pkg.inc

This HDL file is used by the PLB behavioral models to implement internal functions such as type
conversion and other general procedures.

• plb_dcl.vhd / plb_dcl.inc/ plb_dcl3x.inc

This HDL file contains the component and constant declarations for the toolkit behavioral models.

• plb_master_comp.vhd / plb_master_comp.v/ plb_master_comp3x.v

This HDL file represents a PLB master device. It contains decode, execute, and bus logic to
interface with the PLB bus. It also contains an internal master memory.

• plb_slave_comp.vhd / plb_slave_comp.v/ plb_slave_comp3x.v

This HDL file represents a PLB slave device. It contains interface with the PLB bus and also an
internal memory.

• plb_monitor_comp.vhd / plb_monitor_comp.v/ plb_monitor_comp3x.v

This HDL file performs PLB cycle monitoring and protocol checking

• plb_master.vhd / plb_master.v

This HDL file is a wrapper for the PLB master component which is instantiated in this file. Users
should instantiate this entity in test fixtures which include the PLB model toolkit master model.

• plb_slave.vhd/ plb_slave.v

This HDL file is a wrapper for the PLB slave component which is instantiated in this file. Users
should instantiate this entity in test fixtures which include the PLB model toolkit slave model.

• plb_monitor.vhd / plb_monitor.v

This HDL file is a wrapper for the PLB monitor component which is instantiated in this file. Users
should instantiate this entity in test fixtures which include the PLB model toolkit monitor model. It is
recommended that all simulations use the PLB monitor to ensure PLB compliance.

• plb_master3x.vhd / plb_master3x.v

This HDL file is a compatibility mode wrapper for the PLB master component which is instantiated
in this file. Users should instantiate this entity in test fixtures which include the PLB model toolkit
master model being used with 3.x PLB Architecture arbiter designs.

• plb_slave3x.vhd / plb_slave3x.v

This HDL file is a compatibility mode wrapper for the PLB slave component which is instantiated in
this file. Users should instantiate this entity in test fixtures which include the PLB model toolkit
slave model being used with 3.x PLB Architecture arbiter designs.

• plb_monitor3x.vhd / plb_monitor3x.v
6 Processor Local Bus Functional Model Toolkit Version 4.9.2

This HDL file is a compatibility mode wrapper for the PLB monitor component which is instantiated
in this file. Users should instantiate this entity in test fixtures which include the PLB model toolkit
monitor model being used with 3.x PLB Architecture arbiter designs. It is recommended that all
simulations use the PLB monitor to ensure PLB compliance.

• plb_complex.vhd / plb_complex.v

This HDL file is the PLB test bench. Designs under test may be instantiated in the test bench and
simulated with the PLB behavioral models.

2.4 VHDL/Verilog Files for Crossbar Arbiter (with crossbar monitor)

The PLB4 Toolkit supports use of the crossbar arbiter with the cross bar monitor. In this environment,
these are the list of files to use and the order they need to be compiled:

• plb_pkg.vhd/plb_pkg.inc

This HDL file is used by the PLB behavioral models to implement internal functions such as type
conversion and other general functions.

• plb_dcl_12m.vhd / plb_dcl_12m.inc

This HDL file contains the component and constant declarations for the toolkit behavioral models.

• plb_master_comp.vhd / plb_master_comp.v

This HDL file represents a PLB master device. It contains decode, execute, and bus logic to
interface with the PLB bus. It also contains an internal master memory.

• plb_slave_comp12m.vhd / plb_slave_comp12m.v

This HDL file represents a PLB slave device. It contains interface with the PLB bus and also an
internal memory.

• plb_monitor_comp12m.vhd / plb_monitor_comp12m.v

This HDL file performs PLB cycle monitoring and protocol checking. It monitors up to 12 masters
and 8 slaves which support 8 or 12 masters.

• plb_master.vhd / plb_master.v

This HDL file is a wrapper for the PLB master component which is instantiated in this file. Users
should instantiate this entity in test fixtures which include the PLB model toolkit master model.

• plb_slave_12m.vhd/ plb_slave_12m.v

This HDL file is a wrapper for the PLB slave component which is instantiated in this file. It supports
12 masters. Users should instantiate this entity in test fixtures which include the PLB model toolkit
slave model.

• plb_monitor_12m.vhd / plb_monitor_12m.v

This HDL file is a wrapper for the PLB monitor component which is instantiated in this file. Users
should instantiate this entity in test fixtures which include the PLB model toolkit monitor model. It is
recommended that all simulations use the PLB monitor to ensure PLB compliance.

• plb_monitor_xbar.vhd / plb_monitor_xbar.v
Version 4.9.2 PLB Toolkit Environment 7

This HDL file is a wrapper which instantiates two plb_monitor_12m modules for the crossbar
environment. It is recommended that all simulations use the PLB monitor to ensure PLB
compliance.

The crossbar arbiter is required to run in the environment with the crossbar monitor. Contact
PPCSUPP (ppcsupp@us.ibm.com) for more information on obtaining the arbiter and corresponding
test bench.
8 Processor Local Bus Functional Model Toolkit Version 4.9.2

Chapter 3. PLB Toolkit Test Bench

Figure 3 shows the default configuration of the PLB toolkit test bench environment. It contains
instantiations of a PLB master model, PLB slave model, PLB core, and a PLB monitor model. It also
contains the distributed multiplexers and logic to implement the PLB bus using AND/OR HDL
statements.

Note: Default configuration instantiates four masters and four slaves. The current PLB
implementation supports up to eight masters.

Designs under test may be instantiated in the toolkit test bench HDL which replace the default
configuration. Also, the bus functional models may be instantiated in other test bench environments
which include designs under test.

3.1 Programmable PLB Data Bus Width and Automatic Replication

The PLB toolkit test bench uses a constant called PLB_DATA_BUS_WIDTH in declaring the actual
PLB arbiter data bus signals. This constant defaults to 128 for the PLB 4.x toolkit, but may be
changed to be 64 or 32 for other PLB arbiter implementations. The toolkit will automatically scale the
model I/O’s and bus operations based on the PLB_DATA_BUS_WIDTH constant.

In addition to programmable arbiter data bus widths, the PLB Test Bench contains logic to
automatically perform the necessary Byte Enable(BE) and Data Bus replication as described by the
PLB 4.x Bus Architecture specification. This replication is performed when necessary as smaller PLB
masters and Slaves are connected to a wider data path PLB Arbiter. The master BE’s and write data
bus(wrDbus) are replicated to the arbiter, and the slave read data bus(rdDbus) is also replicated to
the arbiter when necessary. The test bench uses the msize/ssize signals from the masters and slave,
together with other bus control signals to automatically generate a “mirror” signal.

 PLB

Processor Local Bus Core

Figure 3. PLB Toolkit Testbench(plb_complex.vhd/.v)

PLB
Monitor

Master 0
Model

 PLB
Master 1

Model

 PLB
Master 2

Model

 PLB
Master 3

Model

 PLB
Slave 0
Model

 PLB
Slave 1
Model

 PLB
Slave 2
Model

 PLB
Slave 3
Model
Version 4.9.2 PLB Toolkit Test Bench 9

3.2 Instantiating PLB Slave Designs Under Test

When instantiating a PLB slave design under test, connect the PLB signals in the test bench to the
new device and remove a PLB slave model instantiation. Ensure that the PLB slave address map has
non-overlapping slave address space. The PLB slave model instantiation generics/parameters have
a default slave address mapping as follows:

The PLB slave model has parameters for the address decode in the HDL file. These may be updated
by the user to re-program the default slave address space for a single PLB slave instantiation. When
multiple slave models are connected to a single PLB core, the user must ensure that the slave
decode maps are mutually exclusive within a test bench. This can be accomplished through the BFL
configure command, generic statements in the VHDL instantiations, or Verilog parameters in the
model HDL files.

3.3 Instantiating PLB Master Designs Under Test

When instantiating a PLB master design under test, connect the master to the PLB master interface
of the PLB core/arbiter. Each master will have an independent PLB interface as defined in the PLB
architecture specification.

Each toolkit model uses intercommunication signals called Synch_in(0 to 31) and Synch_out(0 to 31)
to synchronize events in the test environment. The Synch_in(0 to 31) is the logical OR of all the
Synch_out outputs of each instantiated models in the simulation environment which uses the
intercommunication bus. When instantiating toolkit models which need to support the send/wait
commands as described in “PLB Bus Functional Language” on page 29, ensure that the
intercommunication logic within the test bench is updated to reflect the additional model
instantiations.

3.4 VHDL Signal Types

The signal interface for the VHDL bus functional model wrappers and test bench are declared as
IEEE std_logic and std_logic_vector signal types. If the bus functional models are integrated with a
test bench environment which uses bit and bit_vector types, the wrappers may be eliminated so that
type conversions do not have to be included in the model interfaces. When the wrappers are not
used, please note that the I/O for each PLB toolkit model component contains primary inputs for
configuration signals rather than the VHDL generic declarations which are in each wrapper.

3.5 IEEE Packages

The VHDL version of the PLB core RTL is translated from Verilog to VHDL with a source level
language translator. The translated VHDL calls out some IEEE packages such as:

Device 0 00000000-0003FFFF

Device 1 00040000-0007FFFF

Device 2 00080000-000BFFFF

Device 3 000C0000-000FFFFF
10 Processor Local Bus Functional Model Toolkit Version 4.9.2

ieee.std_logic_1164.all;

ieee.std_logic_arith.all;

ieee.std_logic_unsigned.all;

Some VHDL compilers and analyzers may require the use of compiler directive switches to resolve
overloaded relational operators.
Version 4.9.2 PLB Toolkit Test Bench 11

Chapter 4. PLB Bus Functional Compiler

Test cases written in the PLB bus functional languages are parsed by the toolkit bus functional
compiler. For VHDL simulators, it generates simulator interface commands to initialize the PLB
models within the toolkit test bench. For Verilog simulators, the BFC generates a Verilog initialization
file which contains Verilog statements to initialize the bus functional models. These command files are
used to load the bus functional model command and data arrays after the test bench is loaded into
the simulator.

Multiple bus functional model command sections may be written within the same BFL file, or
individual BFL files may be used to initialize each master/slave device. The bus functional compiler
will generate a single command file for each BFL file which it processes. If more than one BFL file is
used for a single test case, the user should include each command file generated by the BFC when
initializing the bus functional models within the test bench.

The bus functional compiler is implemented in Perl, which is an interpreted language distributed
under the GNU public license. It is available at no cost and runs on nearly all UNIX or UNIX-like
operating systems.

4.1 Simulator Configuration

Since the output of the bus functional compiler is a simulator specific command initialization file, the
user should indicate the target simulator being used. This can be done by changing the default
simulator command output parameter at the header of the bus functional compiler Perl program. The
name of this variable is $target_simulator.

Note: The BFC will not compile a.bfl file if it is not configured properly.

4.2 Declarations File Access

The PLB slave model provided with this toolkit supports more than one internal memory lookup
algorithm. In addition, the model memory sizes can be configured by updating the declarations file
(plb_dcl.vhd/v). This is described in more detail in “Master Model Operation” on page 17 and “Slave
Model Operation” on page 23. Since the memory initialization statements are generated from the BFC
when parsing the bus functional language memory initialization constructs, the BFC needs to know
the memory configuration parameters before it generates the simulator specific initialization files.
Therefore, the BFC reads the plb_dcl.vhd/v file before it processes a test case to determine the
memory configuration parameters.

Note: If the BFC file is not executed from the same directory where the plb_dcl.vhd/v file resides, the
user must update the $plb_dcl_path at the header of the BFC file. An error message is
generated if the declarations file is not found.
12 Processor Local Bus Functional Model Toolkit Version 4.9.2

4.3 Invoking the Bus Functional Compiler

The bus functional compiler operates on files with the extension “.bfl”, and it generates a file with the
same name but with a “.cmd” or “.do” or “.v” extension depending on the target simulator. If the “.bfl”
extension is omitted, the “.cmd” extension is simply added to the end of the filename.

It is possible to invoke the BFC with multiple command files by specifying each file as an argument
(input parameter) to the BFC. When multiple files are used in a single BFC call, the command file
which is generated will be named using the first input file name.

To invoke the bus functional compiler, type “BFC filename1.bfl filename2.bfl...”.

Note: If the message “perl: not found” or other system error is encountered when invoking the BFC,
ensure that the path for the Perl executable is correct on the first line of the BFC source
program as required by the Perl interpreter specification. To locate the Perl executable, try
using the UNIX command “which perl.”

4.4 Initializing the Bus Functional Models

The command files which are generated by the bus functional compiler should be executed at
simulation time 0. For the VHDL toolkit this is accomplished with an “include” or “do” type command
after the model is loaded by the simulator. For the Verilog toolkit the BFC generates a Verilog
initialization command file which should be included when the simulation model is compiled.
Version 4.9.2 PLB Bus Functional Compiler 13

Chapter 5. PLB Bus Models

The toolkit contains bus functional models for PLB master, PLB slave, and PLB monitor.

The PLB master and slave models are controlled through a bus functional command interface which
is defined in “PLB Bus Functional Language” on page 29. The master model has the ability to issue
requests for the bus and generate cycles, and the slave model can be initialized to decode PLB bus
cycles and respond to PLB master requests. Both the master and slave models may be initialized to
perform different PLB cycles with programmable signal delays.

The master and slave models support multiple modes of data operation. The default mode for the
models is to source data from internal data memories which are initialized at model load time. The
initialization data is specified through the BFM user interface. The user has the ability to modify the
internal memory contents during simulation through the use of bus functional commands described in
“PLB Bus Functional Language” on page 29.

Another data mode which is provided in the PLB toolkit is auto_data. When the master and/or slave
models are configured for this mode, data is automatically generated and checked as bus
transactions are processed in simulation. When the master and slave models are ready to drive data
on the PLB bus, they call a pseudo-random number generator to form the necessary data patterns.
When data is received by the master and slave models, they call the same pseudo-random number
generator to create expect data which is used to compare with the data received from the bus. The
source and receive data is synchronized through the formation of a deterministic seed produced with
a root_seed and the address of each byte of data. To produce the source and expect data, the
models use an addition function for the root_seed and address which produces a unique seed for
each byte of data. The root_seed is typically varied by the user on a test case basis.

The PLB Bus Model can be configured to run with a 64-bit and a 128-bit data bus width. It is important
to note that the 4X version of the toolkit will not work with a 32-bit data bus width configuration. For
applications requiring a 32-bit data bus width there are two options: PLB3X can be used and
configured for 32-bits, or PLB4X can be used with manipulated assignments to all unused portions of
the 64-bit data connection and 8-bit byte enable connection.

The PLB supports all singles, line, fixed length burst, master and slave terminated burst transfers.
However, the PLB only supports a burst size equal to that of the slave. For example: ssize (slave data
bus width) = 00, size (burst size) =1010; ssize = 01, size = 1011; ssize = 10, size = 1100.

Another option provided by the 4X toolkit is the ability to run in “3X mode”. This means that the toolkit
will run with the functionality and signals from 3X, but will have the additional monitor checks and
toolkit enhancements that have been added to the 4X version. This configuration is possible through
the use of 3X wrappers. These wrappers allow the user to instantiate 3X devices using the 4X toolkit
without having to connect all of the additional 4X signals. Please see the section titled “Running in 4X
Bus Models in 3X Mode” for more configuration information.

The PLB monitor model receives all PLB core signals in the PLB test bench environment. It performs
bus protocol checking for arbitration and data transfers. Error detection is reported to the user through
direct register access and message generation.
14 Processor Local Bus Functional Model Toolkit Version 4.9.2

5.1 Running the 4X Bus Models in 3X Mode

As discussed previously, the 4X toolkit may be configured to run in 3X mode. This allows the user to
have access to all of the functionality and signals from the 3X toolkit, with additional checks from the
monitor and improvements to the toolkit itself. In order to run in 3X mode the user must do the
following:

• Change the PLB_ARCHITECTURE_VERSION in the plb_dcl to 3.

• Change the PLB_DATA_BUS_WIDTH in the plb_dcl to 64.

• Change the PLB_READ_PIPELINE_DEPTH in the plb_dcl to 2. A larger value can be used when
using the arbiter model.

• Instantiate devices using the 3X wrappers, i.e. use plb_master3x/plb_slave3x titles for
instantiation.

• Connect the byte enable signals for a 64-bit bus(byte enables are 8-bits for a 64-bit bus as
opposed to 4-bits for a 32-bit bus and 16-bits for a128-bit bus).

• Note that ordered, guarded, and compressed are separate in 3X, but are part of the t attribute in
4X.

• Note that merr in 3X is separated into mrderr and mwrerr in 4X.

• Note that mirq does not exist in 3X.
Version 4.9.2 PLB Bus Models 15

5.2 PLB Master Model

The PLB master model contains logic to automatically request the bus when it has read/write
commands to execute. It performs an operation based on the bus functional command which was
initialized in the internal master model command array. The PLB arbiter determines which master bus
cycle to issue on the slave side of the PLB bus.

Figure 4 demonstrates all PLB master interface input/output signals. See PLB architecture
specifications for detailed functional description of the signals.

PLB_MnErr

PLB_MnWrDAck
PLB_MnWrBTerm

Mn_request

Mn_busLock

Mn_priority(0:1)

Mn_RNW

Mn_BE(0:3)

PLB_MnRdAck
PLB_MnRdBTerm
PLB_MnRdWdAddr(0:3)

MasterPLB Bus

Mn_size(0:3)

Mn_compress

Mn_type(0:2)

Mn_guarded

PLB_MnAddrAck
PLB_MnRearbitrate

PLB_MnBusy

PLB_MnRdDBus(0:31)

Mn_ordered

Mn_lockErr

Mn_rdBurst

Mn_abort

Mn_wrBurst

Mn_ABus(0:31)

Mn_wrDBus(0:31)

 Interface

Figure 4. PLB Master Interface

Synch_in

Request Qualifiers

Write Data Bus

Read Data Bus

Mn_wrDBus(32:63)

Mn_MSize(0:1)

PLB_MnSSize(0:1)

Synch_out
16 Processor Local Bus Functional Model Toolkit Version 4.9.2

5.2.1 Master Model Operation

The PLB master model operation section discusses the decode unit, internal master data memory,
command modes, burst modes, conversion cycles with different PLB device sizes, general purpose
registers and ALU instructions, and branch instructions. The operations of PLB master model are
shown in Figure 5.

5.2.2 Decode Unit

The PLB master model executes bus commands from internal command arrays which are loaded
from the command file. The command file is the file generated by the bus functional compiler.

When invoking the simulator, the command file should be included so that the command arrays are
initialized when the simulation model is loaded. This is accomplished by using an include file
parameter. The master commands are executed sequentially during simulation. The decode unit is
designed to decode and queue external bus requests every PLB clock until the bus unit cycle queue
is full.

M
em

or
y

A
dd

re
ss

M
em

or
y

D
at

a

Decode Unit

Request

Cycle Info

Complete

Queue Info

Bus Unit

CLK, Reset
Bus Functional

Figure 5. PLB Master Model

Language File

Bus Functional
Compiler

Command
File

Decode
Logic

Command
Memory

Cycle
Queue

Bus
Interface

Logic

Memory
Logic

Response

Sim Info

Ti
m

in
g

F
ilt

er

P
ro

ce
ss

or
 L

oc
al

 B
us
Version 4.9.2 PLB Bus Models 17

When the decode unit issues a bus request, it continues decoding and executing additional
instructions from the command memory as long as it is not waiting on an external event. An example
of an external event would be a synchronization signal. In addition, a request delay parameter may
suspend the decode unit issuance of commands to the bus unit until an internal command delay
counter has expired.

The default size of the bus command array is 1024 entries. This may be increased or decreased by
updating the PLB_Master_CMD_Array_Size constant in the declarations HDL file of the toolkit.

5.2.3 Internal Master Data Memory

The PLB master model contains an internal memory array which can be initialized by the user with
mem_init bus functional commands. Each entry of the memory array is maintained by the master
model during simulation. During this initialization with mem_init commands, a valid bit is set for each
address entry. Any bus functional commands which specify an address that matches a valid entry in
the memory array will use the memory array for the bus functional command operation. The data
used in mem_init statements provides the expect data that is used for the read data comparison
checks within the master model. It also provides the data used during a write transfer to a memory
address.

For write cycles, the internal master data memory will be used as source data when the bus functional
command address matches the command array. For read cycles, the data which is received from the
PLB bus will automatically be compared with the internal master data memory.

Error messages will be generated when data miscompares occur. Only the valid bytes for a particular
command will be checked. The valid bytes are determined by the transfer size as defined in the PLB
architecture.

The memory array is declared as a linear array of 64-bit address/control and 128-bit data for each
array entry:

– PLB_Master_Addr_Array(0 to 63) - bits 0 to 61:address field, bit 62:dirty bit, bit 63:valid bit

– PLB_Master_Data_Array(0 to 127) - 4 word data field

The valid bit is set during model initialization for each memory entry used and when a memory entry is
allocated in the case of a read memory access miss. When a read command reloads a memory entry
with bus data, the dirty bit is set. This may be used with test environments to check if bus commands
have executed and caused a master memory update in addition to data miscompares.

The default size of the master memory array is 64k bytes. This may be increased or decreased by
updating the PLB_Master_Mem_Size in the declaration HDL file of the toolkit.

5.2.4 Command Modes

This section discusses the possible modes that are available for a PLB master device. PLB masters
may be configured to act in either Command mode or Auto mode. A description of these modes are:

• Command Mode
18 Processor Local Bus Functional Model Toolkit Version 4.9.2

This mode enables the user to generate PLB read/write bus transactions and perform other
operations using commands which are decoded and executed from within the PLB master model.
These commands are parsed by the BFC, loaded into the PLB master model at simulation time 0,
and decoded from an internal command array after PLB reset is de-asserted. The following is an
example of how to specify a 32-bit single read transaction:

read(addr=00001000,size=0000,be=1111)

Command mode is the default mode for the master model, and the user is not required to specify a
BFL configuration parameter for this mode.

• Auto Mode

This mode enables PLB read/write bus cycles to be generated automatically without the need for
read/write master commands in the bfl. In this mode, the PLB master model will generate PLB
cycles automatically based on an internal random number generator and pre-programmed
minimum and maximum delays of the available parameters. The random number generator selects
a new delay value between the minimum and maximum using a uniform distribution function. The
minimum and maximum range may be initialized by the user through a configuration command.
The PLB master model will use auto mode when a configuration command enables it, such as:

configure(master_auto_mode=true)

5.2.5 Burst Operations

The PLB master model supports the PLB burst protocol. The model accesses the internal master
memory during the initial bus request and also during each data phases of the burst transfer. The PLB
master model terminates a burst transfer when the user specified number of data transfers has
occurred or when a slave terminates the burst transfer with a burst terminate signal. The PLB master
model supports a burst_continue_mode where the PLB master will request the bus again if a slave
terminate signal is received and the PLB master has more data to transfer. To configure the PLB
master model for burst_continue_mode, use the following configuration statement:

configure(burst_continue_mode=true)

The PLB master model also supports the PLB fixed length burst protocol. The master model will
automatically de-assert the M_rd/wrBurst signal when: the ‘BE’ parameter is non-zero; the ‘size’
parameter indicates a burst cycle; the corresponding number of data transfers takes place.

Note: For fixed length bursts, the PLB architecture allows the pre-mature de-assertion of the
M_rd/wrburst signal before the number of data beat transfers specified by the byte enables.
The PLB architecture also allows masters to continue bursting beyond the fixed length burst
beat count if a slave burst terminate signal is NOT received during a fixed length burst transfer.
To allow verification of this architectural flexibility, the BURST_COUNT parameter can be
programmed to a different number of beats than that specified on the byte enables. When the
BURST_COUNT parameter is less than the BE data beat count, the burst signal will be pre-
maturely de-asserted. When the BURST_COUNT is greater than the BE data beat count, the
master will continue bursting IF a slave burst terminate signal was not asserted to the master.

IT IS STRONGLY RECOMMENDED THAT LOGIC DESIGNS WHICH SUPPORT BURST
AND FIXED LENGTH BURST BE TESTED THOROUGHLY WITH ALL COMBINATIONS OF
BYTE ENABLES, MASTER BURST ABORTS, AND SLAVE BURST TERMINATES TO
MAXIMIZE CORE COMPATIBILITY AND COMPLIANCE.
Version 4.9.2 PLB Bus Models 19

5.2.6 Conversion Cycles with Different PLB Device Sizes

The PLB master model can be configured to be a 32-bit, 64-bit, or 128-bit device. When the PLB
master model receives a PLB_MnSSize with PLB_MnAddrAck which represents a slave that is
smaller than the configured PLB master size (Mn_Msize(0:1)), the PLB master will automatically
generate additional cycles to complete the original requested transaction. These additional cycles can
be referred to as “conversion cycles.” For example, a 64-bit PLB master will always generate one
additional cycle when a 32-bit slave responds to a single transfer (M_Size=”0000”) read or write
cycle. For line transfers, the PLB master completes the request when the appropriate number of
words have been transferred as determined by the transaction width (MSize/SSize) and the transfer
size (M_Size). See PLB architecture specifications for details on different device widths.

5.2.7 General Purpose and Branch Processor Registers

The PLB master model contains 32 general purpose registers (R0-31), a 32-bit synchronization
register (SR) and a 32-bit condition register (CR). These registers can be used by the programmer to
implement algorithms or conditions which affect the way in which the PLB master executes
commands.

The condition register is updated during ‘compare’ instructions. It provides a mechanism for testing
and branching. The bits of the Condition Register are grouped into eight 4-bit fields, named CR Field
0 (CR0)..., CR Field 7 (CR7). Instructions are provided to perform logical operations on individual CR
bits and to test individual CR bits. The bits of the CR “fields” are interpreted as follows:

- bit 0: Negative (LT) The result is negative.

- bit 1: Positive (GT) The result is positive.

- bit 2: Zero (EQ) The result is zero.

- bit 3: undefined

The synchronization register latches the Synch_in input. It can subsequently be referenced or reset
using an ALU or move instruction.

5.2.8 ALU Instructions

The following instructions are available for arithmetic operations: (a detailed description is provided in
“PLB Master Commands” on page 30)

– Add()

– Sub()

– And

– Or

– Shift_Left

– Shift_Right

– Compare()
20 Processor Local Bus Functional Model Toolkit Version 4.9.2

5.2.9 Branch Instructions

The PLB master model contains a branch instruction so that users can implement loops and forward
jumps. The branch instruction uses the condition register to determine whether a jump is taken. Any
one of the Condition Register Fields (CR0-CR7) may be used in a branch instruction. Branching
between devices is not supported.
Version 4.9.2 PLB Bus Models 21

5.3 PLB Slave Model

PLB slaves respond to cycles based on requests generated from the PLB core, and they maintain an
internal memory which can be initialized through the bus functional language. This memory may be
dynamically checked during simulation or when all bus transactions have completed. Figure 6
demonstrates all PLB slave interface input/output signals. See PLB architecture specifications for
detailed functional description of the signals.

Synch_in

PLB_busLock

Sl_wait
Sl_addrAck

Sl_SSize(0:1)

Sl_rdComp

Figure 6. PLB Slave Interface

Sl_rdDAck

PLB_RNW

PLB_size(0:3)

SlavePLB Bus

Sl_rdBTerm

Sl_wrComp

Sl_rdWdAddr(0:3)

Sl_wrDAck

PLB_PAValid

PLB_SAValid

PLB_type(0:2)

Sl_wrBTerm

Sl_MBusy(0:15)
Sl_MErr(0:15)

Sl_rdDBus(0:31)

PLB_abort

PLB_wrBurst

PLB_rdBurst

PLB_wrPrim
PLB_rdPrim

PLB_ABus(0:31)

PLB_guarded
PLB_ordered
PLB_lockErr

PLB_masterID(0:3)

Interface

Transfer Qualifiers

Address Pipelining

Write Data Bus

Read Data Bus

PLB_MSize(0:1)

Sl_rearbitrate

PLB_wrDBus(0:31)

PLB_BE(0:3)

Synch_out
22 Processor Local Bus Functional Model Toolkit Version 4.9.2

5.3.1 Slave Model Operation

The PLB slave model operation section discusses the slave bus commands and modes, internal
slave data memory structure and look-up algorithms, ordered write cycles (PLB_ordered), internal
slave memory checking, burst modes, conversion cycles with different PLB device sizes, and pipeline
modes.

5.3.2 Slave Bus Commands and Modes

The PLB slave model responds to PLB memory cycles (PLB_type=000) when there is a valid request
on the PLB bus and the PLB address is within the PLB slave’s configured address space. Separate
read_response and write_response commands allow programmable, overlapped read and write data
phases. The slave model stores the read and write response parameters in separate command
arrays which allows independent and parallel control of the data buses. Although address phases
occur sequentially, it is possible for a slave to perform out of order memory access relative to the
address phases depending on how the master cycles are generated and how the slave model is
programmed to respond to the bus cycles. The PLB slave model memory uses the Sl_rdDAck and
Sl_wrDAck signals to perform internal memory accesses needed to satisfy PLB read and write bus
cycle requests.

In the PLB slave model, memory access for reads always occurs one clock before the Sl_rdDAck
assertion, and the memory access for writes always occurs in the clock that Sl_wrDAck is asserted.
Also, writes have precedence in the memory access logic of the PLB slave memory model. If
Sl_rdDAck is asserted in a cycle after a wrDAck, then the read data always reflects the new data
written. If a rdDAck is asserted in a cycle before or during a wrDAck, then the read data always
reflects the old data. Since the PLB architecture allows out of order rd/wrDAcks with respect to
addrAck from the same slave, it is the responsibility of the system designer to resolve data coherency
issues when simultaneous write/read cycles occur.

Slave memory and configuration parameters are initialized at simulation time 0 with the command file
generated by the PLB bus functional compiler. The slave response commands are initialized in the
slave command array at simulation time 0, but they are executed sequentially during simulation.
Separate read and write internal command pointers advance when bus transfers complete, a
rearbitrate occurs, or a master abort occurs. Intermediate data checking during simulation can be
done by using memory check commands which are executed when an intercommunication signal is
received by the slave. These memory check commands are independent of the slave response
command flow.

The default size of the bus command array is 256 entries. This may be increased or decreased by
updating the PLB_slave_CMD_array_size parameter in the PLB_DCL declaration HDL file of the
toolkit.

5.3.3 Command Modes

This section discusses the possible modes that are available for a PLB slave device. PLB slaves may
be configured to act in either Configuration mode, Command mode, or Auto mode. A description of
these modes are:

• Configuration Mode
Version 4.9.2 PLB Bus Models 23

This response mode allows the user to change the slave read/write response on a test case basis.
For each PLB master cycle that is received, the PLB slave model uses an internal configuration
register to respond to all PLB read or write memory cycles which are active within its address
space. This mode is the default configuration of the PLB slave model. The configuration delay
values can be initialized using configuration commands such as:

configure(read_aack_delay=2,read_dack_delay=2-1-1-
1,write_aack_delay=1,write_dack_delay=1-1-1-1)

This mode is the default mode of the PLB Slave model, and the user is not required to specify a
BFL configuration parameter for this mode.

• Command Mode

This response mode enables the user to change the slave read/write response on a transaction
basis. For each PLB master cycle that is received, the PLB slave model uses a response
command from an internal read or write command array when a PLB read or write memory cycle is
active within its address space. The PLB slave model uses command mode instead of
configuration mode when read/write response commands are programmed in a test case such as:

read_response(aack_delay=2,dack_delay=3)

When the BFC parses “response” commands, it automatically initializes the appropriate internal
slave model register to enable “command” mode. The user is not required to specify a BFL
configuration parameter to use this mode.

• Auto Mode

This response mode enables various cycle responses without using pre-programmed read/write
slave response commands. In this mode, the PLB slave model generates address and data phase
completion signals automatically, based on an internal random number generator and pre-
programmed minimum and maximum delays. The random number generator selects a new delay
value between the minimum and maximum using a uniform distribution function. The minimum and
maximum range may be initialized by the user using a configuration command. The PLB slave
model requires a configuration command for enabling auto mode. The following configure
statement is an example:

configure(slave_auto_mode=true)

5.3.4 Internal Slave Data Memory Structure and Look-Up Algorithms

The PLB slave model contains an internal memory array which can be initialized by the user with
mem_init bus functional commands. Each entry of the memory array represents a 64-bit address and
128-bit data.

– PLB_slave_addr_array(0 to 63) - bits 0 to 61:address, bit 62:dirty bit, bit 63:valid bit

– PLB_slave_data_array(0 to 127) - 4 word data field

– PLB_slave_dirty_array(0 to 15) - bytes written (half word) field

Bits 62 and 63of the PLB_slave_addr_array are not used for addressing bytes within the PLB slave
model memory, but they are used by the internal slave model memory interface logic to maintain the
status of memory array elements. The valid bit is set during model initialization for each memory entry
used and also during simulation when a memory entry is allocated in the case of a write memory
access miss. When a write command reloads a memory entry with bus data, the dirty bit is set. This
24 Processor Local Bus Functional Model Toolkit Version 4.9.2

may be used with test environments to check that bus commands are executed and master memory
is updated in addition to data miscompares.

For each byte that is written to the slave memory array during simulation of PLB write cycles to the
slave, the PLB_slave_dirty_array is updated to indicate that the corresponding byte has been
updated. This feature can be used in simulation environments which need to detect or count exactly
which bytes were written to in the slave so that a more comprehensive checking algorithm may be
implemented. In addition, there are two integer variables within the slave memory process which
accumulate the total number of bytes which have been read from the slave memory array and also
the total number of bytes which have been written to the array. These two variables are called:

– slave_mem/total_bytes_written

– slave_mem/total_bytes_read

The default size of the slave memory array is 64k bytes. This may be increased or decreased by
updating the PLB_slave_mem_array_size parameter in the PLB_DCL declaration HDL file of the
toolkit.

The PLB slave model supports two different memory look-up algorithms used to access the internal
memory arrays: fully associative and direct mapped. Each of these is described below:

• Fully associative, linear search look-up mode

The default mode for the PLB slave model is linear search mode. This algorithm provides the
flexibility to initialize the slave model with many non-contiguous data patterns within an entire 64-bit
address range. In the linear look-up mode, each array element status is maintained by the slave.
Initialization with mem_init commands causes the valid bit to be set. Any bus cycles which have an
address that matches a valid entry in the memory array will use the memory array for the bus
functional command operation. For write cycles, the internal master data memory will be updated
when Sl_wrDAck is asserted. For read cycles, data from the internal slave memory is loaded into a
buffer one clock before Sl_rdDAck assertion.

• Direct mapped mode

When the PLB slave model is programmed in direct mapped mode, a subfield of the address
(PLB_Abus) is used to directly reference the PLB slave internal memory. The direct mapped mode is
useful when simulations contain many contiguous slave address, as the lookup algorithm is more
efficient than the linear search mode.

Note: The internal slave address subfield is automatically calculated by the model as the slave
memory configuration parameters are set in the plb_dcl.vhd file. The user is not required to
configure these indices within the toolkit.

5.3.5 Ordered Write Cycles (PLB_ordered)

When the slave model acknowledges a write cycle when PLB_TAttribute[8] signal is active, the PLB
slave model will delay all subsequent internal data accesses until the previous write cycle is internally
complete. The PLB slave model, however, may acknowledge additional cycles (assert Sl_addrAck)
during ordered writes.
Version 4.9.2 PLB Bus Models 25

5.3.6 Internal Slave Memory Checking)

Mem_check slave commands allow automatic slave data memory lookup and compares without
performing PLB bus operations. Error messages will be generated when data miscompares occur
with the mem_check commands. When the slave is programmed with mem_check commands, it
waits to receive a synchronization signal and then performs the data memory lookup. The order in
which the mem_check commands appear in a BFL file are independent of the slave read_response,
write_response, and mem_init commands.

– Slave_check_addr_array(0 to 31) - bits 0 to 29:address, bits 30.31 are unused

– Slave_check_data_array(0 to 31) - 4 byte data field

The default size of the slave check memory array is also 128 entries. This may be increased or
decreased by updating the slave_check_array_size in the declaration HDL file of the toolkit.

5.3.7 Burst Modes

The PLB slave model supports the PLB burst protocol. The model accesses the internal slave
memory during the initial bus request and also during each data phases of the burst transfer. The PLB
Slave model supports two types of counting mechanisms for asserting sl_rd/wrBterm. It can count by
the number of clocks from the start of the data phase of the transaction, or by the number of
sl_rd/wrDack assertions from the start of the transaction. The PLB slave will assert the burst
terminate signal when “burst_term” parameter is used and the corresponding count parameter has
expired. The PLB slave model also supports the PLB fixed length burst protocol. The slave model will
automatically assert the Sl_rd/wrBterm signal when the “fixed_burst_mode” is enabled, the PLB_BE
signal is non-zero, the PLB_size signal indicates a burst cycle, and the corresponding number of data
transfers has occurred. To enable fixed length burst in the slave model, use the following slave
configuration statement:

– configure(fixed_burst_mode=1) -- Default is 0 (disabled)

Note: The PLB Architecture allows slave designs to assert sl_rdBterm anywhere from one clock after
sl_AddrAck (or PLB_rdPrim) to sl_rdComp for read transactions, and together with sl_AddrAck
(or one clock after PLB_wrPrim) to sl_wrComp for write transactions. It is common for PLB
Slave designs to assert sl_rd/wrBterm together with the second to last sl_rd/wrDack
assertions. However, in order to achieve 100 percent functional verification of a PLB master
design, the Burst_Term_Mode=Clk should be used to assert the sl_rd/wrbTerm signals in
every possible combination of assertions for the entire set of burst transactions.

5.3.8 Conversion Cycles with Different PLB Device Sizes

The PLB slave model can be configured to be a 32 bit, 64 bit, or 128 bit device. When the PLB slave
model asserts Sln_AddrAck with a PLB_MSize which represents a master that is smaller than the
configured PLB slave size (Sln_SSize(0:1)), the PLB slave will automatically adjust the data bus
access and internal memory access to correspond to the transaction size as indicated by the
PLB_MSize and Sl_SSize values during the Sl_addrAck assertion. For example, if a 32 bit PLB
master initiates a 4 word read line transfer to a 64 bit slave, the slave will drive 4 Sl_rdDack signals
and drive bits 0:31 of the Sl_rdDBus. However, if a 64 bit PLB master initiates a 4 word read line
transfer to a 64 bit slave, the slave will drive 2 Sl_rdDAck signals and drive bits 0:63 of the
Sl_rdDBus. To configure data bus size of the PLB slave model, use the following command:

– configure(SSize=xx)
26 Processor Local Bus Functional Model Toolkit Version 4.9.2

where “xx” is “00” for a 32 bit device, “01” for a 64 bit device, or “10” for a 128 bit device.

5.3.9 Pipeline Modes

The PLB slave model samples PLB_SAValid to detect the occurrence of pipelined address cycles on
the PLB. From a test case, the user may selectively disable read or write address pipelining in the
PLB slave model by setting the read/write_addr_pipeline_mode parameters. For example:

Note: Although address pipelining can be disabled in the PLB slave model by user configuration
commands, and also by simply not connecting the PLB_SAValid signal at the slave interfaces,
it is important to test pipelining conditions whenever a target system (or follow-on systems)
includes pipelining slaves. Therefore, complete and thorough verification with pipelining
enabled and multiple slave devices is recommended for most functional verification efforts.

5.4 PLB Monitor

The PLB monitor is a model which samples all PLB signals in every clock cycle. It checks for
violations of the PLB architectural specification during simulation. When a warning or error condition
occurs by the PLB arbiter, master, or slave device, the model assigns an error register and reports the
corresponding condition to the user with a display message.

Figure 7 demonstrates all PLB monitor interface input/output signals. See PLB architecture
specifications for detailed functional description of the signals.

configure(read_addr_pipeline_disable=1) -- disable address pipelining for read cycles

-- by ignoring PLB_SAValid during read cycles
Version 4.9.2 PLB Bus Models 27

Sl_addrAck
Sl_rdComp
Sl_rdDAck

Sl_wait
Sl_rearbitrate

Sl_wrComp
Sl_wrDAck

Sl_wrBTerm

Sl_rdBTerm
Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Sl_MBusy
Sl_MErr

PLB_SlwrComp
PLB_SlwrDAck
PLB_SlrdComp

Mn_priority(0:1)

Mn_RNW
Mn_busLock

Mn_BE(0:3)

PLB MonitorPLB Bus

PLB_SladdrAck
PLB_SlRearbitrate

PLB_SlWait

Mn_size(0:3)

Interface

Figure 7. PLB Monitor Interface

Mn_type(0:2)

Mn_guarded
Mn_compress

Mn_ordered
Mn_lockError

PLB_MnAddrAck

PLB_MnBusy
PLB_MnRearbitrate

PLB_MnErr
PLB_MnWrDAck
PLB_MnWrBTerm

PLB_MnRdWdAddr(0:3)
PLB_MnRdDBus(0:31)

PLB_MnRdDAck
PLB_MnRdBterm

Mn_request

Mn_ABus(0:31)

Mn_wrDBus(0:31)
Mn_abort

Mn_wrBurst
Mn_rdBurst

From 1 to x sets

PLB_SAValid

PLB_wrPrim
PLB_rdPrim

PLB_busLock
PLB_RNW

PLB_type(0:2)

PLB_guarded
PLB_compress

PLB_ordered
PLB_lockError

PLB_PAValid

PLB_ABus(0:31)

PLB_wrDBus(0:31)
PLB_abort

PLB_wrBurst
PLB_rdBurst

PLB_BE(0:3)
PLB_size(0:3)

PLB_pendReq
PLB_reqPri(0:1)
PLB_pendPri(0:1)
PLB_masterID(0:3)

PLB_SlrdDAck

From 1 to x sets

PLB signals

Or’ed slave

From 1 to y of
these slave to
PLB signals

outputs to
PLB core

of these PLB to
master signals

of these master
to PLB signals
28 Processor Local Bus Functional Model Toolkit Version 4.9.2

Chapter 6. PLB Bus Functional Language

The bus functional models in the PLB model toolkit can be controlled through command files which
contain information on how to initiate and respond to bus cycles. The command files also contain
model configuration information. The general form of a bus functional language command is specified
as follows: command (parameters)

Parameters define attributes for bus cycles and configurations. A bus command may have more than
one parameter and have the following format: parameter = value. A parameter value may be either a
scalar or enumerated type (that is, a string).

Note 1: Bus functional language (BFL) comments are delineated using the “--” or “//” string. All
characters after the comment delineator are ignored by the BFL parser. An end of line
character terminates a comment.

Note 2: Bus functional language is case insensitive.

Note 3: A * denotes an optional parameter, otherwise the parameter is required.

Note 4: There is no restriction on the order in which parameters may be specified within a command.

Note 5: If multiple parameters are specified for the same command, they must be separated by
commas.

6.1 BFM Device Configuration Commands

This section discusses set_device (), path = [string], and device_type = [string] configuration
commands.

6.1.1 Set_Device () Command

The set_device command selects a model to initialize. Within a BFL file (test case), there may be only
one set_device () command used per model initialization.

• Path = [String]

The path = [string] specifies the path of the model within the test bench hierarchy. The commands
following the set_device command are used to initialize the specified device. Additional set_device
commands are used to specify the initialization of other devices.

• Device_Type = [String]

The device_type = [string] specifies the type of model being initialized. The valid strings for this
toolkit are PLB_master, PLB_slave, or PLB_monitor. Any mismatch in the device_type parameter
and the model being initialized will cause an initialization error.

Example: set_device(path=/plb_complex/m0,device_type=plb_master)

6.2 PLB Alias Commands

This section discusses set_alias () and name = value alias commands.
Version 4.9.2 PLB Bus Functional Language 29

6.2.1 Set_Alias () Command

The set_alias is an optional command which sets up an alias to be used for string substitution in the
bus functional command parameters. The aliases must be set up before they are used. Multiple
aliases may be set up. It is possible to have alias files separate from BFL command files by invoking
the BFC with multiple BFL files. The syntax for the set_alias command is
set_alias(target_name=string_name). When an alias is established, the BFC automatically
substitutes the string_name for every occurrence of the target_name.

Example: set_alias(TARGET_REG = 01020304)

In this example, the BFC automatically replaces every occurrence of the string “TARGET_REG” with
string “01020304”.

6.3 PLB Master Commands

The PLB master command types include configuration, bus cycle, and internal memory access
commands.

6.3.1 Configure () Command

The configure command allows the user to configure different PLB model attributes. One or more
parameters can be used with a single “configure” command, and multiple “configure” commands may
be used in a single test case. It is important to note that the configure commands are only executed at
time 0 in simulation.

6.3.1.1 BFL Mode Configuration Parameters

• * msize = [2 bit]

This parameter specifies the Mn_Msize signals of the PLB. The valid size combinations are listed
in the PLB architecture specifications under transfer qualifier signals. This parameter may also be
used in each read/write master command. However, when this parameter is used in a configuration
statement it is retained throughout the simulation as a master configuration parameter.

Example: configure(msize=01).

• * burst_continue_mode = [boolean] default:false

When this parameter is set to true and a burst transfer is terminated early, the master will
automatically issue additional requests to satisfy the burst count. Otherwise, the master command
which was terminated early by a slave or other cycle terminating condition such as master abort or
rearbitrate will be considered complete.

• * msg_disable = [bit] default:0

This parameter disables all message generation of the PLB master model, including read data
error message generation.

6.3.1.2 Automatic Command Mode Configuration Parameters

• * master_auto_mode = [boolean] default:false
30 Processor Local Bus Functional Model Toolkit Version 4.9.2

This parameter specifies whether the PLB master behavior should automatically generate random
bus requests. When the master model is configured for automatic mode, there is no need to
initialize read/write commands since they are ignored while the bus cycle generation is enabled.

• auto_max_cycle = [integer] default:0

This parameter specifies the maximum number of cycles that will be generated automatically and
complete on the bus. If the default value of “0” is used, cycles will be produced until the simulation
is interrupted/stopped.

• auto_synch_level = [integer] default:none

This parameter specifies the level on the synch bus that will be asserted when the maximum
number of automatically generated cycles on the bus have completed. The maximum number of
automatically generated cycles is determined by the auto_max_cycle value.

• * seed = [integer] default:1

This parameter specifies the seed to be used for the random features of the model. The master
model currently uses uniform distribution functions implemented with exclusive-or algorithms to
produce random values for parameters which are changed by the model when configured to
automatic mode. The user may change the initial seed to meet the random number sequences
which are generated, which in turn will produce various master read and write sequences by the
model.

• * master_addr_LO_x = [32/64 bit], * master_addr_HI_x = [32/64 bit]

These parameters are used in master_auto_mode and they override the default generic address
parameters for the PLB master models. The user may provide up to two non-contiguous address
ranges for the same master by changing the ‘x’ from 0 to 1. Note that the addresses specified are
starting addresses for generated transactions in the automatic mode. If the
master_addr_HI_x=000003FF, then this will be a viable starting address for any transaction. For a
size value greater than a single byte, the requested address will go outside of the boundary
specified by master_addr_HI_x. In order to avoid generating transactions that go beyond the
boundary of the address range, specify master_addr_HI_x such that a transfer size equal to the
largest value of size_max (including the burst_count_max, if applicable) can be completed without
going outside of the address range.

• * msize_min/max = [integer] default:0/1

These parameters specify the range for Msize when master_auto_mode is true. The model
automatically assigns a random value to the Msize between (and including) the minimum and
maximum values. If the Msize parameter is also specified in a configure statement for the same
master, the minimum and maximum values will not be used even if the master is configured for
auto_mode.

• * size_min/max = [integer] default:0/6

These parameters specify the range for m_size when master_auto_mode is true. The model
automatically assigns a random value to m_size between (and including) the minimum and
maximum values. All non-valid sizes are automatically adjusted down to a size of 0000 because
some sizes are reserved. This means that is a user specifies a range of 0 to 12 that sizes of 4, 5, 6,
and 7 are adjusted down to a single(size=0000) transfer. Also, burst sizes are adjusted according
to the master size(msize). This means that a 32 bit master will produce only fullword bursts, a 64
bit master will produce only doubleword bursts, and a 128 bit master will produce only quadword
bursts.
Version 4.9.2 PLB Bus Functional Language 31

• * size0_min/max = [integer] default:0/3 * size1_min/max = [integer] default:8/12

These parameters should be used instead of size_min/max when a user wants to avoid having the
model adjust all invalid sizes down to a single(size=0000) transfer(see description of
size_min/max). These parameters provide the user with the ability to provide split ranges for the
m_size parameter. Thus a user could do the following:

configure(size0_min=0,size0_max=1,size1_min=10,size1_max=10)

This would produce singles transfers(size=0000), 4-word line transfers(size=0001), and fullword
burst transfers(size=1010).

• * cmd_min/cmd_max = [1,2] 1:read 2:write default:1/2

These parameters specify the random generation of reads and/or writes. If one is specified for both
then only reads will be produced, and if two is specified for both then only writes will be produced.

• single_probability/line_probability/burst_probability = [integer] default:33/33/34

These parameters specify the percentage of single, line, and burst transfers that will be generated
during the entire random simulation. The total of the three should add up to one hundred. For
example, a user could specify the following:

configure(single_probability=50, line_probability=25, burst_probability=25)

This would generate single transfers 50% of the time, line transfers 25% of the time, and burst
transfers 25% of the time. All three parameters should be specified in order to correctly override
the defaults. This is true even if one of the values is set to zero.

• line4wd_8wd_16wd = [integer-integer-integer] default:33-33-34

This parameter specifies the percentage of 4wd, 8wd, and 16wd line transfers that will be
generated during an entire random simulation in which the line_probability is greater than zero.
The total of the three integer values should add up to one hundred. For example, a user could
specify the following:

configure(line4wd_8wd_16wd=40-30-30)

Out of all line transfers generated, 40% would be 4wd line transfers, 30% would be 8wd line
transfers, and 30% would be 16wd line transfers. This parameter should be used when the
line_probability is greater than zero or it is ignored.

• * burst_count_min/max = [integer] default:1/32

These parameters specify the range for burst_count when master_auto_mode is true and
burst_probability is greater than zero or size_min/max include burst transfers. The model
automatically assigns a random value to burst_count between (and including) the minimum and
maximum values.

• fixed_burst_probability = [integer] default:4

This parameter specifies the probability of fixed burst transfers out of all burst transfers when
master_auto_mode is true and burst_probability is greater than zero. For example, a user could
specify the following:

configure(single_probability=20,line_probability=20,burst_probability=60,fixed_burst_probability=5
)

This configure would generate a fixed burst transfer for 1 out of every 5 burst transfers.
32 Processor Local Bus Functional Model Toolkit Version 4.9.2

• fixed_burst_count_min/fixed_burst_count_max = [integer] default:2/255

These parameters specify the range for the fixed burst transfers when master_auto_mode is true,
burst_probability is greater than zero or size_min/max include burst transfers, and
fixed_burst_probability is greater than zero. For example, a user could specify the following:

configure(msize=01, single_probability=20, line_probability=20, burst_probability=60,
fixed_burst_probability=5, fixed_burst_count_min=2, fixed_burst_count_max=8)

This configure would randomly generate fixed bursts of two to eight doublewords. Note: the bursts
would be doublewords b/c the msize specifies a 64-bit master.

• fixed_burst_abort_probability = [integer] default:4

This parameter species the probability of early terminated(also called aborted) fixed burst transfers
when master_auto_mode is true, burst_probability is greater than zero or size_min/max includes
burst transfers, and fixed_burst_probability is greater than zero. For example, a user could specify
the following:

configure(msize=01,single_probability=20,line_probability=20,burst_probability=60,fixed_burst_pr
obability=5,fixed_burst_count_min=2,fixed_burst_count_max=8,fixed_burst_abort_probability=3)

This configure would randomly generate fixed bursts of two to eight doublewords with one out of
every three fixed bursts terminating early. Note: the bursts would be doublewords b/c the msize
specifies a 64-bit master.

• * req_delay_min/max = [integer] default:0/20

These parameters specify the range for req_delay when master_auto_mode is true. The model
automatically assigns a random value to the req_delay between (and including) the minimum and
maximum values.

• * abort_probability = [integer] default:5

This parameter specifies the probability that M_abort will be asserted when master_auto_mode is
true. For example, the probability that M_abort will be asserted is approximately 1 out of every 5
(default value) master requests when master_auto_mode is enabled.

• * abort_delay_min/max = [integer] default:0/17

These parameters specify the range for abort_delay when master_auto_mode is true. The model
automatically assigns a random value to the abort_delay between (and including) the minimum and
maximum values. This parameter is generated for approximately 1 out of every abort_probability
cycles when master_auto_mode is enabled.

• * lock_probability = [integer] default:5

This parameter specifies the probability that M_busLock will be asserted when master_auto_mode
is true. For example, the probability that M_busLock will be asserted is approximately 1 out of
every 5 (default value) master requests when master_auto_mode is enabled.

• * unlock_delay_min/max = [integer] default:1/50

These parameters specify the range for unlock_delay when master_auto_mode is true. The model
automatically assigns a random value to the unlock_delay between (and including) the minimum
and maximum values when the lock_delay parameter is selected. This parameter is generated for
approximately 1 out of every five cycles when master_auto_mode is enabled.

• * priority_min/max = [integer:0,1,2,3] default:0/3
Version 4.9.2 PLB Bus Functional Language 33

These parameters specify the range for m_priority when master_auto_mode is true. The range
maximum must not exceed a value of three because the m_priority is only two-bits. Therefore valid
priorities are 00, 01,10, and 11.

• * merr_read_data_check_disable = [integer:0,1] default:0

This parameter is used to disable the read data checking in the master when a PLB_MrdErr (signal
driven by the slave to indicate the slave has encountered an error during a read transfer initiated by
the master) is also asserted. To disable this check so that the master will not report read data
errors, set merr_read_data_check_disable=1.

• * read_check_disable = [integer:0,1] default:0

This parameter is used to disable the read data checking in the master. Disabling this check
(setting read_check_disable=1) is useful when the slave in the testbench is not a toolkit slave and
may have different data than the toolkit master, which will cause read data comparison errors. Note
that if this parameter is set equal to 1, it may mask a real problem in the design.

• * ordered_probabilty = [integer:0-100] default:0

This parameter corresponds to the percentage of write requests in which the master will assert the
signal Mn_Tattribute bit 8 (Mn_Ordered) for the duration of the master request phase. For example,
if ordered_probability=75, then Mn_Tattribute(8) will be asserted for 75 percent of the write
requests from the master.

6.3.1.3 Automatic Data Mode Configuration Parameters

• * master_auto_data = [boolean] default:false

This parameter specifies whether the PLB master behavior should automatically generate data.
When the master model is configured for automatic data mode, there is no need to initialize internal
memory data since it is generated and checked using the BFM data generation function described
in “PLB Bus Functional Compiler” on page 12.

• * data_seed = [integer] default:1

This parameter specifies the seed to be used for the auto data feature of the model. The slave
model forms a seed using this root_seed and the byte address. The user may change the initial
seed to meet the random number sequences which are generated, which in turn will produce
various slave data.

6.3.2 Mem_Init () Command

The mem-init command initializes the internal master memory and is only executed at simulation time
0.

• addr = [4/8 byte]

This parameter specifies a master 32-bit or 64-bit address for data array initialization.

• data = [4/8 byte]

This parameter specifies the master memory data to initialize in the corresponding PLB device.

Examples:

mem_init(addr=00001000,data=01020304)

mem_init(addr=00000100,data=01020304_00607080)
34 Processor Local Bus Functional Model Toolkit Version 4.9.2

6.3.3 Reg_Init () Command

The reg_init command initializes an internal master register and is only executed at simulation time 0.

• DST = [4 byte]

This parameter specifies the master 32-bit register to initialize. DST may be CR, SR, or R0-31

Example: reg_init(R0=01020304)

6.3.4 Read () and Write () Bus Cycle Commands

The read/write bus cycle commands initiate read or write cycles on the PLB bus by causing the bus
master to assert the M_request signal. These commands are executed sequentially, therefore the
completion of the cycles on the PLB bus influence the simulation time at which the commands are
decoded. The following is a list of possible read/write parameters:

• addr = [4/8 byte]

This parameter specifies the 32-bit or 64-bit address.

• tattr/tattribute= [4 hex] default:0000

This parameter enables and specifies the tattribute value.

Example: read(req_delay=3,addr=00001000,size=0000,be=1111,tattr=A001)

• * be = [4/8/16 bit]

This parameter specifies the Mn_BE (byte-enable) signals of the PLB. The valid byte-enable
combinations are listed in the PLB architecture specifications under transfer qualifier signals. This
parameter is required for all nonburst and non-line transfers.

• size = [4 bit]

This parameter specifies the Mn_size signals of the PLB. The valid size combinations are listed in
the PLB architecture specifications under transfer qualifier signals.

• * msize = [2 bit]

This parameter specifies the Mn_MSize signals of the PLB. The valid size combinations are listed
in the PLB architecture specifications under transfer qualifier signals. Note that this parameter will
be ignored if MSize was previously defined as a configuration parameter.

• * req_delay = [integer]

This parameter specifies the number of clock cycles for the master to wait before it asserts its
M_request signal for the corresponding read or write cycle.

• * lock = [1 bit] default:0

This parameter specifies whether to assert Mn_busLock with Mn_request. If the parameter is not
specified then lock is not asserted. The PLB will be locked when a valid PLB_MnaddrAck is
asserted. When using the lock parameter, an unlock parameter is required in the same instruction.
The lock signal is automatically deasserted if a rearbitrate occurs.

• * unlock_mode = [enumerated type] default:cycle
Version 4.9.2 PLB Bus Functional Language 35

This parameter specifies the mode in which lock is deasserted. This may be specified as clock
mode or cycle mode. Clock mode specifies the deassertion of lock as the number of clocks from
when lock was previously asserted. Cycle mode specifies the number of cycles to expire before
lock is deasserted. In cycle mode, lock is deasserted when Mn_request is deasserted during the
last locked cycle.

• * unlock_delay = [integer:range 1 to 255]

This parameter specifies the number of clocks to deassert lock after it was previously
asserted, or the number of cycles to elapse before it is deasserted. The mode for the
deassertion of lock is specified with the unlock_mode parameter. A cycle is defined by the
assertion of PLB_MAddrAck, PLB_MTimeout or M_abort. Note that if two commands are
given, both with an unlock_delay > 1, the unlock_delay from the first command will be used to
deassert M_buslock and not the second. For example:

write(addr=08f9f360,size=0001,priority=11,lock=1,unlock_delay=4,unlock_mode=cycle)
read(addr=08f9f460,size=0001,priority=11,lock=1,unlock_delay=3,unlock_mode=cycle)

In this case, the M_buslock will be deasserted 4 cycles after the write request. The
unlock_delay of 3 will be ignored.

• * type = [3 bit] default:000

This parameter specifies the Mn_type signals of the PLB. The valid size combinations are listed in
the PLB architecture specifications under transfer qualifier signals. The default value is a memory
transfer.

• * compress = [1 bit] default:0

This parameter enables the assertion of the Mn_Compress signal for the duration of the master
request phase.

• * guarded = [1 bit] default:0

This parameter enables the assertion of the Mn_Guarded signal for the duration of the master
request phase.

• * ordered = [1 bit] default:0

This parameter enables the assertion of the Mn_Ordered signal for the duration of the master
request phase.

• * lockErr = [1 bit] default:0

This parameter enables the assertion of the Mn_lockErr signal or the duration of the master
request phase.

• burst_count = [integer]

This parameter specifies the total number of data transfers when a burst cycle is used with the size
parameter. The master will continue to execute cycles until an internal transfer counter equals the
burst_count parameter. Note that this parameter is only used when a burst cycle is specified with
the size parameter. For a burst of one data transfer, the rd/wr_burst signals will not be asserted,
and the burst_count parameter should be set to ‘1’ or simply omitted from the command.

Note: For fixed length bursts, the PLB Architecture allows the pre-mature de-assertion of the
M_rd/wrburst signal before the number of data beat transfers specified by the byte enables.
The PLB Architecture also allows Masters to continue bursting beyond the fixed length burst
beat count if a slave burst terminate signal is NOT received during a fixed length burst transfer.
36 Processor Local Bus Functional Model Toolkit Version 4.9.2

To allow verification of this architectural flexibility, the BURST_COUNT parameter can be
programmed to a different number of beats than that specified on the byte enables. When the
BURST_COUNT parameter is less than the BE data beat count, the burst signal will be pre-
maturely de-asserted. When the BURST_COUNT is greater than the BE data beat count, the
master will continue bursting IF a slave burst terminate signal was not asserted to the master.

IT IS STRONGLY RECOMMENDED THAT LOGIC DESIGNS WHICH SUPPORT BURST
AND FIXED LENGTH BURST BE TESTED THOROUGHLY WITH ALL COMBINATIONS OF
BYTE ENABLES, MASTER BURST ABORTS, AND SLAVE BURST TERMINATES TO
MAXIMIZE CORE COMPATIBILITY AND COMPLIANCE

• * burst_deassert_delay = [integer]

This parameter specifies the wait period for number of clocks, after address acknowledge, before
de-asserting the burst signal. When this parameter is used instead of the burst_count parameter,
the PLB master model asserts its M_wr/rdBurst signal and deasserts it after the number of clocks
have been specified by this parameter; the clock count starts when the transaction has been
address acknowledged. The master model waits for a final data acknowledge with its burst signal
low and continues to the next instruction. When this parameter is used together with the
burst_count parameter, the master will wait the specified number of clocks after the next to last
rd/wrDAck is sampled active to deassert the Mn_rd/wrBurst signal.

• * abort_delay = [integer]

This parameter specifies the number of clocks to wait before Mn_abort is asserted with respect to
the assertion of Mn_request. If the parameter is not specified, Mn_abort is not asserted. If
PLB_MAddrAck is sampled active before the abort signal is asserted, the data phase is processed
as it would be without the abort.

• * priority = [2 bit] default:00

This parameter specifies the Mn_priority signals of the PLB.

• * rdword_mode = [1 bit] 0=sequential,1=target word first

This parameter specifies the address intermediation order for automatically checking the
PLB_Mn_rdWdAddr signals during line transfers. The valid modes are sequential and target word
first. An error message will be generated if a comparison error occurs.

Example: read(req_delay=3,addr=00001000,size=0000,be=1111)

• * data = [ALU Register]

When this optional parameter is used, data is loaded into the specified PLB master register directly
instead of being loaded into the internal PLB master model memory. Also, no data comparison
checking is performed with the data received from the PLB bus.

6.3.5 Mem_Update () Command

The mem_update command updates master memory during the decode and execution of master bus
commands. It is a serializing instruction meaning that all outstanding bus cycles complete before the
internal memory array is updated.

• addr = [4 byte]

This parameter specifies the 32-bit address of the internal memory data value to be updated.

• data = [4 byte] or [CRx,Rx,SR]
Version 4.9.2 PLB Bus Functional Language 37

This parameter specifies the data which will be used to update the PLB master internal memory.
An immediate 4-byte data value or an internal register may be used.

Example: mem_update(addr=00001000,data=05060708)

6.3.6 Reg_Update () Command

The reg_update command updates an internal master register during the decode and execution of
master bus commands. Each reg_update command executes in one PLB clock cycle.

• DST = [4 byte]

This parameter specifies the 32-bit destination register of the internal register to be updated.

Example: reg_update(R0=05060708)

6.3.7 Send () Command

The send command causes a vectored intercommunication signal to be asserted at the
corresponding level parameter and does not directly cause PLB bus activity. The synch_Out signal is
asserted for one clock per send instruction and may be used to communicate between multiple model
instantiations in order to coordinate bus activity. The send is executed sequentially along with the
read/write commands and is a serializing instruction, meaning that the model waits for all previously
issued bus cycles to complete on the bus before sending its intercommunication signal.

• level = [integer: range 0 to 31]

The level parameter allows for one or more send signals to be asserted on the synch_Out bus.
Multiple levels may be used in the same clock by listing more than one level. Note that it is possible
for a user to use the same intercommunication level with multiple masters, however the assertion
of the same level in the same clock by multiple masters will not be distinguished on the
intercommunication send vector.

• * req_delay = [integer]

This parameter specifies how many clock cycles the PLB master needs to wait before it asserts the
synch signal for the corresponding send instruction. The counter starts when all cycles on the bus
are complete since the send instruction is a serializing instruction.

Example: send(level=1)

6.3.8 Wait () Command

The wait command causes the bus master to suspend instruction decode until an intercommunication
signal is received. The wait instruction is a serializing instruction and is executed sequentially along
with the read/write commands. In addition, all previously issued bus cycles need to complete on the
bus before the intercommunication signal on the synch_In bus is recognized.

• level = [integer: range 0 to 31]

The level parameter specifies the synch_In signal to be sampled before instruction execution
continues.

Example: wait(level=1)
38 Processor Local Bus Functional Model Toolkit Version 4.9.2

6.3.9 Branch () Command

The branch command enables the user to re-direct the command decode location within the PLB
master decode unit internal command array. It also enables looping and jumping. Branch targets are
established by specifying label attributes with a PLB master command, such as:

T1:read(req_delay=3,addr=00001000,size=0000,be=1111) -- establish a branch target called T1

Note: The “:” between the label and master command delineates the two BFL constructs. Each
branch instruction executes in one PLB clock cycle.

• SRC

This parameter specifies the condition register to determine whether the branch is taken. A
condition register is used in this comparison.

• OP

This parameter specifies the comparison operator to compare the condition register. The valid
conditions are:

LT: less than

GT: greater than

EQ: equal

NL: not less than

NG: not greater than

NE: not equal

• Label

This parameter specifies the BFL destination of the branch if the condition register matches the
operator parameter. The label must be defined in the test case using the label command attribute.

Example: branch (CR3, LT, Label1)

6.3.10 Move () Command

The move command enables the user to move a 32-bit internal register or internal memory value to
an internal register. Register to Register Move instructions execute in one clock cycle. Internal
memory to register Move instructions are decoded in one clock, and the register update occurs in the
next clock.

Note: Register data is always available in the next clock for following instructions.

• DST=SRC

The SRC parameter specifies the internal register or 32-bit internal memory value to be used as
the source of the move instruction. The DST parameter specifies the internal register which is
updated with the SRC parameter value. The DST may be CR, SR, or R0-31.

Example: move(CR,R0)

Example: move(CR,12345678)
Version 4.9.2 PLB Bus Functional Language 39

6.3.11 Compare () Command

The compare command enables the user to compare two values and store the results in the condition
register. Each compare instruction executes in one PLB clock cycle.

• SRC (two are required)

This parameter specifies the internal register value to be used as a source of the compare
instruction. Each compare instruction requires two SRC parameters. Valid values are SR,R0-31.

• DST

This parameter specifies the condition register destination of the compare instruction. Valid values
are CR0-7.

Example: compare(R0,R1,CR1)

6.3.12 Add () Command

The add command updates an internal master register with the result of an addition between an
internal register and an immediate value. Each add command executes in one PLB clock cycle.

• DST, [hex value up to 4 bytes]

These two parameters specify the 32-bit internal destination register to be updated and the
immediate hexadecimal value to be added to the destination register. The DST must be R0-31, SR,
or CR.

Example: add(R0,01)

6.3.13 Sub () Command

The sub command updates an internal master register with the result of a subtraction between an
internal register and an immediate value. Each sub command executes in one PLB clock cycle.

• DST, [hex value up to 4 bytes]

These two parameters specify the 32-bit internal destination register to be updated and the
immediate hexadecimal value to be subtracted from the destination register. The DST must be R0-
31, SR, or CR.

Example: sub(R0,01)

6.3.14 AND () Command

The AND command updates an internal master register with the result of a bit-wise AND operation
between an internal register and an immediate value. Each AND command executes in one PLB
clock cycle.

• DST, [hex value up to 4 bytes]

These two parameters specify the 32-bit internal destination register to be updated and the
immediate hexadecimal value to be AND'd with the destination register. The DST must be R0- 31,
SR, or CR.

Example: and(R0,FFFFFFF0)
40 Processor Local Bus Functional Model Toolkit Version 4.9.2

6.3.15 OR () Command

The OR command updates an internal master register with the result of a bit-wise OR operation
between an internal register and an immediate value. Each AND command executes in one PLB
clock cycle.

• DST, [hex value up to 4 bytes]

These two parameters specify the 32-bit internal destination register to be updated and the
immediate hexadecimal value to be OR'd with the destination register. The DST must be R0- 31,
SR, or CR.

Example: or(R0,01)

6.3.16 Shift_left() Command

The Shift_left command updates an internal master register with the result of a bit-wise Shift_left
operation between an internal register and an immediate value. Each Shift_left command executes in
one PLB clock cycle.

• DST, [integer value]

These two parameters specify the 32-bit internal destination register to be updated and immediate
integer value to indicate the number of bit positions to shift the specified register. The DST must be
R0- 31, SR, or CR.

Example: shift_left(R0,1)

6.3.17 Shift_right() Command

The Shift_right command updates an internal master register with the result of a bit-wise Shift_right
operation between an internal register and an immediate value. Each Shift_right command executes
in one PLB clock cycle.

• DST, [integer value]

These two parameters specify the 32-bit internal destination register to be updated and immediate
integer value to indicate the number of bit positions to shift the specified register. The DST must be
R0- 31, SR, or CR.

Example: shift_right(R0,1)

6.4 PLB Slave Commands

The PLB slave commands are categorized into model configuration, memory initialization commands,
bus response commands, and memory comparison/check commands. The model configuration
commands are used to characterize the slave model by controlling the way in which it responds to
PLB cycles. The memory initialization commands are used to set up the slave memory before
simulation starts. The memory comparison/check commands can be used to compare expected data
with slave memory data during simulation. The bus response commands are used to change the
slave bus response parameters such as wait states and termination types.
Version 4.9.2 PLB Bus Functional Language 41

6.4.1 Configure () Command

The configure command allows the user to configure different PLB model attributes. One or more
parameters can be used with a single “configure” command, and multiple “configure” commands may
be used in a single test case. It is important to note that the configure commands are only executed at
time 0 in simulation.

6.4.1.1 BFL Mode Configuration Parameters

• * aack_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting Sl_addrAck from the time
PLB_PAValid or PLB_SAValid is active. For example, an aack_delay value of 0 will assert
Sl_addrAck together with PLB_PAValid and an aack_delay of 1 will assert Sl_addrAck one clock
after PLB_PAValid is recognized.

• * read_aack_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting Sl_addrAck from the time
PLB_PAValid or PLB_SAValid is active. For example, an read_aack_delay value of 0 will assert
Sl_addrAck together with PLB_PAValid and an read_aack_delay of 1 will assert Sl_addrAck one
clock after PLB_PAValid is recognized.

• * write_aack_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting Sl_addrAck from the time
PLB_PAValid or PLB_SAValid is active. For example, an write_aack_delay value of 0 will assert
Sl_addrAck together with PLB_PAValid and an write_aack_delay of 1 will assert Sl_addrAck one
clock after PLB_PAValid is recognized.

• * SSize = [2 bit]

This parameter specifies the Sln_SSize signals of the PLB. The valid size combinations are listed
in the PLB architecture specifications. This parameter may also be used in each read/write slave
response command. However, when this parameter is used in a configuration statement it is
retained throughout the simulation as a slave configuration parameter.

Example: configure(ssize=01)

• * read_dack_delay = [integer] default:0

This parameter specifies the number of clocks to wait before asserting the first data acknowledge
control signal for a read_response. This parameter is relative to the earliest legal assertion of
Sl_rdDAck.

• * write_dack_delay = [integer] default:0

This parameter specifies the number of clocks to wait before asserting the first data acknowledge
control signal for a write_response. This parameter is relative to the earliest legal assertion of
Sl_wrDAck.

• * burst_term_mode = [enumerated type] default: cycle

This parameter specifies whether the PLB slave behavior should terminate burst cycles based on
the number of data transfers which have occurred or the number of clocks from the time the burst
transaction starts. The valid types are cycle or clk.

• * rdWord_mode = [1 bit] 0=sequential,1=target word first default:0
42 Processor Local Bus Functional Model Toolkit Version 4.9.2

This parameter specifies the address incrementation order for the slave during line transfers. The
valid modes are sequential and target word first. When this parameter is used in the configuration
statement of the slave, the rdWord_mode will be constant for the entire simulation session.

• * fixed_burst_mode = [1 bit] 0=disabled, 1=enabled default:0

This parameter configures the slave to automatically assert the Sl_rd/wrBterm signal when a fixed
length burst cycle is in progress and the corresponding number of data transfer has occurred on
the bus.

• * wait_disable = [1 bit] 0=enabled,1=disabled default:0

This parameter specifies if the Sl_wait signal can be asserted. When this parameter is used in the
configuration statement of the slave, the wait_disable will be constant for the entire simulation
session.

• * wait_mode = [1 bit] 0=assert on address,1=delay mode default:0

This parameter specifies how the Sl_wait signal is asserted. When assert on address mode is
used, the slave will assert Sl_wait whenever the PLB_Abus is within the slave address range.
When delay mode is used, Sl_wait will be asserted based on both an address match and the wait
parameter of the read/write response commands.

• * read_addr_pipeline_disable = [1 bit] 0=SAValid recognized,1=SAValid ignored default:0

This parameter specifies whether the PLB core secondary address valid control signal is
recognized by the PLB slave model during secondary read requests. When programmed to
recognize PLB_SAValid, the PLB slave model asserts addrAck during PLB_SAValid and queues
secondary read requests which are processed after primary requests are complete. The
PLB_rdPrim and PLB wrPrim signals are used to switch secondary requests to primary status
within the model. When this parameter is used in the configuration statement of the slave, the
read_addr_pipeline_mode will be constant for the entire simulation session.

• * write_addr_pipeline_disable = [1 bit] 0=SAValid recognized,1=SAValid ignored default:0

This parameter specifies whether the PLB core secondary address valid control signal is
recognized by the PLB slave model during secondary write requests. When programmed to
recognize PLB_SAValid, the PLB slave model asserts addrAck during PLB_SAValid and queues
secondary write requests which are processed after primary requests are complete. The
PLB_rdPrim and PLB wrPrim signals are used to switch secondary requests to primary status
within the model. When this parameter is used in the configuration statement of the slave, the
write_addr_pipeline_mode will be constant for the entire simulation session.

• * data_pipeline_mode = [1 bit] 0=overlapped DAck mode,1=sequential DAck mode default:0

This parameter specifies whether the PLB slave model may assert read and write data
acknowledge signals simultaneously. When programmed for sequential DAck mode, the slave
model will not assert read and write DAcks in the same clock. When this parameter is used in the
configuration statement of the slave, the data_pipeline_mode will be constant for the entire
simulation session.

• * msg_disable = [bit] 0=disabled 1=enabled default:0

This parameter disables all message generation of the PLB slave model, including data error
message generation.
Version 4.9.2 PLB Bus Functional Language 43

6.4.1.2 Automatic Command Mode Configuration Parameters

• * slave_auto_mode = [boolean] false=disabled true=enabled default:false

This parameter specifies whether the PLB slave behavior should automatically respond to bus
cycles with varied acknowledge delays and termination types. The valid parameter types are true
and false. When the slave model is configured for automatic mode, there is no need to initialize
read/write_response commands since they are ignored while auto mode is enabled.

• * seed = [integer] default:1

This parameter specifies the seed to be used for the random features of the model. The slave
model currently uses a uniform distribution function implemented with exclusive-or algorithms to
produce random values for parameters which are varied by the model when configured in
automatic mode. The user may change the initial seed to change the random number sequences
which are generated, which in turn will produce varying slave response sequences by the model.

• * slave_addr_LO_x = [32 bit], * slave_addr_HI_x = [32 bit]

These parameters allow a user to override the default generic address decode parameters for the
PLB device slaves. The user may provide up to two non-contiguous address ranges for the same
slave by changing the ‘x’ from 0 to 1. If more non-contiguous slaves address ranges are necessary,
the user may instantiate additional PLB device models in the test bench. It is important that there
are no overlapping memory address areas between multiple slaves, since both slaves would
attempt to respond to a single cycle. If both address parameters are equal, they are not used as a
valid address decode.

• * read_aack_min/max = [integer] default:0/12

These parameters specify the range for aack_delay during read cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the aack_delay between (and including)
the minimum and maximum values.

• * write_aack_min/max = [integer] default:0/12

These parameters specify the range for aack_delay during write cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the aack_delay between (and including)
the minimum and maximum values.

• * read_rearb_min/max = [integer] default:12/15

These parameters specify the range for rearb_delay during read cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the rearb_delay between (and including)
the minimum and maximum values.

• * write_rearb_min/max = [integer] default:12/15

These parameters specify the range for rearb_delay during write cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the rearb_delay between (and including)
the minimum and maximum values.

• * read_wait_min/max = [integer] default:12/15

These parameters specify the range for wait_delay during read cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the wait_delay between (and including)
the minimum and maximum values.

• * write_wait_min/max = [integer] default:12/15
44 Processor Local Bus Functional Model Toolkit Version 4.9.2

These parameters specify the range for wait_delay during write cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the wait_delay between (and including)
the minimum and maximum values.

• * read_dack_min/max = [integer] default:0/15

These parameters specify the range for DAck_delay during read cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the DAck_delay between (and including)
the minimum and maximum values.

• * write_dack_min/max = [integer] default:0/15

These parameters specify the range for DAck_delay during write cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the DAck_delay between (and including)
the minimum and maximum values.

• * read_comp_min/max = [integer] default:0/2

These parameters specify the range for comp_delay during read cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the comp_delay between (and including)
the min and max values.

• * write_comp_min/max = [integer] default:0/2

These parameters specify the range for comp_delay during write cycles when slave_auto_mode is
true. The model automatically assigns a random delay to the comp_delay between (and including)
the minimum and maximum values.

• * read_burst_term_min/max = [integer] default:7/10

These parameters specify the range for burst_term delay during read cycles when
slave_auto_mode is true. The model automatically assigns a random delay to the burst_term delay
between (and including) the minimum and maximum values.This parameter is used in conjunction
with the burst_term_mode parameter. The delay will count either from clocks (if
burst_term_mode=clk) or data cycles (if burst_term_mode=cycle).

• * write_burst_term_min/max = [integer] default:7/10

These parameters specify the range for burst_term delay during write cycles when
slave_auto_mode is true. The model automatically assigns a random delay to the burst_term delay
between (and including) the minimum and maximum values.This parameter is used in conjunction
with the burst_term_mode parameter. The delay will count either from clocks (if
burst_term_mode=clk) or data cycles (if burst_term_mode=cycle).

6.4.1.3 Automatic Data Mode Configuration Parameters

• * slave_auto_data = [boolean] false=disabled true=enabled default:false

This parameter specifies whether the PLB slave behavior should automatically generate data.
When the slave model is configured for automatic data mode, there is no need to initialize internal
memory data since it is generated and checked using the BFM data generation function described
in “PLB Bus Functional Compiler” on page 12.

• * root_seed = [integer] default:1
Version 4.9.2 PLB Bus Functional Language 45

This parameter specifies the seed to be used for the auto data feature of the model. The slave
model forms a seed using this root_seed and the byte address. The user may change the initial
seed to change the random number sequences which are generated, which in turn will produce
varying slave data.

6.4.2 Mem_Init () Command

The mem_init command initializes slave memory at simulation time 0.

• addr = [4 byte]

This parameter specifies the 32-bit address.

• data = [4 byte]

This parameter specifies the slave memory data to initialize in the corresponding PLB device.

6.4.3 Read_Response (), Write_Response () Commands

These commands specify attributes for a slave cycle read or write response when an address decode
is true. Read_response commands are used to initialize the PLB slave response.

• * aack_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting Sl_addrAck from the time
PLB_PAValid or PLB_SAValid is active. For example, an aack_delay value of 0 will assert
Sl_addrAck together with PLB_PAValid and an aack_delay of 1 will assert Sl_addrAck one clock
after PLB_PAValid is recognized.

• * rearb_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting the Sl_rearbitrate signal
from the clock that PLB_PAValid was previously asserted. No Sl_addrAck is asserted if the
rearb_delay parameter is used. Note that rearb_delay is not a valid configuration.

• * dack_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting the first data acknowledge
control signal for a read_response or write_response. This parameter is relative to the earliest legal
assertion of Sl_rdDAck and Sl_wrDAck. For example, a DAck_delay value of 0 for a
read_response causes the Sl_rdDAck signal to be asserted 2 clocks after Sl_addrAck is asserted,
which is the earliest legal PLB slave data response time for the first Sl_rdDAck. A DAck_delay
value of 0 for a write_response causes the Sl_wrDAck signal to be asserted together with the
Sl_addrAck assertion, which is the earliest legal PLB slave data response time for the first
Sl_wrDAck.

For line and burst transfers, the dack_delay parameter can be used to specify delays between
dacks for a multiple data beat transfer. This is accomplished with the following syntax:

read_response(dack_delay=2*) or configure(dack_delay=2*)

These bfl statements will produce a delay of 2 between dacks for a line or burst transfer.

Another available option is to specify different delays between dacks for a multiple data beat
transfer. This is accomplished with the following syntax:

read_response(dack_delay=2-3-4-5)
46 Processor Local Bus Functional Model Toolkit Version 4.9.2

This will delay the first dack by 2 in relation to addrack or rdprim, the second dack will be delayed
by 3 from the first dack, the third dack will be delayed by 4 from the second dack, and the fourth
dack will be delayed by 5 from the third dack. Please note that up to 8 values may be used
(dack_delay=x-x-x-x-x-x-x-x) and any dacks beyond 8 will default to the dack delay value of the
eighth dack.

• * comp_delay = [integer] default=0

This parameter specifies the number of clocks to wait before asserting the Sl_rdComp or
Sl_wrComp signals relative to the last Sl_rdDAck or Sl_wrDAck. For reads, a value of 0 will cause
Sl_rdComp to be asserted 1 clock before the last Sl_rdDAck. For writes, a value of 0 will cause
Sl_wrComp to be asserted together with the last Sl_wrDAck. A non-zero value will cause a per
clock assertion delay relative to the fastest possible assertion time.

• * wait_delay = [integer:range 0 to 255]

This parameter specifies the number of clocks to wait before Sl_wait is asserted with respect to the
assertion of PLB_PAValid or PLB_SAValid. If the parameter is not specified and wait_disable is 0,
Sl_wait is asserted whenever the PLB_ABus is within the slave address range.

• * rdWord_mode = [1 bit] 0=sequential,1=target word first

This parameter specifies the address incrementation order for the slave during line transfers. The
valid modes are sequential and target word first. If this parameter is used in the configuration
statement of the slave, the rdWord_mode response parameter will be ignored.

• * burst_term = [32 bits] or [integer] default:0

This parameter specifies the internal burst address or data acknowledge cycle to assert
Sl_rdBTerm or Sl_wrBTerm signal. If the slave is configured in burst address terminate mode, a 32-
bit address should be specified, otherwise the cycle integer should be specified.

• * SSize = [2 bit]

This parameter specifies the Sln_SSize signals of the PLB. The valid size combinations are listed
in the PLB architecture specifications. Note that this parameter will be ignored if the SSize
parameter was previously defined as a configuration parameter.

• * level = [integer: range 0 to 31]

This parameter specifies which synchronization signal to send when the slave responds to a read
or write.

6.4.4 Merr_Init () Commands

The merr_init commands allow the user to generate a master error for read and write transactions
based on a specified address. If the user wishes to generate separate read and write errors, the
commands: merr_init_r(addr=xxxx) and merr_init_w(addr=xxxx) can be used. The merr_init_r
command generates a master read error based on a specified address and the merr_init_w command
generates a master write error based on a specified address. When merr_init is used, an error is
generated for both reads and writes at the specified address.

• addr = [4 byte]

The address that when read from or written to should cause a master error. For PLB4X this will
cause the assertion of the Sl_MRdErr/Sl_MWrErr signal, whereas for PLB3X this will cause the
assertion of Sl_MErr.
Version 4.9.2 PLB Bus Functional Language 47

6.4.5 Mem_Check () Command

The mem_check command automatically compares slave memory with the specified comparison
data. If there is a data comparison error, an error message is generated and the corresponding error
detection bit is set in the PLB device.

• level = [integer: range 0 to 31]

This parameter specifies which synchronization signal to wait for before checking the slave
memory data.

• addr = [4 byte]

This parameter specifies the 32-bit address.

• data = [4 byte]

This parameter specifies the slave memory data to check in the corresponding PLB device.

6.5 PLB Monitor Commands

The PLB Monitor contains registers for address mapping of slave instantiations. Some of the monitor
protocol checks use the address map to provide accurate messaging and perform the actual protocol
checks. It is required for the user to set up the Monitor register initializations for the slave address
map.

6.5.1 Configure () Command

The configure command allows the user to configure different PLB model attributes. One or more
parameters can be used with a single “configure” command, and multiple “configure” commands may
be used in a single test case. It is important to note that the configure commands are only executed at
time 0 in simulation.

6.5.1.1 Configuration Parameters

• enable_timeout_report=[bit] 0=disabled 1=enabled default:disabled

This parameter enables the monitor to give an error message specifying that a timeout occurred on
the bus.

• addr_check_enable=[1 bit] 0=disabled 1=enabled default:0

This parameter enables monitor checks that use the slave address ranges as part of the check.
The monitor will default this parameter to disabled because the monitor cannot check slave
address related items unless it knows the address ranges for each instantiated slave. If the default
slave values of the toolkit are being used then there is no need to specify the slave address ranges
in a configure statement because a generic load of the address ranges is performed automatically.
However, if a user chooses to vary the slave address ranges in their environment then the monitor
must be configured for these values (see slavex_addr_lo_x / slavex_addr_hi_x configure
parameters below).In either case, the addr_check_enable must be turned on by the user through
monitor bfl.

• busy_cycle_max=[integer] 0=disabled default:100
48 Processor Local Bus Functional Model Toolkit Version 4.9.2

This parameter specifies the maximum number of cycles that the PLB_MnBusy is allowed to be
active before issuing a warning (1.22.3). When the value is 0, the warning is disabled.

• SLAVE0_ADDR_LO_0 = [4 byte], SLAVE0_ADDR_HI_0 = [4 byte], SLAVE0_ADDR_LO_1 = [4
byte], SLAVE0_ADDR_HI_1 = [4 byte],

Address map range 0/1 for slave instantiation 0.

• SLAVE1_ADDR_LO_0 = [4 byte], SLAVE1_ADDR_HI_0 = [4 byte], SLAVE1_ADDR_LO_1 = [4
byte], SLAVE1_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 1.

• SLAVE2_ADDR_LO_0 = [4 byte], SLAVE2_ADDR_HI_0 = [4 byte], SLAVE2_ADDR_LO_1 = [4
byte], SLAVE2_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 2.

• SLAVE3_ADDR_LO_0 = [4 byte], SLAVE3_ADDR_HI_0 = [4 byte], SLAVE3_ADDR_LO_1 = [4
byte], SLAVE3_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 3.

• SLAVE4_ADDR_LO_0 = [4 byte], SLAVE4_ADDR_HI_0 = [4 byte], SLAVE4_ADDR_LO_1 = [4
byte], SLAVE4_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 4.

• SLAVE5_ADDR_LO_0 = [4 byte], SLAVE5_ADDR_HI_0 = [4 byte], SLAVE5_ADDR_LO_1 = [4
byte], SLAVE5_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 5.

• SLAVE6_ADDR_LO_0 = [4 byte], SLAVE6_ADDR_HI_0 = [4 byte], SLAVE6_ADDR_LO_1 = [4
byte], SLAVE6_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 6.

• SLAVE7_ADDR_LO_0 = [4 byte], SLAVE7_ADDR_HI_0 = [4 byte], SLAVE7_ADDR_LO_1 = [4
byte], SLAVE7_ADDR_HI_1 = [4 byte]

Address map range 0/1 for slave instantiation 7.

Example:

set_device (path=/plb_complex/mon,device_type=plb_monitor)

 configure(SLAVE0_ADDR_LO_0=00000000) -- slave 0 range

 configure(SLAVE0_ADDR_HI_0=0003FFFF)

 configure(SLAVE0_ADDR_LO_1=FFFF0000) -- slave 0 range hi

 configure(SLAVE0_ADDR_HI_1=FFFFFFFF)

 configure(SLAVE1_ADDR_LO_0=00040000) -- slave 1 range ebiu

 configure(SLAVE1_ADDR_HI_0=0007FFFF)

 configure(SLAVE2_ADDR_LO_0=00080000) -- slave 2 range

 configure(SLAVE2_ADDR_HI_0=000BFFFF)

 configure(SLAVE3_ADDR_LO_0=000C0000) -- slave 3 range
Version 4.9.2 PLB Bus Functional Language 49

 configure(SLAVE3_ADDR_HI_0=000FFFFF)

• ssize = [2 bit]

• msize = [2 bit]

6.5.2 Read / Write() Commands

The following set of parameters can be used to create expect values for transactions that occur on
the bus. If a value is specified, but mismatches when checked against the actual transaction that
occurred on the bus, then the monitor will generate an error message.

• addr = [4/8 byte]

Specifies the expected address value for a bus transaction.

• be = [4/8/16 bit]

Specifies the expected byte enable value for a bus transaction.

• size = [4 bit]

Specifies the expected size value for a bus transaction.

• aack_delay = [integer]

Specifies the expected aack_delay value for a bus transaction.

• abort_delay = [integer]

Specifies the expected abort_delay value for a bus transaction.

• dack_delay = [integer]

Specifies the expected dack_delay for a bus transaction.

6.5.2.1 Sample Monitor Read/Write BFL

The following example shows bfl for a master, slave, and monitor device. The master will perform four
writes followed by four reads. The slave will respond to each with the specified aack and dack delays.
The monitor will check that each transaction completes with the expected values that are provided by
the monitor bfl.

• PLB Master 0

set_device (path=/plb_complex/m0,device_type=plb_master)

configure(msize=00)

mem_init(addr=00021000,data=00112233)

mem_init(addr=00021004,data=44556677)

mem_init(addr=00021008,data=AABBCCDD)

mem_init(addr=0002100C,data=AABBCCDD)

write(addr=00021000,size=0000,be=1111)

write(addr=00021004,size=0000,be=1111)

write(addr=00021008,size=0000,be=1111)
50 Processor Local Bus Functional Model Toolkit Version 4.9.2

write(addr=0002100C,size=0000,be=1111)

read(addr=00021000,size=0000,be=1111)

read(addr=00021004,size=0000,be=1111)

read(addr=00021008,size=0000,be=1111)

read(addr=0002100C,size=0000,be=1111)

• PLB Slave 0

set_device (path=/plb_complex/s0,device_type=plb_slave) -- Initialize device 0

configure(ssize=00)

mem_init(addr=00021000,data=AABBCCDD)

mem_init(addr=00021004,data=AABBCCDD)

mem_init(addr=00021008,data=AABBCCDD)

mem_init(addr=0002100C,data=AABBCCDD)

write_response(aack_delay=4,dack_delay=3)

write_response(aack_delay=3,dack_delay=3)

write_response(aack_delay=2,dack_delay=3)

write_response(aack_delay=1,dack_delay=3)

read_response(aack_delay=4,dack_delay=2)

read_response(aack_delay=3,dack_delay=2)

read_response(aack_delay=2,dack_delay=2)

read_response(aack_delay=1,dack_delay=2)

• PLB Monitor BFL

set_device(path=/plb_complex/mon,device_type=plb_monitor)

configure(msize=00,ssize=00)

write(addr=00021000,size=0000,be=1111,aack_delay=4, dack_delay=3)

write(addr=00021004,size=0000,be=1111,aack_delay=3, dack_delay=3)

write(addr=00021008,size=0000,be=1111,aack_delay=2, dack_delay=3)

write(addr=0002100C,size=0000,be=1111,aack_delay=1, dack_delay=3)

read(addr=00021000,size=0000,be=1111,aack_delay=4, dack_delay=2)

read(addr=00021004,size=0000,be=1111,aack_delay=3, dack_delay=2)

read(addr=00021008,size=0000,be=1111,aack_delay=2, dack_delay=2)

read(addr=0002100C,size=0000,be=1111,aack_delay=1, dack_delay=2)

6.5.3 Report() Command

This command allows the user to output the transactions that have been recorded by the monitor.
Without any arguments, this command simply outputs the contents of the record arrays.
Version 4.9.2 PLB Bus Functional Language 51

• * level = [integer: range 0 to 31] default: none

The level parameter indicates to output the contents of the record arrays when the level is received
through the use of a send command. Multiple levels may be used in the same clock by listing more
than one level. The report command outputs the transactions that have been recorded by the
monitor. If no transactions have occurred across the bus, then the report statement will not output
anything. Proper placement of report and/or send level statements will ensure that pertinent
transaction information is not lost during simulation.

Note: The number of transactions the monitor may record is determined by the
PLB_MONITOR_RECORD_ARRAY_SIZE (default value is 16). Once the arrays have been
filled to capacity, the loss of transactions will occur with each transaction that is recorded. The
user is responsible for determining the frequency to use the report command.
52 Processor Local Bus Functional Model Toolkit Version 4.9.2

Chapter 7. PLB Bus Timing

This section on PLB timing provides various examples with timing diagrams consistent with PLB
architecture specifications.

7.1 Read Transfers

Figure 8 shows the operation of a single read data transfer on the PLB.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

read(addr=00000000,size=0000,be=1111)

Figure 8. Read Transfers

0 1 2 3 4 5 6 7 8 9Cycle

D(A0)

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

valid

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1111

0000

000

A0

Next Rd AvalidNext Wr Avalid

SYS_plbClk

0000 0000

00000000
Version 4.9.2 PLB Bus Timing 53

send(level=0)

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

read_response(aack_delay=3,dack_delay=1)

mem_check(level=0,addr=00000000,data=00010203)
54 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.2 Write Transfers

Figure 9 shows the operation of a single write data transfer on the PLB.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

write(addr=00000000,size=0000,be=1111)

send(level=0)

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

write_response(aack_delay=3,dack_delay=3)

mem_check(level=0,addr=00000000,data=00010203)

Figure 9. Write Transfers

Cycle

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

valid

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1111

0000

000

A0

Next Rd Avalid Next Wr Avalid

D(A0)

SYS_plbClk

0000

0000

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 55

7.3 Transfer Abort

Figure 10 shows a transfer aborted by the master in the same clock cycle the request was being
acknowledged by the slave.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

write(addr=00000000,size=0000,be=1111,abort=3)

send(level=0)

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

write_response(aack_delay=3,dack_delay=0)

mem_check(level=0,addr=00000000,data=00010203)

Figure 10. Transfer Abort

Cycle

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

valid

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1111

0000

000

A0
Next Wr/Rd Avalid

SYS_plbClk

0000

0000

0 1 2 3 4 5 6 7 8 9
56 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.4 Back-to-Back Read Transfers

Figure 11 shows the operation of several back-to-back single read transfers on the PLB.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

read(addr=00000000,size=0000,be=1111)

read(addr=00000004,size=0000,be=1111)

read(addr=00000008,size=0000,be=1111)

read(addr=0000000c,size=0000,be=1111)

Figure 11. Back-to-Back Read Transfers

Cycle

1111

D(A1) D(A2) D(A3) D(A4)

1111 1111 1111

0000 0000 0000 0000

000 000 000 000

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

valid valid valid valid

A1 A2 A3 A4

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1 2 3 4

SYS_plbClk

0000

0000

0000

0000

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 57

send(level=0)

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

read_response(aack_delay=0,dack_delay=0)

read_response(aack_delay=0,dack_delay=0)

read_response(aack_delay=0,dack_delay=0)

read_response(aack_delay=0,dack_delay=0)

mem_check(level=0,addr=00000000,data=00010203)

mem_check(level=0,addr=00000004,data=04050607)

mem_check(level=0,addr=00000008,data=08090a0b)

mem_check(level=0,addr=0000000c,data=0c0d0e0f)
58 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.5 Back-to-Back Write Transfers

Figure 12 shows the operation of several back-to-back single write transfers on the PLB.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

write(addr=00000000,size=0000,be=1111)

write(addr=00000004,size=0000,be=1111)

write(addr=00000008,size=0000,be=1111)

Figure 12. Back-to-Back Write Transfers

1111

D(A1) D(A2) D(A3) D(A4)

1111 1111 1111

0000 0000 0000 0000

000 000 000 000

1 2 3 4

1 2 3 4

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

valid valid valid valid

A1 A2 A3 A4

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1 2 3 4

1 2 3 4

1 2 3 4

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 59

write(addr=0000000c,size=0000,be=1111)

send(level=0)

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

write_response(aack_delay=0,dack_delay=0)

write_response(aack_delay=0,dack_delay=0)

write_response(aack_delay=0,dack_delay=0)

write_response(aack_delay=0,dack_delay=0)

mem_check(level=0,addr=00000000,data=00010203)

mem_check(level=0,addr=00000004,data=04050607)

mem_check(level=0,addr=00000008,data=08090a0b)

mem_check(level=0,addr=0000000c,data=0c0d0e0f)
60 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.6 Back-to-Back Read - Write - Read - Write Transfers

Figure 13 shows the operation of several back-to-back single read and write transfers on the PLB.

Set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

read(addr=00000000,size=0000,be=1111)

write(addr=00000004,size=0000,be=1111)

read(addr=00000008,size=0000,be=1111)

Figure 13. Back-to-Back Read - Write - Read - Write

1111

D(A1) D(A3)

1111 1111 1111

0000 0000 0000 0000

1 2 3 4

1 2 3 4

1 2 3 4

1 3

1

2

3

4

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

valid valid valid valid

D(A2) D(A4)

2 4

000 000 000 000

A1 A2 A3 A4

Sl_wait

0000

0000

0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 61

write(addr=0000000c,size=0000,be=1111)

send(level=0)

Set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

read_response(aack_delay=0,dack_delay=0)

write_response(aack_delay=0,dack_delay=0)

read_response(aack_delay=0,dack_delay=0)

write_response(aack_delay=0,dack_delay=0)

mem_check(level=0,addr=00000000,data=00010203)

mem_check(level=0,addr=00000004,data=04050607)

mem_check(level=0,addr=00000008,data=08090a0b)

mem_check(level=0,addr=0000000c,data=0c0d0e0f)
62 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.7 Four-word Line Read Transfers

Figure 14 shows the operation of a single four word line read from a slave device which is capable of
providing data in a single clock cycle.

Set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

read(addr=00000008,size=0001,be=1111)

send(level=0)

Set_device (path=/plb_complex/plb_slave0,device_type=plb_slave)Initialize device 0

Figure 14. Four Word Line Read

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

W2 W3 W0 W1

0010 0011 0000 0001

Sl_wrDAck

Sl_wrComp

Next Rd Avalid

Read Data Bus

valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0001

000

A2

Next Rd AddrAck

Next Wr Avalid

Next Wr AddrAck

Sl_wait

0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 63

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

read_response(aack_delay=0,dack_delay=0,rdword_mode=1)

mem_check(level=0,addr=00000000,data=00010203)

mem_check(level=0,addr=00000004,data=04050607)

mem_check(level=0,addr=00000008,data=08090a0b)

mem_check(level=0,addr=0000000c,data=0c0d0e0f)
64 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.8 Four-word Line Write Transfers

Figure 15 shows the operation of a single four-word line write to a slave device which is capable of
latching data every clock cycle from the PLB.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

write(addr=00000000,size=0001,be=1111)

send(level=0)

Figure 15. Four Word Line Write

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

W0 W1 W2 W3

Sl_wrDAck

Sl_wrComp

Next Wr Avalid

Read Data Bus:

valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0001

000

A0

Next Wr AddrAck

Next Rd Avalid

Next Rd AddrAck

Sl_wait

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 65

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

write_response(aack_delay=0,dack_delay=0)

mem_check(level=0,addr=00000000,data=00010203)

mem_check(level=0,addr=00000004,data=04050607)

mem_check(level=0,addr=00000008,data=08090a0b)

mem_check(level=0,addr=0000000c,data=0c0d0e0f)
66 Processor Local Bus Functional Model Toolkit Version 4.9.2

7.9 Four-word Line Read Followed By Four-word Line Write Transfers

Figure 16 shows the operation of a four-word line read followed immediately by a four-word line write
on the PLB.

set_device (path=/plb_complex/plb_master0,device_type=plb_master)

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

mem_init(addr=00000010,data=10111213)

mem_init(addr=00000014,data=14151617)

mem_init(addr=00000018,data=18191a1b)

Figure 16. Four Word Line Read followed by Four Word Line Write

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0001 0001

000 000

A1 A2

W0 W1 W2 W3

0000 0001 0010 0011

D0(A2) D1(A2) D2(A2) D3(A2)

Next Read AValid Next Write AValid

0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9
Version 4.9.2 PLB Bus Timing 67

mem_init(addr=0000001c,data=1c1d1e1f)

read(addr=00000000,size=0001,be=1111)

write(addr=00000010,size=0001,be=1111)

send(level=0)

set_device (path=/plb_complex/plb_slave0,device_type=plb_slave) -- Initialize device 0

mem_init(addr=00000000,data=00010203)

mem_init(addr=00000004,data=04050607)

mem_init(addr=00000008,data=08090a0b)

mem_init(addr=0000000c,data=0c0d0e0f)

mem_init(addr=00000010,data=10111213)

mem_init(addr=00000014,data=14151617)

mem_init(addr=00000018,data=18191a1b)

mem_init(addr=0000001c,data=1c1d1e1f)

write_response(aack_delay=0,dack_delay=0)

read_response(aack_delay=0,dack_delay=0)

mem_check(level=0,addr=00000000,data=00010203)

mem_check(level=0,addr=00000004,data=04050607)

mem_check(level=0,addr=00000008,data=08090a0b)

mem_check(level=0,addr=0000000c,data=0c0d0e0f)

mem_check(level=0,addr=00000010,data=10111213)

mem_check(level=0,addr=00000014,data=14151617)

mem_check(level=0,addr=00000018,data=18191a1b)

mem_check(level=0,addr=0000001c,data=1c1d1e1f)
68 Processor Local Bus Functional Model Toolkit Version 4.9.2

Chapter 8. PLB Compliance Checks

8.1 Monitor Model

The PLB monitor model attaches to the PLB bus and generates informational architectural
compliance messages during simulation. The model is passive in that it does not participate in any
bus protocol signal assertions, but it samples PLB signals in every clock to keep track of the state of
the PLB bus and inform the user of any detectable PLB compliance problems. Messages are
generated to the simulator console, which also may be re-directed to file systems in most simulation
environments.

8.2 Terminology

The following terminology is used in the specification of the PLB monitor compliance checks:

• Active: refers to the situation when a signal is at its true state (a logical 1).

• Asserted: refers to the situation when a signal transitions from inactive to its active state.

• Inactive: refers to the situation when a signal is at its false state. (a logical 0)

• Deasserted: refers to the situation when a signal transitions from active to its inactive state.

• Time-out: refers to the event which occurs when there have been 16 cycles of non-response from a
slave (or Mn_abort) since the assertion of PLB_PAValid. The 16 cycle count may be interrupted by
the slave response of Sln_wait active. And the count will remain interrupted for as long as the wait
is active. The count will be terminated by slave asserting Sln_rearbitrate or Sn_addrAck. The count
may also be terminated by the master asserting Mn_abort (given no Sn_addrAck has been
received). If the count reaches 16 and none of the terminating responses (from master or slave)
have been asserted then a time-out has occurred.

8.3 Address Map Set-up Error

An error message is issued when PLB_reset is de-asserted and the PLB monitor slave address map
has not been initialized.

8.4 Slave Interface/PLB Core OR Logic Error

An error message is issued when the OR’ed value of all the PLB slave control outputs does not equal
the output of the system OR gates which are inputs to the PLB arbiter.
Version 4.9.2 PLB Compliance Checks 69

8.5 Signal Summary Table

Table 1 provides a summary of all PLB input/output signals in alphabetical order which includes the
source, a brief description and page reference for bus functional compliance checks. See PLB
architecture specifications for detailed signal description.

Table 1. Summary of PLB Signals

Signal Name Source Description Page

Mn_abort Master n Master n abort bus request indicator 76

Mn_ABus(0:31) Master n Master n address bus 76

Mn_BE(0:3) Master n Master n byte enables 73

Mn_busLock1 Master n Master n bus lock 72

Mn_TAttribute Master n Master n storage attributes 75

Mn_guarded Master n Master n guarded transfer indicator 75

Mn_lockErr Master n Master n lock error indicator 75

Mn_priority(0:1) Master n Master n bus request priority 72

Mn_rdBurst Master n Master n burst read transfer indicator 77

Mn_request Master n Master n bus request 72

Mn_RNW Master n Master n read/write 73

Mn_size(0:3) Master n Master n transfer size 74

Mn_type(0:2) Master n Master n transfer type 75

Mn_wrBurst Master n Master n burst write transfer indicator 77

Mn_wrDBus(0:31) Master n Master n write data bus 76

PLB_abort Arbiter PLB abort bus request indicator 91

PLB_ABus(0:31) Arbiter PLB address bus 89

PLB_BE(0:3) Arbiter PLB byte enables 87

PLB_busLock Arbiter PLB bus lock 89

PLB_guarded Arbiter PLB guarded transfer indicator 88

PLB_lockErr Arbiter PLB lock error indicator 88

PLB_masterID(0:1) Arbiter PLB current master identifier 82

PLB_Mn_Busy Master n PLB master n slave busy indicator 82

PLB_Mn_Err Master n PLB master n slave error indicator 92

PLB_Mn_WrBTerm Master n PLB master n terminate write burst indicator 91

PLB_Mn_WrDAck Master n PLB master n write data acknowledge 78

PLB_MnAddrAck Master n PLB master n address acknowledge 78
70 Processor Local Bus Functional Model Toolkit Version 4.9.2

PLB_MnRdBTerm Master n PLB master n terminate read burst indicator 92

PLB_MnRdDAck Master n PLB master n read data acknowledge 79

PLB_MnRdDBus(0:31) Master n PLB master n read data bus 79

PLB_MnRdWdAddr(0:3) Master n PLB master n read word address 79

PLB_MnRearbitrate Master n PLB master n bus rearbitrate indicator 78

PLB_PAValid Arbiter PLB primary address valid indicator 80

PLB_pendPri(0:1) Arbiter PLB pending request priority 83

PLB_pendReq Arbiter PLB pending bus request indicator 82

PLB_rdBurst Arbiter PLB burst read transfer indicator 90

PLB_rdPrim Arbiter PLB secondary to primary read request indicator 90

PLB_reqPri(0:1) Arbiter PLB current request priority 83

PLB_RNW Arbiter PLB read not write 87

PLB_SAValid Arbiter PLB secondary address valid indicator 80

PLB_size(0:3) Arbiter PLB transfer size 87

PLB_type(0:2) Arbiter PLB transfer type 88

PLB_wrBurst Arbiter PLB burst write transfer indicator 90

PLB_wrDBus(0:31) Arbiter PLB write data bus 83

PLB_wrPrim Arbiter PLB secondary to primary write request indicator 91

Sl_addrAck Slave Slave address acknowledge 81

Sl_MBusy(0:3) Slave Slave busy indicator 86

Sl_MErr(0:3) Slave Slave error indicator 86

Sl_rdBTerm Slave Slave terminate read burst transfer 86

Sl_rdComp Slave Slave read transfer complete indicator 85

Sl_rdDAck Slave Slave read data acknowledge 85

Sl_rdDBus(0:31) Slave Slave read data bus 84

Sl_rdWdAddr(0:3) Slave Slave read word address 85

Sl_rearbitrate Slave Slave rearbitrate bus indicator 82

Sl_wait Slave Slave wait indicator 82

Sl_wrBTerm Slave Slave terminate write burst transfer 84

Sl_wrComp Slave Slave write transfer complete indicator 84

Sl_wrDAck Slave Slave write data acknowledge 83

Table 1. Summary of PLB Signals (Continued)

Signal Name Source Description Page
Version 4.9.2 PLB Compliance Checks 71

8.6 Master Interface Checks

This section describes the PLB master interface checks performed during simulation.

8.6.1 Mn_request

The following error messages are issued for this signal:

• Error 1.1.1

An error message is issued when a master deasserts its Mn_request without any of the following
events: (that is, if any one of the following events occur then no error is flagged)

PLB_MnAddrAck is asserted

Mn_abort is asserted

PLB_MnRearbitrate is asserted

MnTimeout is asserted

• Error 1.1.2

An error message is issued when Mn_request is active and SYS_plbReset is active.

• Warning1.1.3

A warning message of possible deadlock is issued when Mn_request is not inactive for 2 clock
cycles after PLB_MnRearbitrate, Mn_request and Mn_busLock are sampled active with
PLB_Mnaddrack inactive.

• Error 1.1.4

Requesting master which has the bus locked did not deassert Mn_Request for two clocks after a
rearbitrated request.

8.6.2 Mn_priority(0:1)

No protocol checks.

8.6.3 Mn_busLock

The following error messages are issued for this signal:

• Error 1.3.1

An error message is issued when a master’s Mn_busLock is active without its Mn_request being
active unless the bus is already locked by the requesting master.

• Error 1.3.2

Synch_in

Synch_out

Table 1. Summary of PLB Signals (Continued)

Signal Name Source Description Page
72 Processor Local Bus Functional Model Toolkit Version 4.9.2

A warning message of possible deadlock is issued when Master n has the bus locked and
Mn_busLock is not inactive for 2 clock cycles after PLB_MnRearbitrate, Mn_Request and
Mn_busLock are sampled active with PLB_MnAddrAck inactive.

• Error 1.3.3

An error message is issued when Mn_busLock is active and SYS_plbReset is active.

• Warning1.3.4

A warning message is issued when Mn_busLock is de-asserted during a master request phase
before PLB_MnaddrAck, Mn_abort, MnTimeout or PLB_MnRearbitrate is asserted.

• Error 1.3.5

Requesting master did not deassert Mn_busLock for two cycles after a rearbitrated request.

• ERROR 1.3.6

An error message is issued when Mn_busLock is asserted for a requesting master after a new
request was started and before PLB_MnAddrAck, Mn_abort, PLB_MnRearbitrate, or MnTimeout.

8.6.4 Mn_RNW

The following error messages are issued for this signal:

• Error 1.4.1

An error message is issued when a master changes this transfer qualifier from when a request to
transfer is made until PLB_MnAddrAck, Mn_abort, PLB_MnRearbitrate, or Mn_Timeout is
asserted.

8.6.5 Mn_BE(0:3)

The following error messages are issued for this signal:

• Error 1.5.1

An error message is issued when a master changes this transfer qualifier from when a request to
transfer is made until PLB_MnAddrAck, Mn_abort, PLB_MnRearbitrate, or Mn_Timeout is
asserted.

• Error 1.5.2

An error message is issued if there are no enabled bytes on Mn_BE when Mn_request is active
and Mn_size indicate a non-line, non-burst transfer.

• Error 1.5.3

An error message is issued if Mn_BE contains non-contiguous enabled bytes when Mn_request is
active and Mn_size indicate a non-line, non-burst transfer memory transfer.

• Error 1.5.4

An error message is issued if the Mn_BE bit corresponding to the LSB bits of Mn_ABus encode is
not active for a non-line, non-burst transfer. For example: On a non-line, non-burst transfer request
with Mn_ABus(30:31)=”11”, Mn_BE(0:3) must be “0001”.

• Error 1.5.5
Version 4.9.2 PLB Compliance Checks 73

An error message is issued if the Mn_BE signal is not properly “replicated” as indicated in the
architecture specification for smaller masters connected to larger width PLB Arbiters.

8.6.6 Mn_size(0:3)

The following error messages are issued for this signal:

• Error 1.6.1

An error message is issued when a master changes this transfer qualifier from when a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated via
Mn_abort, PLB_MnRearbitrate, or Mn_Timeout.

• Error 1.6.2

When Mn_request is active an error message is issued for the following combination of Mn_type
values (as shown in Table 2) and Mn_size values: (as shown in Table 3)

Table 2. Mn_type Values

Mn_type Mn_size

000 Any of the reserved size codes

001 Any of the reserved size codes or any line size code

010 Codes other than 0000

011 Codes other than 0000

100 Codes other than 0000

101 Codes other than 0000

110 Any of the reserved size codes

Table 3. Mn_size Values

Mn_size(0:3) Definition

0000 Transfer one to four bytes of a word starting at the target address.

0001 Transfer the 4-word line containing the target word

0010 Transfer the 8-word line containing the target word.

0011 Transfer the 16-word line containing the target word

0100 Reserved

0101 Reserved

0110 Reserved

0111 Reserved

1000 Burst Transfer - Bytes - Length determined by master

1001 Burst Transfer - Halfwords - Length determined by master
74 Processor Local Bus Functional Model Toolkit Version 4.9.2

• Error 1.6.3

An error message is issued

– When master has a double word burst size and Mn_MSize indicates a 32-bit master.

– When master has a quad word burst size and Mn_MSize indicates a 32-bit master.

– When master has a quad word burst size and Mn_MSize indicates a 64-bit master.

– When master has a octal word burst size and Mn_MSize indicates a 32-bit master.

– Master has a octal word burst size and Mn_MSize indicates a 64-bit master.

– Master has a octal word burst size and Mn_MSize indicates a 128-bit master.

8.6.7 Mn_type(0:2)

The following error messages are issued for this signal:

• Error 1.7.1

An error message is issued when a master changes this transfer qualifier from when a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated via
Mn_abort, PLB_MnRearbitrate, or Mn_Timeout.

8.6.8 Mn_TAttribute

The following error messages are issued for this signal:

• Error 1.10.1

An error message is issued when a master changes this transfer qualifier from when a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated via
Mn_abort, PLB_MnRearbitrate, or Mn_Timeout.

8.6.9 Mn_lockErr

The following error messages are issued for this signal:

• Error 1.11.1

1010 Burst Transfer - Words - Length determined by master

1011 Burst Transfer - Double words - Length determined by master

1100 Burst Transfer - Quad words - Length determined by master

1101 Burst Transfer - Octal words - Length determined by master

1110 Reserved

1111 Reserved

Table 3. Mn_size Values (Continued)

Mn_size(0:3) Definition
Version 4.9.2 PLB Compliance Checks 75

An error message is issued when a master changes this transfer qualifier from when a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated via
Mn_abort, PLB_MnRearbitrate, or Mn_Timeout.

8.6.10 Mn_ABus/Mn_UABus

The following error messages are issued for this signal:

• Error 1.12.1

An error message is issued when a master changes these transfer qualifiers from when a request
to transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated
via Mn_abort, PLB_MnRearbitrate, or Mn_Timeout.

• Error 1.12.2

An error message is issued when the Mn_Abus word address is non-zero during a line write
transfer.

• Error 1.12.3

An error message is issued:

– when the master has a non-aligned half word burst address for half word burst transfers.

– when the master has a non-aligned word burst address for word burst transfers.

– when the master has a non-aligned double word burst address for double word burst transfers.

– when the master has a non-aligned quad word burst address for quad word burst transfers.

• Note1.12.4

An note message is issued when the Mn_Abus word address is non-zero during a line write
transfer.

8.6.11 Mn_abort

The following error messages are issued for this signal:

• Error 1.13.1

A warning message is issued if Mn_abort is asserted without a Mn_Request.

8.6.12 Mn_wrDBus(0: PLB DATA BUS WIDTH)

The following error messages are issued for this signal:

• Error 1.14.1

An error message is issued when a master changes this transfer qualifier from when a write
request to transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is
terminated via Mn_abort, PLB_MnRearbitrate, or Mn_Timeout.

• Error 1.14.2
76 Processor Local Bus Functional Model Toolkit Version 4.9.2

An error message is issued when the first word of data on Mn_wrDBus does not remain constant
from the assertion of PLB_MnaddrAck to the first PLB_MnWrDAck (in the case when wrDAck is
delayed). This check is also performed on words following the first of multi-word transfers in which
case the word of data on Mn_wrDBus must remain constant from PLB_MnWrDAck through the
next PLB_MnWrDAck.

• Error 1.14.3

An warning message is issued when a master changes this transfer qualifier from when a read
request to transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is
terminated via Mn_abort or PLB_MnRearbitrate.

• Error 1.14.4

An error message is issued if the Mn_wrDbus is not properly “mirrored” as indicated in the
architecture specification for smaller masters connected to larger width PLB Arbiters.

8.6.13 Mn_rdBurst

The following error messages are issued for this signal:

• Error 1.15.1

Mn_RdBurst and PLB_RESET are active at the same time.

• ERROR 1.15.2

Master asserted Mn_rdBurst before AddrAck was received.

• Error 1.15.3

Master failed to deassert its Mn_rdBurst after receiving PLB_MnRdBTerm.

• Error 1.15.4

Master reasserted Mn_rdBurst before the current burst transfer received it last DAck.

• Error 1.15.5

An error message is issued if a master terminates a read burst transfer (by deasserting its
Mn_rdBurst) and then reasserts its Mn_rdBurst signal before the last rdDAck for a multi-burst read
transfer is terminated.

8.6.14 Mn_wrBurst

The following error messages are issued for this signal:

• Error 1.16.1

An error message is issued when a master terminates a write burst transfer (by deasserting its
Mn_wrBurst) and re-asserts its Mn_wrBurst before receiving the last wrDAck.

• Error 1.16.2

An error message is issued if Mn_WrBurst is active in the cycle after PLB_MWrBTerm is asserted.

• Error 1.16.3

An error message is issued if Mn_WrBurst is asserted without a valid burst request as indicated by
Mn_size.
Version 4.9.2 PLB Compliance Checks 77

• Error 1.16.4

An error message is issued when Mn_WrBurst is active and SYS_plbReset is active.

8.6.15 PLB_MnAddrAck

The following error messages are issued for this signal:

• Error 1.17.1

An error message is issued when this signal is active and the corresponding Mn_request is
inactive.

• Error 1.17.2

An error message is issued when this signal is active and the PLB_masterID identifies a different
master as granted.

• Error 1.17.3

An error message is issued if arbiter does not assert this signal when a time-out occurs. (This
check is not performed for PLB 4.x)

• Error 1.17.4

An error message is issued if PLB asserts PLB_MnAddrAck when a different master has locked
the PLB.

• Error 1.17.5

An error message is issued if PLB asserts more than one PLB_MnAddrAck in the same clock.

8.6.16 PLB_MnRearbitrate

The following error messages are issued for this signal:

• Error 1.18.1

An error message is issued when this signal is active and the PLB_masterID identifies a different
master as granted.

• Error 1.18.2

An error message is issued when this signal is active and the corresponding Mn_request is
inactive.

• Error 1.18.3

An error message is issued when this signal is asserted by PLB during a secondary request. (This
check is not performed for PLB 4.x)

8.6.17 PLB_MnWrDAck

The following error messages are issued for this signal:

• Error 1.19.1

An error message is issued if PLB_MnWrDAck is asserted outside of window from assertion of
PLB_MnAddrAck to assertion of Sln_wrComp.
78 Processor Local Bus Functional Model Toolkit Version 4.9.2

8.6.18 PLB_MnRdDAck

The following error messages are issued for this signal:

• Error 1.20.1

An error message is issued if PLB_MnRdDAck is asserted outside of the window defined from 2
clocks after the assertion of PLB_MnAddrAck to the clock after Sln_rdComp.

• Error 1.20.2

An error message is issued if PLB_MnRdDack is asserted during a DMA transfer which requires no
rdDAcks.

8.6.19 PLB_MnRdWdAddr(0:3)

The following error messages are issued for this signal:

• Error 1.21.1

An error message is issued when master does not own the read data bus and
PLB_MnRdWdAddr(0:3) contains non-zero data.

• Error 1.21.2

An error message is issued when PLB_MnRdWdAddr(0:3) does not match Sl_rdWdAddr(0:3).

• Error 1.21.3

An error message is issued when PLB_MnRdWdAddr(0:3) does not cover all the necessary read
word addresses in a line transfer.

8.6.20 PLB_MnBusy

The following error messages are issued for this signal:

• Error 1.22.1

An error message is issued when PLB_MnBusy is not active during a read transaction with slave.

• Error 1.22.2

An error message is issued when PLB_MnBusy is not active during a write transaction with slave.

• Warning 1.22.3

A warning message is issued when PLB_MnBusy is active for more than busy_cycle_max cycles.

8.6.21 PLB_MRdErr/PLB_MWrErr

• Error 1.23.1

An error message is issued when these signals are asserted without a PLB_Mrd/wrDack or without
a busy signal.

8.6.22 PLB_MSSize

• Error 1.24.1
Version 4.9.2 PLB Compliance Checks 79

An error message is issued when PLB Arbiter core did not propagate Sl_Ssize to master when
Sl_addrAck was asserted.

8.6.23 PLB_MnTimeout

The following error messages are issued for this signal:

• Error 1.25.1

An error message is issued when this signal is active and the PLB_masterID identifies a different
master as granted.

• Error 1.25.2

An error message is issued when this signal is active and the corresponding Mn_request is
inactive.

• Error 1.25.3

An error message is issued when this signal is asserted by PLB during a secondary request.

• Error 1.25.4

An error message is issued when this signal is asserted in the same clock as PLB_MnAddrAck.

• Error 1.25.5

An error message is generated if the PLB Arbiter asserts address acknowledge during a secondary
request.

• Error 1.25.6

If “enable_timeout_report” is true then an error message will be issued whenever a timeout is
received. This error can be turned on through monitor bfl, but it defaults to being turned off.

8.7 Slave Interface Checks

This section describes the PLB slave interface checks performed during simulation.

8.7.1 PLB_PAValid

The following error messages are issued for this signal:

• Error 2.1.1

An error message will be issued if PLB_PAValid is deasserted without a valid termination of the
request by either Sln_addrAck, Sln_rearbitrate, Mn_abort or PLB_MnTimeout.

• Error 2.1.2

An error message is issued if PLB_PAValid is active and PLB_rd/wrpendReq is inactive.

• Error 2.1.3

An error message is issued when PLB_PAValid is active and SYS_plbReset is active.

8.7.2 PLB_SAValid

The following error messages are issued for this signal:
80 Processor Local Bus Functional Model Toolkit Version 4.9.2

• Error 2.2.1

An error message will be issued if PLB_SAValid is deasserted for a secondary read cycle without a
valid termination of the request by either Sln_addrAck or Mn_abort, Sl_rdComp, or Sl_rearbitrate.

• Error 2.2.2

An error message will be issued if PLB_SAValid is deasserted for a secondary write cycle without
a valid termination of the request by either Sln_addrAck or Mn_abort, Sl_wrComp or Sl_rearbitrate.

• Error 2.2.3

An error message will be issued when a secondary request is not converted into a primary request.
This occurs when PLB_SAValid is deasserted because of a Sln_rd/wrComp assertion (without
overlapped Sl_addrAck/PLB_abort) and PLB_PAValid is not active in the next clock.

• Error 2.2.4

An error message is issued if PLB_SAValid and PLB_PAValid are active in the same clock.

• Error 2.2.5

An error message is issued if PLB_SAValid is active and PLB_rd/wrpendReq is inactive.

• Error 2.2.6

An error message is issued when PLB_SAValid is active and SYS_plbReset is active.

8.7.3 Sln_addrAck

The following error messages are issued for this signal:

• Error 2.3.1

An error message is issued when Sln_addrAck is asserted and PLB_PAValid or PLB_SAValid is
inactive.

• Error 2.3.2

An error message is issued when Sln_addrAck is active while the slave is not selected. This check
depends on user defined address map.

• Error 2.3.3

An error message is issued when more than one slave asserts Sln_addrAck in the same clock.

• Warning 2.3.4

A warning message is issued if Sln_addrAck is asserted at the first assertion of PLB_PAValid or
PLB_SAValid for the requested transaction. Sln_addrAck should be asserted at least one cycle
after PLB_PLB_PAValid or PLB_SAValid or significant frequency degradation of the stated
operational frequency is a possible outcome. The slave in the toolkit is programmable and by
default will assert Sln_addrAck with zero delay, or with the assertion of PLB_PAValid or
PLB_SAValid. To program the toolkit slave to assert its Sln_addrAck one cycle after PLB_PAValid
or PLB_SAValid, put the following in the configuration statement for each slave:
configure(aack_delay=1). This will delay the Sln_addAck signal until one cycle after PLB_PAValid
or PLB_SAValid.
Version 4.9.2 PLB Compliance Checks 81

8.7.4 Sln_wait

The following error messages are issued for this signal:

• Error 2.4.1

An error message is issued when Sln_wait is active while the slave is not selected. This check
depends on user defined address map.

• Error 2.4.2

An error message is issued when more than one slave asserts Sln_wait in the same clock.

8.7.5 Sln_rearbitrate

The following error messages are issued for this signal:

• Error 2.5.1

An error message is issued when Sln_rearbitrate is asserted and both PLB_PAValid and
PLB_SAValid are inactive.

• Error 2.5.2

An error message is issued when Sln_rearbitrate is active while the slave is not selected. This
check depends on user defined address map.

• Error 2.5.3

A warning message is issued when Sln_rearbitrate is asserted and PLB_SAValid is active. (Not
applicable to PLB 4.x)

• Error 2.5.4

An error message is issued when more than one slave asserts Sln_rearbitrate in the same clock.

8.7.6 PLB_rd/wrpendReq

The following error messages are issued for this signal:

• Error 2.6.1/3

An error message is issued when the PLB changes this transfer qualifier from the time when a
request to transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is
terminated through Mn_abort, PLB_MnRearbitrate, or PLB_MnTimeout.

• Error 2.6.2/4

An error message is issued if this signal is active when there is no Mn_request.

8.7.7 PLB_MasterID(0:3)

The following error messages are issued for this signal:

• Error 2.7.1

An error message is issued when the PLB changes this transfer qualifier from the time when a
request to transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is
terminated through Mn_abort, PLB_MnRearbitrate or PLB_MnTimeout.
82 Processor Local Bus Functional Model Toolkit Version 4.9.2

• Error 2.7.2

An error message is issued when the PLB is locked (Mn_busLock, Mn_Request, and
PLB_MnaddrAck were sampled active) and PLB_masterID does not equal the locked master’s id.

• Error 2.7.3

An error message is issued if in the cycle following a rearbitrate with PLB_busLock inactive,
PLB_PAValid is active and the current PLB_masterID is the same as in the previous cycle when
rearbitrate was asserted.

8.7.8 PLB_rd/wrpendPri(0:1)

There are currently no protocol checks for this signal.

8.7.9 PLB_reqPri(0:1)

The following error messages are issued for this signal:

• Error 2.9.2

An error message is issued when this bus does not equal the Mn_priority winner of primary and
secondary requests when PLB_MnAddrAck is asserted.

8.7.10 PLB_wrDBus

The following error messages are issued for this signal:

• 2.10.1

An error message is issued when the PLB_wrDBus does not remain constant from the slaves
assertion of Sln_addrAck to Sln_wrDAck, and also between Sln_wrDAck assertions in multi-data
transfers.

• 2.10.2

An error message is issued when the PLB changes the write data bus from the time when a
primary request to transfer is made until the addressed slave asserts its Sln_addrAck, or the
transfer is terminated through Mn_abort, PLB_MnRearbitrate or PLB_MnTimeout.

8.7.11 Sln_wrDAck

The following error messages are issued for this signal:

• Error 2.11.1

An error message is issued when a slave asserts its Sln_wrDAck before asserting its Sln_addrAck
or after asserting its Sln_wrComp.

• Error 2.11.2

An error message is issued when on a non-burst write transfer the slave fails to give expected
number of wrDAcks.

• Error 2.11.3

An error message is issued when this signal is asserted during a DMA transfer type1,4,5,7 from the
assertion of Sln_addrack to the assertion of Sln_wrComp.
Version 4.9.2 PLB Compliance Checks 83

• Error 2.11.4

An error message is issued when a slave asserts is Sln_wrDAck after it has already been asserted
for the last write data transfer of a burst write.

• Error 2.11.5

An error message is issued if more than one Sl_wrDAck is asserted during the same clock cycle.

• Error 2.11.6

An error message is asserted when this signal is asserted for a transfer that is outside of the
slave’s assigned address space.

• Error 2.11.7

An error message is asserted when wrcomp is asserted for a burst transfer before the last wrdack
of the burst is received.

8.7.12 Sln_wrComp

The following error messages are issued for this signal:

• Error 2.12.1

An error message is issued when Sln_wrComp is asserted and PLB_wrBurst is active during the
data phase of a burst write transfer.

• Error 2.12.2

An error message is issued when Sln_wrComp is active outside of allowed window i.e. from the
assertion of Sln_addrAck to the assertion of Sln_wrComp.

• Error 2.12.3

An error message is issued when more than one slave asserts Sln_wrComp in the same clock.

8.7.13 Sln_wrBTerm

The following error messages are issued for this signal:

• Error 2.13.1

An error message is issued when Sln_wrBTerm is active outside of allowed window from the
assertion of Sln_addrAck to the assertion of Sln_wrComp.

• Warning 2.13.2

A warning message is issued when Sln_wrBTerm is not asserted during a guarded burst transfer
that crosses a 1k address boundary.

• Note 2.13.3

A note message is issued if this signal is asserted pre-maturely during a fixed length burst transfer.
This means the wrbterm is asserted when there is more than one dack required to meet the
number of expected dacks.

8.7.14 Sln_rdDBus

The following error messages are issued for this signal:
84 Processor Local Bus Functional Model Toolkit Version 4.9.2

• Error 2.14.1

An error message is issued when a slave drives data other than zeroes on its Sln_rdDBus(0:31)
when not selected for a read transfer.

8.7.15 Sln_rdWdAddr(0:3)

The following error messages are issued for this signal:

• Error 2.15.1

An error message is issued when a slave drives data other than zeroes on its Sln_rdWdAddr(0:3)
when not selected for a read transfer.

• Error 2.15.2

An error message is issued when Sln_rdWdAddr(0:3) is not aligned for line transfer

8.7.16 Sln_rdDAck

The following error messages are issued for this signal:

• Error 2.16.1

An error message is issued when Sln_rdDAck is asserted outside of the window from two clocks
after the assertion of Sln_addrAck to one clock after the assertion of Sln_rdComp.

• Error 2.16.2

An error message is issued when on a non-burst read transfer the slave fails to give the expected
number of rdDAcks.

• Error 2.16.3

An error message is issued when this signal is asserted during a DMA type=1,4,5,7 cycle from two
clocks after Sln_addrack until one clock after Sln_rdComp is asserted.

• Error 2.16.4

An error message is issued when this signal is asserted for a transfer that is outside of the slave’s
assigned address space.

• Error 2.16.5

An error message is issued when this signal is asserted more than once after the rdburst signal
has been deasserted for a read burst transfer.

8.7.17 Sln_rdComp

The following error messages are issued for this signal:

• Error 2.17.1

An error message is issued when Sln_rdComp is active outside of allowed window from the cycle
after slave asserts its Sln_addrAck to the cycle it asserts its Sln_rdComp.

• Error 2.17.4

An error message is issued when more than one slave asserts Sln_rdComp in the same clock.
Version 4.9.2 PLB Compliance Checks 85

• Error 2.17.5

An error message is issued when this signal is asserted before a variable length burst transaction
is complete(last rddack received or rdbterm asserted).

• Error 2.17.6

An error message is issued when this signal is asserted before the last rddack of the transaction is
received.

8.7.18 Sln_rdBTerm

The following error messages are issued for this signal:

• Error 2.18.1

An error message is issued if Sln_rdBTerm is active outside of allowed window, that is, from the
cycle after slave asserts its Sln_addrAck(or arbiter asserts rdprim) to the cycle it asserts its
Sln_rdComp.

• Note 2.18.2

An note message is issued if Sln_rdBTerm is not asserted for a fixed length burst transfer, or the
last Sl_rdDAck was not asserted with the Sl_rdBTerm.

• Warning 2.18.3

A warning message is issued if Sln_rdBTerm is not asserted for a guarded burst transfer which
crosses a 1k address boundary.

8.7.19 Sln_MBusy(0:15)

The following errors are issued to this signal.

• Error 2.19.1

An error message is issued when a slave does not assert and hold active the corresponding bit of
its Sln_MBusy bus from the time the slave asserts it Sln_addrAck until the read transfer is
complete.

• Error 2.19.2

An error message is issued when a slave does not assert and hold active the corresponding bit of
its Sln_MBusy bus from the time the slave asserts it Sln_addrAck until the write transfer is
complete.

8.7.20 Sln_Mrd/wrErr(0:15)

The following error messages are issued for this signal:

• Error 2.20.1

An error message is issued when a slave asserts its Sl_Mrd/wrErr signal to master n without the
corresponding Sl_MBusy, Sl_Mrddack, or Sl_Mwrdack signal asserted.
86 Processor Local Bus Functional Model Toolkit Version 4.9.2

8.8 PLB Interface Checks

8.8.1 PLB_RNW

The following error messages are issued for this signal:

• Error 2.21.1

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated
through Mn_abort or PLB_MnRearbitrate or timeout.

• Error 2.21.2

An error message is issued if this transfer qualifier does not match Mn_RNW of the requesting
master when PLB_MnAddrAck is active.

8.8.2 PLB_BE

The following error messages are issued for this signal:

• Error 2.22.1

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated via
Mn_abort or PLB_MnRearbitrate or timeout.

• Error 2.22.2

An error message is issued if this transfer qualifier has no enabled bytes(all zeroes) for a non-line,
non-burst transfer.

• Error 2.22.3

An error message is issued if the replication of the byte enables is not correct when a device is
connected to a PLB of a larger size.

8.8.3 PLB_size(0:3)

The following error messages are issued for this signal:

• Error 2.23.1

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated
through Mn_abort or PLB_MnRearbitrate or timeout.

• Error 2.23.2

An error message is issued if this transfer qualifier does not match Mn_size when
PLB_MnAddrAck is active.

• Error 2.23.3
Version 4.9.2 PLB Compliance Checks 87

When PLB_PAValid or PLB_SAValid is active an error message is issued for the following
combination of PLB_type and PLB_size values as shown in Table 4:

8.8.4 PLB_type

The following error messages are issued for this signal:

• Error 2.24.1

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated
through Mn_abort or PLB_MnRearbitrate or timeout.

• Error 2.24.2

An error message is issued if this transfer qualifier does not match Mn_type when
PLB_MnAddrAck is active.

8.8.5 PLB_TAttribute

The following error messages are issued for this signal:

• Error 2.27.1

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated via
Mn_abort, PLB_MnRearbitrate or PLB_MnTimeout.

• Error 2.27.2

An error message is issued if this transfer qualifier does not match Mn_TAttribute when
PLB_MnAddrAck is active.

8.8.6 PLB_lockErr

The following error messages are issued for this signal:

• Error 2.28.1

Table 4. PLB_type Values

PLB_type PLB_size

000 Any of the reserved size codes

001 Any of the reserved size codes or any line size code

010 Codes other than 0000

011 Codes other than 0000

100 Codes other than 0000

101 Codes other than 0000

110 Any of the reserved size codes

111 Codes other than 0000
88 Processor Local Bus Functional Model Toolkit Version 4.9.2

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated
through Mn_abort or PLB_MnRearbitrate or Timeout.

• Error 2.28.2

An error message is issued if this transfer qualifier does not match Mn_lockError when
PLB_MnAddrAck is active.

8.8.7 PLB_ABus/PLB_UAbus

The following error messages are issued for this signal:

• Error 2.29.1

An error message is issued when the PLB changes this transfer qualifier from the time a request to
transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is terminated
through Mn_abort or PLB_MnRearbitrate or timeout.

• Error 2.29.2

An error message is issued if this transfer qualifier does not match Mn_ABus when
PLB_MnAddrAck is active.

• Error 2.29.3

An error message is issued when the PLB_Abus word address is non-zero during a line write
transfer.

8.8.8 PLB_busLock

The following error messages are issued for this signal:

• Error 2.30.1

An error message is issued if this arbitration qualifier does not match Mn_busLock when
PLB_MnAddrAck is active.

• Error 2.30.2

An error message is issued if PLB_busLock and PLB_SAValid are active at the same time and the
bus is not actually locked. This may be due to the previous request being aborted.

• Error 2.30.3

An error message is issued when PLB_busLock is active and SYS_plbReset is active.

• Error 2.30.4

An error message is issued if this arbitration qualifier does not match Mn_busLock when the bus is
already locked.

• Error 2.30.5

An error message is issued if this signal is asserted with no PLB_PAValid or PLB_SAValid and the
bus is not locked.
Version 4.9.2 PLB Compliance Checks 89

8.8.9 PLB_rdBurst

The following error messages are issued for this signal:

• Error 2.31.1

PLB_rdBurst and PLB_RESET are active at the same time.

• Error 2.31.2

PLB asserted PLB_rdBurst without a primary or secondary read burst transfer acknowledged.

• Error 2.31.3

PLB_rdBurst does not match M-rdBurst during a read burst transfer.

• Error 2.31.4

PLB reasserted PLB_rdBurst before the current burst transfer received its last dAck.

• Error 2.31.5

PLB failed to deassert PLB_rdBurst after bTerm was received for the current burst transfer.

8.8.10 PLB_wrBurst

The following error messages are issued for this signal:

• Error 2.32.1

An error message is issued if this transfer qualifier does not match Mn_wrBurst during a primary
request with PLB_PAValid active.

• Error 2.32.3

An error message is issued when PLB_wrBurst is re-asserted before the last Sln_wrDAck of a
burst transfer is received.

• Error 2.32.4

An error message is issued when PLB_wrBurst is active the cycle after Sln_wrBTerm.

• Error 2.32.5

An error message is issued when PLB_wrBurst is active and SYS_plbReset is active.

• Error 2.32.6

An error message is issued when PLB_wrBurst is active during a non-burst write cycle.

• Error 2.32.7

An error message is issued when the PLB changes this transfer qualifier from when a primary
request to transfer is made until the addressed slave asserts its Sln_addrAck, or the transfer is
terminated via Mn_abort or PLB_MnRearbitrate or Timeout.

8.8.11 PLB_rdPrim

The following error messages are issued for this signal:

• Error 2.33.1
90 Processor Local Bus Functional Model Toolkit Version 4.9.2

An error message is issued if this signal is asserted without the last read cycle Sln_AddrAck being
a secondary acknowledge with PLB_SAValid.

8.8.12 PLB_wrPrim

The following error messages are issued for this signal:

• Error 2.34.1

An error message is issued if this signal is asserted without Sln_wrComp.

• Error 2.34.2

An error message is issued if this signal is asserted without a secondary/pipelined write transaction
acknowledged.

8.8.13 PLB_Abort

The following error messages are issued for this signal:

• Error 2.35.1

An error message is issued if this transfer qualifier does not match Mn_Abort when
PLB_MnAddrAck is active.

8.8.14 PLB_SrdDbus

The following error messages are issued for this signal:

• Error 2.36.1

An error message is issued if the PLB_sRdDbus is not properly “replicated” as indicated in the
architecture specification for smaller slaves connected to larger width PLB Arbiters.

8.9 Time Out Handshake Checks (For 3.x PLB)

The following checks relate specifically to the event of time-out as described in the beginning of this
document. Furthermore these checks are implemented based on two implementation assumptions:

1. The arbiter will respond with required handshaking to the master within two cycles of time-out.

2. All required handshaking to complete the timed-out request is done in a minimal number of cycles.
For example in the event of a 4-word line read transfer that timed-out then 4 successive
PLB_rdDAcks are to be issued (with accompanying PLB_MErr) with no wait cycles between these.

8.9.1 PLB_MnWrBTerm

The following error messages are issued for this signal:

• Error 3.1.1

An error message is issued when a write burst transfer has timed out and the arbiter does not
assert this signal to the corresponding master who’s request timed out.
Version 4.9.2 PLB Compliance Checks 91

8.9.2 PLB_MnRdBTerm

The following error messages are issued for this signal:

• Error 3.2.1

An error message is issued when a read burst transfer has timed out and the arbiter does not
assert this signal to the corresponding master who’s request timed out.

8.9.3 PLB_MnErr

An error message is issued if a time-out occurs and the arbiter fails to assert the corresponding
PLB_MnErr signal in any read/write DAck cycle for non-line, line or burst transfer requests.
92 Processor Local Bus Functional Model Toolkit Version 4.9.2

Index
A
about this book xiii
address map setup error 69
alu instructions 20

B
back to back read transfers 57
back to back read write read write transfers 61
BFM device configuration commands 29
branch intructions 21
branch processor register 20
burst modes 26
burst operations 19
bus functional compiler

PLB model toolkit 12
bus functional compiler files 5
bus model toolkits

PLB toolkit 1
bus models 14

C
command modes 18, 23
conversion cycles with different PLB device

sizes 20, 26

D
declarations file access 12
decode unit 17

E
example test case file 5

F
four word line read followed by four word line

write transfers 67
fourword line read transfers 63
fourword line write transfers 65

G
general purpose register

PLB bus models
branch processor register 20

I
ieee packages 10
initializing bus functional models 13
internal master data memory 18
internal slave data memory structure 24
internal slave memory checking 26
invoking bus functional compiler 13

M
master inferface checks 72
master model operation 17
monitor model 69

O
operations 23
ordered write cycles 25

P
pipeline modes 27
PLB alias commands 29
PLB bus functional compiler

declarations file access 12
initializing bus functional models 13
invoking bus functional compiler 13
simulator configuration 12

PLB bus functional language 29
BFM device configuration commands 29
PLB alias commands 29
PLB master commands 30
PLB monitor commands 48
PLB slave commands 41

PLB bus models
PLB monitor 27
running 4x bus models in 3x mode 15

PLB bus timing
back to back read transfers 57
back to back read write read write

transfers 61
back to back write transfers 59
four word line read followed by four word line

write transfers 67
fourword line read transfers 63
fourword line write transfers 65
read transfers 53
transfer abort 56
write transfers 55

PLB compliance checks 69
address map setup error 69
master inferface checks 72
monitor model 69
slave interface checks 80
slave interface PLB core OR logic error 69
timeout handshake checks 91

PLB implementation 4
PLB master commands 30
PLB master designs under test 10
Version 4.9.2 Index 93

PLB master mode 16
PLB master models

alu instructions 20
branch intructions 21
burst operations 19
command modes 18
conversion cycles with different PLB device

sizes 20
decode unit 17
general purpose register 20
internal master data memory 18
master model operation 17
PLB master mode 16

PLB model toolkit 1
bus functional compiler 12
bus functional language 29
bus models 14
compliance checks 69
features 2
timing 53

PLB model toolkit environment 5
PLB model toolkit testbench 9
PLB monitor 27
PLB slave commands 41
PLB slave designs under test 10
PLB slave models

burst modes 26
command modes 23
conversion cycles with different PLB device

sizes 26
internal slave data memory structure 24
internal slave memory checking 26
operations 23
ordered write cycles 25
pipeline modes 27
PLB slave 22
slave bus command modes 23

PLB toolkit environment
bus functional compiler files 5
example test case file 5
read me files 5
verilog files 6
vhdl files 6

PLB toolkit testbench
ieee packages 10
PLB master designs under test 10
PLB slave designs under test 10
programmable PLB data bus width and auto-

matic replication 9
vhdl signal types 10

processor local bus
signals 70

programmable PLB data bus width and automat-
ic replication 9

R
read me files 5
read transfers 53
running 4x bus models in 3x mode 15

S
signals

processor local bus 70
simulator configuration 12
slave bus command modes 23
slave interface checks 80
slave interface PLB core OR logic error 69

T
timeout handshake checks 91
transfer abort 56

V
verilog files 6
vhdl files 6
vhdl signal types 10

W
write transfers 55
94 Processor Local Bus Functional Model Toolkit Version 4.9.2

Version 4.9.2

© International Business Machines Corporation 1996, 2003
Printed in the United States of America
6/20/03
All Rights Reserved

The information contained in this document is subject to change
without notice. The products described in this document are NOT
intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The
information contained in this document does not affect or change
IBM’s product specifications or warranties. Nothing in this
document shall operate as an express or implied license or
indemnity under the intellectual property rights of IBM or third
parties. All information contained in this document was obtained in
specific environments, and is presented as illustration. The results
obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS
PROVIDED ON AN “AS IS” BASIS. In no event will IBM be liable
for any damages arising directly or indirectly from any use of the
information contained in this document.

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY
12533-6531

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at
 http://www.chips.ibm.com

Document No. SA-14-2542-11

	Contents
	Figures
	Tables
	About This Book
	Chapter�1. PLB Toolkit Overview
	1.1 PLB Toolkit Features
	1.2 PLB Features
	1.3 PLB Implementation

	Chapter�2. PLB Toolkit Environment
	2.1 Bus Functional Compiler and ReadMe Files
	2.2 Example Test Case File
	2.3 VHDL/Verilog Files
	2.4 VHDL/Verilog Files for Crossbar Arbiter (with crossbar monitor)

	Chapter�3. PLB Toolkit Test Bench
	3.1 Programmable PLB Data Bus Width and Automatic Replication
	3.2 Instantiating PLB Slave Designs Under Test
	3.3 Instantiating PLB Master Designs Under Test
	3.4 VHDL Signal Types
	3.5 IEEE Packages

	Chapter�4. PLB Bus Functional Compiler
	4.1 Simulator Configuration
	4.2 Declarations File Access
	4.3 Invoking the Bus Functional Compiler
	4.4 Initializing the Bus Functional Models

	Chapter�5. PLB Bus Models
	5.1 Running the 4X Bus Models in 3X Mode
	5.2 PLB Master Model
	5.2.1 Master Model Operation
	5.2.2 Decode Unit
	5.2.3 Internal Master Data Memory
	5.2.4 Command Modes
	5.2.5 Burst Operations
	5.2.6 Conversion Cycles with Different PLB Device Sizes
	5.2.7 General Purpose and Branch Processor Registers
	5.2.8 ALU Instructions
	5.2.9 Branch Instructions

	5.3 PLB Slave Model
	5.3.1 Slave Model Operation
	5.3.2 Slave Bus Commands and Modes
	5.3.3 Command Modes
	5.3.4 Internal Slave Data Memory Structure and Look-Up Algorithms
	5.3.5 Ordered Write Cycles (PLB_ordered)
	5.3.6 Internal Slave Memory Checking)
	5.3.7 Burst Modes
	5.3.8 Conversion Cycles with Different PLB Device Sizes
	5.3.9 Pipeline Modes

	5.4 PLB Monitor

	Chapter�6. PLB Bus Functional Language
	6.1 BFM Device Configuration Commands
	6.1.1 Set_Device () Command

	6.2 PLB Alias Commands
	6.2.1 Set_Alias () Command

	6.3 PLB Master Commands
	6.3.1 Configure () Command
	6.3.1.1 BFL Mode Configuration Parameters
	6.3.1.2 Automatic Command Mode Configuration Parameters
	6.3.1.3 Automatic Data Mode Configuration Parameters

	6.3.2 Mem_Init () Command
	6.3.3 Reg_Init () Command
	6.3.4 Read () and Write () Bus Cycle Commands
	6.3.5 Mem_Update () Command
	6.3.6 Reg_Update () Command
	6.3.7 Send () Command
	6.3.8 Wait () Command
	6.3.9 Branch () Command
	6.3.10 Move () Command
	6.3.11 Compare () Command
	6.3.12 Add () Command
	6.3.13 Sub () Command
	6.3.14 AND () Command
	6.3.15 OR () Command
	6.3.16 Shift_left() Command
	6.3.17 Shift_right() Command

	6.4 PLB Slave Commands
	6.4.1 Configure () Command
	6.4.1.1 BFL Mode Configuration Parameters
	6.4.1.2 Automatic Command Mode Configuration Parameters
	6.4.1.3 Automatic Data Mode Configuration Parameters

	6.4.2 Mem_Init () Command
	6.4.3 Read_Response (), Write_Response () Commands
	6.4.4 Merr_Init () Commands
	6.4.5 Mem_Check () Command

	6.5 PLB Monitor Commands
	6.5.1 Configure () Command
	6.5.1.1 Configuration Parameters

	6.5.2 Read / Write() Commands
	6.5.2.1 Sample Monitor Read/Write BFL

	6.5.3 Report() Command

	Chapter�7. PLB Bus Timing
	7.1 Read Transfers
	7.2 Write Transfers
	7.3 Transfer Abort
	7.4 Back-to-Back Read Transfers
	7.5 Back-to-Back Write Transfers
	7.6 Back-to-Back Read - Write - Read - Write Transfers
	7.7 Four-word Line Read Transfers
	7.8 Four-word Line Write Transfers
	7.9 Four-word Line Read Followed By Four-word Line Write Transfers

	Chapter�8. PLB Compliance Checks
	8.1 Monitor Model
	8.2 Terminology
	8.3 Address Map Set-up Error
	8.4 Slave Interface/PLB Core OR Logic Error
	8.5 Signal Summary Table
	8.6 Master Interface Checks
	8.6.1 Mn_request
	8.6.2 Mn_priority(0:1)
	8.6.3 Mn_busLock
	8.6.4 Mn_RNW
	8.6.5 Mn_BE(0:3)
	8.6.6 Mn_size(0:3)
	8.6.7 Mn_type(0:2)
	8.6.8 Mn_TAttribute
	8.6.9 Mn_lockErr
	8.6.10 Mn_ABus/Mn_UABus
	8.6.11 Mn_abort
	8.6.12 Mn_wrDBus(0: PLB DATA BUS WIDTH)
	8.6.13 Mn_rdBurst
	8.6.14 Mn_wrBurst
	8.6.15 PLB_MnAddrAck
	8.6.16 PLB_MnRearbitrate
	8.6.17 PLB_MnWrDAck
	8.6.18 PLB_MnRdDAck
	8.6.19 PLB_MnRdWdAddr(0:3)
	8.6.20 PLB_MnBusy
	8.6.21 PLB_MRdErr/PLB_MWrErr
	8.6.22 PLB_MSSize
	8.6.23 PLB_MnTimeout

	8.7 Slave Interface Checks
	8.7.1 PLB_PAValid
	8.7.2 PLB_SAValid
	8.7.3 Sln_addrAck
	8.7.4 Sln_wait
	8.7.5 Sln_rearbitrate
	8.7.6 PLB_rd/wrpendReq
	8.7.7 PLB_MasterID(0:3)
	8.7.8 PLB_rd/wrpendPri(0:1)
	8.7.9 PLB_reqPri(0:1)
	8.7.10 PLB_wrDBus
	8.7.11 Sln_wrDAck
	8.7.12 Sln_wrComp
	8.7.13 Sln_wrBTerm
	8.7.14 Sln_rdDBus
	8.7.15 Sln_rdWdAddr(0:3)
	8.7.16 Sln_rdDAck
	8.7.17 Sln_rdComp
	8.7.18 Sln_rdBTerm
	8.7.19 Sln_MBusy(0:15)
	8.7.20 Sln_Mrd/wrErr(0:15)

	8.8 PLB Interface Checks
	8.8.1 PLB_RNW
	8.8.2 PLB_BE
	8.8.3 PLB_size(0:3)
	8.8.4 PLB_type
	8.8.5 PLB_TAttribute
	8.8.6 PLB_lockErr
	8.8.7 PLB_ABus/PLB_UAbus
	8.8.8 PLB_busLock
	8.8.9 PLB_rdBurst
	8.8.10 PLB_wrBurst
	8.8.11 PLB_rdPrim
	8.8.12 PLB_wrPrim
	8.8.13 PLB_Abort
	8.8.14 PLB_SrdDbus

	8.9 Time Out Handshake Checks (For 3.x PLB)
	8.9.1 PLB_MnWrBTerm
	8.9.2 PLB_MnRdBTerm
	8.9.3 PLB_MnErr
	A
	B
	C
	D
	E
	F
	G
	I
	M
	O
	P
	R
	S
	T
	V
	W

	Index

