
The Metropolis Meta Model

Version 0.4

The Metropolis Project Team

Technical Memorandum UCB/ERL M04/38
University of California, Berkeley, CA 94720, September 14, 2004





Contents

1 Introduction and Core Syntax 1

1.1 General Constructs and Operators . . . . . . . . . . . . . . . . . . . . . 2

1.2 Regular Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Primitive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Compound Types . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Derived Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.4 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.5 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Creation Of Networks 11

2.1 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1.1 Port Fields . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1.2 Constant Fields . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1.3 Parameter Fields . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Special Methods . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 A Process Example . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Port Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Quantities and Quantity Managers . . . . . . . . . . . . . . . . . . . . . 18

2.5 Statemedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Netlists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



SECTION 0.0

2.6.1 Building Design Hierarchies . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Classify Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Refining Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Specification of Network Executions 31

3.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 await . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 boundedloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 blackbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Annotating and Restricting Network Executions 37

4.1 Actions, Events and Event References . . . . . . . . . . . . . . . . . . . 38

4.2 Annotations with quantities . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Scheduling network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Statemedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Quantity managers . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.3 Annotation requests . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.4 Scheduling network execution . . . . . . . . . . . . . . . . . . . . 45

4.3.5 Recursive scheduling network . . . . . . . . . . . . . . . . . . . . 45

4.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Meta-model LTL syntax . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Meta-model LTL semantics . . . . . . . . . . . . . . . . . . . . . 47

4.4.3 Meta-model LOC and ELOC Syntax . . . . . . . . . . . . . . . . 48

4.4.4 Meta-model semantics of LOC and ELOC . . . . . . . . . . . . . 49

4.5 Relating Executions of Networks . . . . . . . . . . . . . . . . . . . . . . 51

5 The Compilation 55

5.1 The Metropolis Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Compilation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 The Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 The Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 The Metropolis Interactive Shell . . . . . . . . . . . . . . . . . . . . . . 60

6 The Backends 65

6.1 Write a Backend Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Elaboration Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Elaboration Testing Backend . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Compilation Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ii CONTENTS



CONTENTS

6.5 Formal Verification Backend . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6 Simulation Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.7 Debugging Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Keywords 73

A.1 Primitive Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.4 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.5 Object Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.6 Control Flow Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.7 Other Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.8 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.9 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.10 Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.11 Illegal Java Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.12 Arithmetic and Logical Operations . . . . . . . . . . . . . . . . . . . . . 74

CONTENTS iii





Chapter 1

Introduction and Core Syntax

This document presents the syntax and semantics of the Metropolis meta-model, the
mechanism employed internally in the Metropolis design environment to represent design
behavior and constraints. For a more detailed overview of the concepts underpinning
metropolis, and how to use it please refer to the design guidelines in [4]. The meta-model
does not commit to the semantics of any particular model of computation. Rather, it
provides building blocks necessary to define a computation and communication seman-
tics, so that many models of computation often employed in system designs can be
represented with this single set of building blocks.

The Metropolis meta-model describes designs using networks. A network instantiates
components of the network and specifies their connections. Once a network is specified,
the execution semantics defines the behavior of the network. The first section lists
what are the general operators and constructs from Java are usable in the metamodel.
The second section explains the creation of general classes in the metamodel. The third
section explains the different data types supported in the metamodel. The fourth section
explains the packages used in the metamodel, and the use of the package statement.

Chapter 2 explains the different elements of the network, and how to create them.
Chapter 3 explains the execution semantics of the metamodel, and specialized execution
statements, like await and bounded loop. Chapter 4 presents mechanisms for annotating
the behavior of a network with constraints and quantities. This is helpful when one
wants to specify certain properties with the behavior, such as the time it takes or
energy required for executing the behavior. The behavior of a network may be related
with the behavior of another network. With this mechanism, a design may be specified
as a related set of independent subsystems, and this plays the central role for specify
designs in consistent manner over multiple levels of abstraction. This is also helpful for
maintaining the reusability of descriptions of the subsystems. Section 4.5 describes this
mechanism.

The syntax of the meta-model is similar to that of Java [2], although we employ
restriction in its usage and also have introduced additional keywords; the execution
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SECTION 1.2

semantics is also different. When we present keywords that are also available in Java,
we explain them only if their meaning or usage is different in Java in the context.

1.1 General Constructs and Operators

General constructs and operators refer to those defined in Java and supported by the
meta-model:

• looping constructs: while, do-while, for

• decision making constructs: if-else, switch-case

• branching constructs: break, continue, return

• arithmetic operators: +, -, ∗, /, %

• relational operators: >, >=, <, <=, ==, !=

• conditional operators: &&, ||, !, &, |, ∧

• shift and logical operators: ¿, À, &, |, ∧, ∼

• assignment operators: =, +=, -=, ∗=, /=, %=, &=, |=, ∧=, ¿=, À=

• dynamic allocation operator: new

Note that not all constructs and operators in Java are supported by the meta-model.
For example, synchronized is not supported. See Appendix A for Java keywords not
supported in the meta-model. In addition, the meta-model supports two conditional
operators for convenience: -> and <->. They represent the logical implication and
logical equivalence respectively. Further, the meta-model supports special constructs
and operators defined in the following section.

1.2 Regular Classes

This section explains the creation of regular classes in the Metropolis metamodel, which
have a very similar syntax to those declared in Java and C++. This syntax will be
used as a basis for the syntax of processes, media, quantities, and other metamodel
objects.

1.2.1 Declaration

The syntax to declare a regular class is:

2 CHAPTER 1 Introduction and Core Syntax



Regular Classes

modifier class ClassName extends SuperClassName implements InterfaceName {

// the body of this class declaration

}

• modifier must be either unspecified, or one of the following keywords: public,
protected, private, abstract, static, final. The meanings of these modifiers
(and the unspecified modifier) are the same as they are in Java.

• ClassName is the identifier of this class.

• SuperClassName is the identifier of a class from which this class is derived. Note
that ClassName and SuperClassName must be different.

• InterfaceName is a comma-separated list of the identifiers of interfaces imple-
mented by the class. For each identifier in the list, it is required that this class
declares all the members of the interface in its body1.

1.2.2 Fields

If a field is declared static, it must also be final, i.e. it has to be a constant only. This
is to prevent implicit communication through static fields. Constants defined in classes
can be accessed only from constructors or postElaborate functions. Fields in regular
classes should only have the type of regular classes or primitive data types (and arrays
of these).
For all the fields of a class, it is not allowed to have two fields with the same name.

This is the case even if one field is transitively inherited from another process while the
other is declared in the current process2.

1.2.3 Constructors

The following is the syntax of a regular class constructor:

modifier RegularClassName(args){

// the body of this constructor declaration

}

The modifier must be either unspecified, or one of the following keywords: public,
protected, private. Its accessibility is same as Java. ProcessName is the identifier
of a process in which this constructor is defined. args is a comma-separated list of
additional arguments that may be empty. We support overloading, and more than one
constructor may be defined, as long as their lists of arguments are not identical; two
lists of arguments are said to be identical if the numbers of the arguments are equal and

1Note that these interfaces are not port interfaces, which are described in the next chapter.
2This differs from Java and C++ where it is is legal

CHAPTER 1 Introduction and Core Syntax 3



SECTION 1.3

the types at the i-th arguments are same for each i. As with Java, one may specify the
super method at the very first line of the body of a constructor declaration. If it is not
specified, then it is assumed that the method is called with InstanceName being the
only argument. The constructors are not inherited by subclasses.

1.2.4 Methods

The methods declaration has to be in the following syntax:

modifier type methodName(args) {

// the body of this method

}

The modifier must be one of the following keywords: public, protected, private,
abstract, static, final. The type should be a primitive type or some type derived
from a regular class 3

Compared with methods defined in media, in classes, methods do not have any effect
modifiers. This implies that no port connection can be made to classes. Since classes do
not have ports either, there cannot exist port connections going out of classes. However,
regular interfaces can be implemented by regular classes, therefore, it is possible to assign
a regular class to a variable of a regular interface type as long as the class implements
the regular interface or its sub-interfaces.

1.3 Types

The meta-model adopts the Java type system. It uses a statically typed system; that
is, all variables must be associated with a type when they are declared. All types fall
into one of the following four categories: primitive type, compound type, derived type,
and type parameters. Further, the meta-model type system is inheritance-based.

1.3.1 Primitive Types

Primitive types are built-in to the meta-model, see Appendix A.1 for the primitive types
supported in the meta-model.

1.3.2 Compound Types

Compound types are created from primitive types and are defined as classes. Compound
types defined in Java that are also supported in the meta-model are String, Array, List,
Set, HashSet, HashMap and Hashtable. These types and a set of methods associated

3It may be possible to have metamodel objects (e.g. ports, media), but this violates the purpose of
the regular class.
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with each of them can be directly used in the meta-model (See [3] for specific methods
of these classes).

Other than these compound types, the meta-model does not support classes defined
in Java. However, it allows users to define their own compound types by defining
appropriate classes.

1.3.3 Derived Types

All classes (regular, process, media, netlist, etc), and port-interfaces are data types
called derived types.

1.3.4 Templates

The declaration of a template object or interface is the same as that of an ordinary one,
but prefixed by the following declaration:

Syntax 1.3.1

template (< TypeParameter >)

where TypeParameter consists of a name ParameterName that is used in the place
of the type of variables or arguments in the template, and optionally a list of legal types
that ParameterName can be assigned to 4. It takes the following form:

Syntax 1.3.2

ParameterName << : LegalType >>

All LegalTypes must follow a colon. If more than one LegalTypes are listed, they must
be separated by a a comma. A template may have more than one TypeParameters, in
which case they should be separated by a semicolon.

For example, suppose that in an instance of Mem that types m of SIZE, START ADDR,
and storage inside Mem are changed from int, int and byte[] to type parameters size t,
addr t, and storage t[] respectively. Suppose also that the legal type of size t and addr t
is int, while storage t may be either int or byte. Then the declaration of Mem can be
changed to the following:

4In the current Metropolis infrastructure, standard usages of templates as in C++ are supported,
but the legal type list is not yet supported.
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Example 1.3.1

template ( size t: int; addr t: int; storage t:int,byte )
medium Mem implements MemAPI {

...
parameter size t SIZE;
parameter addr t START ADDR;
int first;
int last;
storage t[] storage;

Mem (size t size, addr t start addr) {
SIZE = size;
START ADDR = start addr;

}
public update void memWrite (byte[] dest, byte[] src){ ... }
public eval void memRead (byte[] dest, byte[] src){ ... }
public constant int memSize (){ ... }
...

}

When a template object is instantiated, all of its type parameters must be defined,
as follows:

Syntax 1.3.3

ObjectType -< < ParameterType > >-

where ParameterType is a primitive, compound, derived data type, or a type pa-
rameter. If there are more than one ParameterTypes, they must be separated by a
semicolon, and must be listed in the same order as TypeParameters given in the tem-
plate of ObjectType. This order defines the correspondence between the ParameterTypes
and ParameterNames. If LegalTypes are specified for a given ParameterName in the
template, its ParameterType is considered legal if the following conditions hold. If Pa-
rameterType is a primitive type, the type must be included in the list of LegalTypes. If
ParameterType is a compound or derived type, there must exist a LegalType for which it
is legal in Java that the ParameterType can be assigned to a variable of the LegalType 5.
If ParameterType is a type parameter, it is always legal. Further, if no LegalType is
specified in the template for the ParameterType, the latter is always legal. -< and >-
are part of the syntax, and must appear in the specification.

For example, the template Mem can be instantiated as:

5This roughly means that the ParameterType is a subclass of the LegalType, while the precise defini-
tion is given in [2].
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Example 1.3.2

Mem -< int; int; byte >- mem = new Mem-< int; int; byte >-(100, 10);

A subclass can inherit from a template class, where each of the type parameters
of the template class can be either instantiated to a specific type, or left as a type
parameter. If the subclass still has type parameters, it has to be defined as a template
class. Otherwise, it becomes a concrete class:

Example 1.3.3

// Mem1 is a template class derived from Mem
template ( size t; addr t; storage t )
medium Mem1 extends Mem-< size t; addr t; storage t>- {

...
}

// Mem2 is another template class with specific types for size t and addr t
template ( storage t: byte )
medium Mem2 extends Mem-<int; int; storage t>- {

...
// Mem3 becomes a concrete class
medium Mem3 extends Mem-<int; int; byte>- {

...
}

Here, Mem1 is declared without specifying legal types. It is interpreted that the legal
types of its three type parameters are same as those specified in Mem, the superclass of
Mem1. It is possible to specify only a subset of the original legal types as legal types in
the extended template. For example, byte is the only legal type for storage t in Mem2.

The same mechanism can be used for interfaces. For example, in Example 1.3.4, the
type of dest and src inside MemAPI can be parameterized as follows:

Example 1.3.4

template (data t)
interface MemAPI extends Port {

update void memWrite(data t[] dest, data t[] src);
eval void memRead(data t[] dest, data t[] src);
constant int memSize();

}

When a port is declared with this interface, the type has to be specified. However,
since legal types are not specified, data t can be defined with any type.

CHAPTER 1 Introduction and Core Syntax 7
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Example 1.3.5

port MemAPI -< byte >- port0;

In defining a class that implements an interface with type parameters, one can either
instantiate each parameter with a specific type or leave it as a parameter; if some type
parameters are left, the class has to be defined as a template class. In the following
example, the type parameter of the interface MemAPI is instantiated with the byte
type when implemented by the medium Mem.

Example 1.3.6

template ( size t:int; addr t:int; storage t:int, byte )
medium Mem implements MemAPI-<byte>- {

...
public update void memWrite(byte[] dest, byte[] src){ ... }
public eval void memRead(byte[] dest, byte[] src) { ... }
...

}

Alternatively, it is possible to implement MemAPI without instantiating the type
parameter. In this case, the type parameter has to be added in the type list of the
template:

Example 1.3.7

template ( size t:int; addr t:int; storage t:int, byte; data t)
medium Mem implements MemAPI-<data t>- {

...
public update void memWrite(data t[] dest, data t[] src){ ... }
public eval void memRead(data t[] dest, data t[] src) { ... }
...

}

1.3.5 Polymorphism

The meta-model supports only static polymorphism. This is done through the use of
template objects, where types of type parameters are defined at instantiation time (see
Example 1.3.2). Even in the case of template interface, the types of the arguments still
must be determined statically (at compile time).

8 CHAPTER 1 Introduction and Core Syntax
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1.4 Packages

In metamodel, packages are used to organize design entries. This is the same concept as
in Java. One package corresponds to one directory in the file system. Every sub-packages
in the same package must occupy one sub-directories, and so on. The hierarchy of the
packages reflects exactly the same hierarchy of the file system. It is a requirement that
all files (metamodel object descriptions) in the same package must be put in the same
package therefore in the same directory. At the beginning of each file, it must declare
the package that all objects in this file belong to. The syntax to declare a package is

Syntax 1.4.1

package PackageName[.Sub-PackageName]∗;

Here, PackageName[.Sub-PackageName]∗ is the fully qualified name of the package,
i.e. it shows every intermediate hierarchies and in the same order from the top level
package to the current level package. For instance, if the top level package is pkg0, the
current file is in a sub-package of pkg0 with the name pkg1, then the package declaration
would be package pkg0.pkg1;
Though packages are a good way to organize design entries clearly, it is not required

that every file must declare thus belong to a package. In case no package declaration
exists, all objects defined in the file belong to a default package called UNNAMED PACKAGE.
Note that UNNAMED PACKAGE is just for compilation purpose. User can not explicitly refer
to it.
Besides UNNAMED PACKAGE, metamodel also pre-defines other packages:

• metamodel.lang is in metro/lib/metamodel/lang directory. It defines all the ba-
sic metamodel language object prototypes, which participate in the syntax and
semantics checks during compilation.

• metamodel.util is in metro/lib/metamodel/util directory. It provides a set of
utility classes resembling those in Java util package. Right now, this package
includes ArrayList, BitSet, Collection, HashMap, HashSet, Hashtable, LinkedList,
SortedMap, SortedSet, TreeMap, TreeSet and Vector.

• metamodel.plt is in metro/lib/metamodel/plt directory. It provides a collection
of communication platforms, architecture platforms etc.

• SYSTEM PACKAGE is a virtual package. It serves as the root package of all other top
level packages. Its existence simplifies the package management in compilation
process. Users cannot refer to it explicitly.

In order to use those defined in other packages, a keyword import must be used. In
a metamodel file, import statements must follow the package declaration if there is one.
The syntax of import is

CHAPTER 1 Introduction and Core Syntax 9
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Syntax 1.4.2

import PackageName[.Sub-PackageName]∗.ClassName;

or

Syntax 1.4.3

import PackageName[.Sub-PackageName]∗.*;

The first syntax is to import a particular object definition from a package. For
example, import metamodel.util.LinkedList; imports the class LinkedList defined in
metamodel.util package. The second syntax is called import-by-demand. It specifies
only the package name, not the specific class name. Later on, when a class is used and
it does not exist in the current package or other explicitly imported classes, import-by-
demand comes into play. It will search that package to see whether there is such a class.
If so, import it. For example, import metamodel.util.*; If in the following metamodel
code, LinkedList is used, metamodel.util package will be searched. Once the definition
of LinkedList is found, it will be imported.
Note that metamodel.lang is imported by default. All other packages including

metamodel.util, metamodel.plt and user defined ones must be imported before use.
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Creation Of Networks

The components of a network must be of the following types: process, medium, quantity,
statemedium, netlist. These types are explained in this section.

2.1 Processes

In metropolis process is an active element, in that it has its own thread of control. A
process can have one or more ports, which are used to communicate to other processes
via media.

A process is declared with a keyword process, and has the syntax below:

modifier process ProcessName extends SuperProcessName {

// the body of this process declaration

}

The modifier must be either unspecified, or one of the following keywords: public,
protected, private, abstract, static, final. If it is unspecified, the process has
default visibility, which is accessible only to all defined in the same package, and it is
non-abstract, non-static and non-final. ProcessName is the identifier of this process,
and SuperProcessName is the identifier of a process from which this process is derived.
ProcessName and SuperProcessName must not be literally identical.

The body of a process declaration consists of three parts: fields, constructors, and
methods.

2.1.1 Fields

The fields can be divided into four kinds: regular fields, port fields, constant
fields, and parameter fields. Regular fields are the same as those allowed in regular
classes.

11
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2.1.1.1 Port Fields

A port field is declared with a keyword port:

port modifier InterfaceName PortName;

• modifier must be either public or unspecified.

• InterfaceName is the identifier of a port interface, and is the type of the declared
port.

• PortName is the identifier of this port field.

Ports are used to connect components and components can exchange information
through ports. Port interfaces are explained in Section 2.2. A port field may be accessed
either in the methods within the process in which the field is declared, or using a meta-
model keyword connect, explained in Section 2.6. It is not accessible to the constructors
of this process.

One may declare multiple fields with a single port declaration, by providing multiple
identifiers, separated by comma:

port InterfaceName PortName0, PortName1;

In this case, InterfaceName is the type for all the declared fields.

One may also declare an array of ports. As with Java, this can be done either of the
following ways:

port InterfaceName PortName0, PortName1[], PortName2[][];

port InterfaceName[] PortName3, PortName4[];

In the first case, PortName0 declares a single port field, PortName1[] declares an one-
dimensional array of port fields, and PortName2[][] declares a two-dimensional array
of port fields. InterfaceName is the type for all the port fields. The second case
provides an alternative way to declare the one-dimensional and two-dimensional port
fields, respectively.

2.1.1.2 Constant Fields

Constant fields are common to all the instances of this process. They are specified with
the keyword final1, and have the syntax below:

modifier final type ConstantName = Initializer;

1Unlike Java, the static keyword is not used, because we require an instance of a field for each
component instantiated in a network.
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• modifier must be either unspecified or the keyword private. If it is unspecified,
the field is inherited by subclasses of this process.

• type is can be one of the primitive types described in Section 1.3.1 or an array of
primitive types, and is referred to as the type of this field.

• ConstantName is the identifier of this field.

• Initializer sets the value of this field. The Initializer is either an expression
or an array initializer, and is subject to exactly the same rules as Java [2].

A constant field is accessible only within the process in which the field is declared.
By definition, it is assigned exactly once. It is important to note that this grammar
does not completely guarantee that this field can be always a constant. That is, if the
field holds a reference to an object, then although the value of the field will always be
the reference, the contents of the referred object may change. It is subject to the use
policy whether constant fields are treated as constants.

As with port fields, one may declare more than one field and arrays of fields, as
follows:

final int AREA = 20, SAMPLE[] = {0, 5, 15};

2.1.1.3 Parameter Fields

Constants whose values may be specific to particular instances are called parameter
fields. They are declared with a parameter keyword:

modifier parameter type ParameterName;

A parameter field is accessible only within the process in which the field is declared, and
may be assigned only inside constructors or in a special method called postElaborate

that is explained in section 2.1.3.1. Unlike constant fields, parameter fields may not
have initializers. The modifier must be either unspecified or a keyword private. If it
is unspecified, this field is inherited by subclasses of this process. ParameterName is the
identifier of this field. One may declare more than one field and arrays of fields in the
same way as port fields.

Parameter fields, are declared in the same way as constant fields, with two exceptions.
First, the final keyword must not be used. Second, the use of Initializer is optional
and thus may not be used. The accessibility and inheritance are also same. The reason
for this rather limited accessibility is to force the communication to be specified explicitly
through the port fields. This aspect is explained more in Section 2.3. These fields may
be assigned both in constructors and in the methods.
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2.1.2 Constructors

The following is the syntax of a constructor:

modifier ProcessName(String InstanceName, args) {

// the body of this constructor declaration

}

• modifier must be either unspecified, or one of the following keywords: public,
protected, private. Its accessibility is same as Java.

• ProcessName is the identifier of a process in which this constructor is defined.
The meta-model requires that a constructor of a process must have the String
type at the first argument. This is used as the name of an instance created by the
constructor.

• args is a list of additional arguments that may be empty. As with the ordinary
case, the arguments are separated by comma, with each made of the type and the
identifier of the argument separated by spaces.

We support overloading, and more than one constructor may be defined, as long as
their lists of arguments are not identical; two lists of arguments are said to be identical
if the numbers of the arguments are equal and the types at the i-th arguments are same
for each i. As with Java, one may specify the super method at the very first line of
the body of a constructor declaration. If it is not specified, then it is assumed that the
method is called with InstanceName being the only argument. The constructors are not
inherited by subclasses.

2.1.3 Methods

A method is accessible only within the process in which it is declared. The following is
the declaration syntax:

modifier Effect type methodName(args) useport PortNames{

// the body of this method declaration

}

• modifier must be either unspecified or one of the keywords public, protected,
private, abstract, static and final. If it is unspecified, this method is inher-
ited by subclasses of this process, which may be overridden by the subclasses.

• type is the result type, either one of the types described in Section 1.3 or a keyword
void. methodName is the identifier of this method and args is a list of arguments.
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• useport2 is a keyword which may be optionally present in a method declaration.
If used it is followed by a comma-separated list of port identifiers that might be
accessed during execution.

Overloading is supported for methods in processes, i.e. methods with the same
identifier may exist in a process if their lists of arguments are not identical.

2.1.3.1 Special Methods

There are two special kinds of methods in processes: thread and postElaborate.
The thread method of a process defines the behavior of the process, explained in

detail in Chapter 3. Any process must have exactly one method with the identifier
thread. The result type has to be void and the argument list has to be empty.
The special process methods is postElaborate. The meta-model compilation has a

phase called elaboration, used for creating networks that constitute a design; Section 6.2
briefly explains it. The postElaborate method is called in this phase for each com-
ponent of a network being created, if the method is specified in the component. This
method must have the void result type with the empty list of arguments. This method
has a particular rule on accessing the fields: the parameter fields of a process may be
assigned, and the port fields may not be accessed.

2.1.4 A Process Example

We conclude this subsection with a simple example of a process.

public process DualProducer extends StreamProcess {

port Reader input;

port Writer mode, data;

final int REF = 1;

parameter int hirate, lowrate;

parameter int stream_size;

byte[] stream;

public DualProducer(String instanceName) {

super(instanceName);

}

public DualProducer(String instanceName, int hi, int low, int size) {

hirate = hi; lowrate = low; stream_size = size;

stream = new byte[stream_size];

}

2It is wise to not rely on useport in writing a backend, because a useport list can be quickly derived
from a method, and manual entry can lead to errors.
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void thread() useport input, mode, data {

// the body of this thread declaration

}

}

The example is an extension of the StreamProcess and has 3 ports, a Reader input,
and 2 Writer’s named mode and data. It also has parameters for the rates and the size
of stream, and a field for holding the byte steam. Finally, it has two constructors and a
thread method.

2.2 Port Interfaces

Port interfaces are a special kind of interfaces that declare methods which can be used
through ports. These methods would be implemented by a medium, and called by a
process or another medium.

The syntax is as follows:

public interface InterfaceName extends SuperInterfaceName {

// the body of this port interface declaration

}

• interface declares a port interface if SuperInterfaceName is either the identifier
of a port interface, or Port, which is the identifier of a built-in interface in the
meta-model.

• InterfaceName is the identifier of the declared port interface, which is said to
be a subclass of SuperInterfaceName.

The body of a port interface declaration is either empty, or else consists of declara-
tions of methods. Unlike interfaces in Java, a port interface may not declare fields. We
say that a method is a member of a port interface if either it is declared in the body of
the port interface declaration or it is a member of SuperInterfaceName. The built-in
interface Port has no method as its member. The following is the syntax of method
declarations:

effect type methodName(args);

• effect must be one of the following keywords: update, eval, constant. These
keywords indicate how the declared method accesses and modifies the values of
the fields in the classes that implement this port interface.

– update indicates that for each class that implements this port interface, the
method may access all the field of the class and change their values.
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– eval means that the method may access all the fields of the class but may
not change their values. If a method is declared with the keyword

– constant indicates the method may only access the constant and parameter
fields of the class.3

• methodName is the identifier of this method.

• type is the return type.

• args is the list of arguments.

A port interface may have two methods with the same identifier, if their lists of
arguments are not identical.
The following example declares two port interfaces:

public interface Writer extends Port {

eval int querySpace(); // returns the number of available slots

update void write(int[] data, int num);

update void write(double[] data, int num);

}

public interface Reader extends Port {

eval int queryData(); // returns the number of available data

update void read(int[] data, int num);

update void read(double[] data, int num);

}

2.3 Media

In the metamodel language a medium is a passive object that is used for communication
and holding state. It can implement port interfaces and be connected to processes
and other media.
A medium is declared with a keyword medium, and has the syntax below.

modifier medium MediumName extends SuperMediumName implements InterfaceName {

// the body of this medium declaration

}

• modifier must be either unspecified, or one of the following keywords: public,
protected, private, abstract, static, final. They are used in the same way
as in process declarations.

3In fact, there is another keyword elaborate for effect. However, it is not for describing how the
function affects the state of the object. When a function is annotated with elaborate, it means that it
will be handled by elaboration phase, otherwise, the function will be ignored. More details in section 6.2.
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• MediumName is the identifier of this medium.

• SuperMediumName is the identifier of a medium from which this medium is
derived. MediumName and SuperMediumName must be different.

• InterfaceName is a list of the identifiers of interfaces, separated by comma. For
each identifier in the list, it is required that this medium declares all the members
of the interface in its body. We say that these interfaces are implemented in this
medium.

The body of a medium consists of fields, constructors, and methods, as with the
case of processes. Among them, fields and constructors are subject to the same rules
described for processes in Section 2.1.

2.3.1 Methods

The methods are also declared in the same way as in processes, with the following two
exceptions. First, it is not mandatory to declare a method with its identifier being
thread. It is not illegal for a medium to declare a thread method, but it doesn’t
mean anything and isn’t recommended. Secondly, when a member of a port interface is
declared, the declaration has to be in the following syntax:

public effect type methodName(args) useport PortNames{

// the body of this method

}

The effect must be the same as the one declared in the port interfaces implemented
in this medium.

2.4 Quantities and Quantity Managers

Quantities can be physical numbers like time and power, or they can be used for some-
thing like the arbitration of a shared resource. Quantity managers handle a particular
quantity, how it is modified, and who gets access to it. This section describes the syntax
of declaring quantities and quantity managers, for an explanation of how they are used
see chapter 4.

A quantity is declared with a keyword quantity and has the syntax below:

modifier quantity QuantityName extends SuperQuantityName

implements InterfaceName {

// the body of this quantity declaration

}
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• modifier must be either unspecified, or one of the following keywords: public,
protected, private, abstract, static, final. They are used in the same way
as in process and medium declarations.

• QuantityName is the identifier of this quantity.

• SuperQuantityName is the identifier of a quantity from which this quantity is
derived, and is optional. QuantityName and SuperQuantityName must be differ-
ent.

• InterfaceName is a list of the identifiers of interfaces, separated by comma. For
each identifier in the list, it is required that this quantity declares all the members
of the interface in its body. We say that these interfaces are implemented in this
quantity.

Note that quantities by default implement an interface called QuantityManager,
which includes has the syntax below with four methods:

public interface QuantityManager extends Port {

eval void request(event e, RequestClass rc);

update void resolve();

update void postcond();

eval boolean stable();

}

The request function is to request a quantity annotation(rc) for a particular event
(e). The type of rc is RequestClass, which should be the super class of all user defined
request classes.
The resolve function is used to resolve the existing quantity annotation requests-

made by request function or previous ungranted requests depending on the actual im-
plementation of the quantity.
The postcond function is to clean up the states of the quantity and the quantity

requests. The stable function returns whether or not the quantity resolution stabilizes.
Section 4.3 talks about quantities in more detail.
The body of a quantity consists of fields, constructors, and methods. Among them,

fields and constructors are subject to the same rules described for media in Section 2.3.
In Metropolis Metamodel, there is a built-in quantity, GlobalTime, that represents

the global time of the system as a double precision floating point number.

2.5 Statemedia

A statemedium is a special type of medium used to communicate between processes
and quantity managers. It passes the state of a process to the quantity manager, and
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propagates the scheduling results back to the process. A statemedium is declared with
a keyword statemedium, and the syntax below:

modifier statemedium StatemediumName extends SuperStatemediumName

implements InterfaceName {

// the body of this statemedium declaration

}

• modifier must be either unspecified, or one of the following keywords: public,
protected, private, abstract, static, final. They are used in the same way
as in process declarations.

• StatemediumName is the identifier of this statemedium.

• SuperStatemediumName is the identifier of a statemedium from which this
statemedium is derived. StatemediumName and SuperStatemediumName must
have different names.

• InterfaceName is the list of the interfaces implemented by the state medium.

A Statemedium by default implements two interfaces. One is StateMediumSched, the
other is StateMediumProc. The interface StateMediumSched defines a set of functions
for scheduling purpose as follows. An explanation of some of these functions, is present
in the next chapter. StateMediumProc is an empty interface.

public interface StateMediumSched extends Port {

eval process getProcess();

eval SchedProgramCounter getProgramCounter();

eval int getNumEnabledEvents();

eval event getEnabledEvent(int i);

eval boolean isEventEnabled(event e);

eval event getMustDo();

eval ArrayList getCanDo();

eval int getSchedState();

update boolean setSchedState(int newState);

update boolean setMustDo(event e);

update boolean setMustNotDo(event e);

}

The body of a statemedium consists of fields, constructors, and methods, as with
the case of medium. Among them, fields and constructors are subject to the same rules
described for medium in Section 2.3.
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2.6 Netlists

Netlists are used to contain a set of objects and their connections. They can be used to
build design hierarchies, to classify objects into different types of groups and to refine
other objects. All metamodel designs have a top-level netlist.
A netlist is declared with a keyword netlist, and the syntax below:

modifier netlist NetlistName extends SuperNetlistName

implements InterfaceName {

// the body of this netlist declaration

}

• modifier must be either unspecified, or one of the following keywords: public,
protected, private, abstract, static, final. They are used in the same way
as in process declarations.

• NetlistName is the identifier of this netlist.

• SuperNetlistName is the identifier of a netlist from which this statemedium is
derived. NetlistName and SuperNetlistName must be different.

• InterfaceName is a list of the identifiers of interfaces, separated by comma. For
each identifier in the list, it is required that this netlist declares all the members
of the interface in its body. We say that these interfaces are implemented in this
netlist.

2.6.1 Building Design Hierarchies

This is the most basic usage of netlists. They serve as containers of sets of objects.
A typical flow of constructing one netlist is that during the execution of a constructor
of the netlist, objects (including processes, media, statemedia, quantities, netlists, etc.)
are instantiated or passed into the constructor as arguments and added to the netlist,
then connections are made among these objects. If there exist refinements, objects and
connections will be adjusted due to the refinement commands. When the constructor of
the netlist finishes, the entire system structure is captured by this netlist. Another fact
is that the netlist is fully decided at compile time, and metamodel does not support any
dynamic changes to the netlist structure so far.
When instantiate an object, user must provide a so called instance name to the ob-

ject. It has to be a unique name in order not to cause further problems in elaboration
and simulation. Then, the object can be added into the netlist by calling

addcomponent(NodeObject, NetlistObject [, ComponentName])

This command will add NodeObject into NetlistObject. In metamodel, objects contained
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in a netlist are called components of the netlist. Each component has a component name
in a particular netlist, which is provided as an optional argument ComponentName when
adding that component into the netlist. In case there is no ComponentName argument,
a unique component name will be assigned to the component automatically. Note that
it is possible that one object belongs to multiple netlists, therefore it has one instance
name but multiple component names. The following constructs can be used to retrieve
information about objects.

• getinstname(NodeObject) returns the instance name of the NodeObject.

• getcompname(NodeObject, NetlistObject) returns the component name of NodeOb-
ject in NetlistObject.

• getcomponent(NetlistObject, ComponentName) returns the object reference which
is in NetlistObject and has its component name as ComponentName.

• getprocess(Event) return an object reference to a process which Event belongs
to.

• getthread() returns an object reference to a process that is calling this construct.

Having all components in the netlist, we need to connect them together. A con-
nection has three essential parts: a source object, a port and a destination object. A
connection source could be a process, a medium, a statemedium or a quantity. The
port to be connected must reside in the source object. It could be either the name of
the port or a reference to that port, which is usually returned by other constructs like
getnthport etc. The type of the port (a port interface) must be implemented by the
destination object, which could be a medium, a statemedium or a quantity. In setting
up the connect, we need to use the keyword

connect(SourceObject, Port, DestObject)

which connects SourceObject to DestObject through Port. In addition to the basic con-
nection construct, there are a couple of other connection related constructs to help
manipulate the netlist.

• getnthport(NodeObject, InterfaceName, index) returns the index’th port of type
InterfaceName defined in NodeObject.

• getportnum(NodeObject, InterfaceName) returns the number of ports of type In-
terfaceName defined in NodeObject.

• getconnectionnum(NodeObject, InterfaceName) returns the number of objects
connected to NodeObject through a port of type InterfaceName.
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• getconnectiondest(SrcObject, Port) returns the destination object of a connec-
tion which is made from SrcObject and through Port. Here, Port could be either
the name of the port or a reference to the port.

• getnthconnectionsrc(NodeObject, InterfaceName, index) returns the index’th
object connected to the NodeObject through a port of type InterfaceName.

• getnthconnectionport(NodeObject, InterfaceName, index) returns the index’th
port connected to the NodeObject through a Port of type interfaceName.

The type of a port may be a special interface called Scope, which is used in the
await statements. Such a port is always connected to a netlist object, using the follow-
ing statement

setscope(NodeObject, Port, NetlistObject)

Here, NetlistObject is an object of netlist, NodeObject is an object, and Port is a port of
the NodeObject with the type Scope. This statement sets the value of Port to NetlistO-
bject. Further, it makes NodeObject a component of NetlistObject, if it has not been so
already. Similarly,

getscope(NodeObject, Port)

returns the netlist to which the Port of NodeObject connects to.4

2.6.2 Classify Objects

In metamodel, there are concepts of scheduled netlists and scheduling netlists (see chap-
ter 4). Fundamentally, there are no distinctions between these two sorts of netlists. The
way to tell the difference is to check the interfaces they are implementing. A scheduling
netlist must implement an interface called SchedulingNetlistIntfc.

public interface SchedulingNetlistIntfc extends Port {

eval boolean ifTop();

update void top();

update void postcond();

update void resolve();

}

Among these functions, ifTop() returns true if the netlist is the top most one or false if
the netlist is a component of another netlist. The other three functions are related to
doing scheduling. Their exact meaning will be described in chapter 4.

4setscope and getscope are not fully supported at this time.
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Other than implementing SchedulingNetlistIntfc explicitly, metamodel provides a
short hand syntax to define a scheduling netlist, i.e. define a netlist and let it extend
the SchedulingNetlist. SchedulingNetlist as shown below is nothing but a normal netlist
implementing SchedulingNetlistIntfc. However, user should provide the actual imple-
mentation of all the functions defined in SchedulingNetlistIntfc. There is no default
implementation of them in SchedulingNetlist.

public netlist SchedulingNetlist extends Netlist

implements SchedulingNetlistIntfc {

private boolean _top;

public SchedulingNetlist(String name, boolean top) {

_top = top;

}

public eval boolean ifTop() { return _top; };

public update void top() {};

public update void postcond() {};

public update void resolve() {};

}

2.6.3 Refining Objects

Refinement is one of the key concepts in metamodel. It is used to migrate from one level
of abstraction to another or change from one implementation to another. The syntax of
refinement is

refine(NodeObject, NetlistObject);

During refinement, NodeObject is refined to a set of objects, which are encapsulated
by NetlistObject. Syntactically, the creation of a netlist used in a refinement is the
same as in creating a basic netlist in building design hierarchies. The only difference
is that in refinement refine command will automatically add the NetlistObject into
the network, while in building hierarchies addcomponent has to be called explicitly to
add NetlistObject into the network. More details about refinement will be discussed in
section 2.7.

2.7 Refinement

During refinement, an object is usually decomposed into a netlist of objects. For exam-
ple, in Figure 2.1 (a), a single medium is decomposed into multiple processes and media
after the refinement shown in Figure 2.1 (b). The meta-model uses the netlist objects
to define refinements. The methods of a netlist must be implemented in order to carry
out the following tasks.
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The inputs to the methods are in two fold. First, an object to be refined must be
provided. We denote it by x in the sequel. The type of this object is either process
or medium. Second, a set of objects that have been already created elsewhere and will
be used to constitute the netlist may be provided. In some cases, a part of the objects
used to define the refinement are already created for other refinements. In Figure 2.1
(b), the medium object lc might model a shared resource used in different kinds of
communication, and it might have been employed in this refinement as well as others.
Such objects are provided as input to the methods of the netlist. In general, a single
netlist may define more than one refinement scenario, depending on which objects are
provided as input. For this reason, the netlist may implement more than one method
with the same name, e.g. the constructor, which take different sets of objects as input in
order to implement corresponding refinement scenarios accordingly. The types of these
objects must be process, medium, scheduler, or netlists.

Given these inputs, the set of tasks to be carried out is listed as follows.

• Register this netlist as a refinement of the object x. This is done by using the
refine statement:

refine(NodeObject, NetlistObject);

This statement sets the internal data structures of NetlistObject and NodeObject
respectively.

• Create instances of process, medium, scheduler, and netlist that are necessary to
constitute this netlist. Exactly what objects are needed may depend on the set of
objects provided as input.

• Register the objects that constitute this netlist as its components, by using add-
component statement defined in the previous section.

• If a component has a port of type Scope, it may be set to this netlist using setscope
statement.

• Define the internal connections, i.e. connections among the components. This is
done by using the connect statements.

• For each object that originally connects to x, e.g. a process object whose port is
connected to x, define a component to which this object should be connected after
the refinement. This is done by using the following statement.

refineconnect(NetlistObject, SrcObject, Port, ComponentObject);

NetlistObject is the netlist defining the refinement of x. SrcObject connects to
x through the port Port. ComponentObject is a component of NetlistObject to
which this port should be connected after the refinement. ComponentObject must
implement the interface used as the type of Port. Unlike the connect statement,
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Figure 2.1: A Refinement Example
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this connection is only logical. Namely, the value assumed by Port remains un-
changed, designating the object being refined. This statement stores in an internal
data structure of NetlistObject the information that SrcObject connects to Com-
ponentObject through Port.

• For each object to which x connects, define a component and a port from which
the connection should be made to the object after the refinement. This is done by
using the following statement.

redirectconnect(NetlistObject, OrgObject, OrgPort, ComponentObject, NewPort);

NetlistObject is the netlist defining the refinement. OrgObject is the object being
refined and OrgPort is a port of the object. ComponentObject is a component of
the NetlistObject and NewPort is a port of ComponentObject. The type of NewPort
must be identical with or a subclass of that of OrgPort.

For example, in Figure 2.1 (c), suppose that the process object w in Figure 2.1 (a)
is refined in to the three objects ow, s, and rw. If the original connection from the
port1 of w to llc is represented by the connection from the port1 of rw to llc after
the refinement, then this can be specified as

redirectconnect(this, w, port1, rw, port1);

where the first argument represents the netlist object that defines the refinement
of w.

This statement sets in an internal data structure of NetlistObject the information
that the connection made from OrgObject through OrgPort is redirected so that
it is made from ComponentObject through NewPort. It then sets the value of
NewPort to the one assumed by OrgPort. The value assumed by OrgPort remains
unchanged.

• Sometimes, it needs to know whether a connection has been refined or redirected.
This information can be retrieved by calling the construct

isconnectionrefined(SrcObject, Port, DestObject);

Here, SrcObject and DestObject are the source object and the destination object of
the connection. Port is the port through which the connection is made. These three
component uniquely specify a connection. As its name suggests, this construct
returns true if the connection is refined or redirected, otherwise false.

As an example, suppose that the loss-less channel llc in Figure 2.1 (a) is refined
into a lossy channel lc, two adaptors a1 and a2, and two media c1 and c2, as shown
in Figure 2.1 (b). Let us assume that llc implements two interfaces, Write and Read,
and the process types of objects w and r are called W and R respectively. Similarly,
the types of the adaptors, c1, c2, and lc are called Adaptor, C1, C2, LossyChannel,
respectively, where Adaptor is a process and the rest are media. The medium objects c1
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and c2 implement Write and Read interfaces used by the ports of W and R respectively.
This refinement can be defined as follows.
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Example 2.7.1

// declare a netlist type named Netlist1
netlist Netlist1 {

Netlist1 (LossLessChannel llc) {
// Scenario 1: no object is provided.
refine(llc, this);
// create a lossy channel
LossyChannel lc = new LossyChannel();
create(llc, lc);

}
Netlist1(LossLessChannel llc, LossyChannel lc) {

// Scenario 2: LossyChannel is provided.
refine(llc, this);
create(llc, lc);

}
void create(LossLessChannel llc, LossyChannel lc) {

int i;
C1[] c1;
C2[] c2;
Adaptor[] a1;
Adaptor[] a2;
addcomponent(lc, this);
// instantiate local objects and connect them
c1 = new C1[getconnectionnum(llc, Write)];
a1 = new Adaptor[getconnectionnum(llc, Write)];
for(i=0; i < getconnectionnum(llc, Write); i++) {

c1[i] = new C1(); addcomponent(c1[i], this);
a1[i] = new Adaptor(); addcomponent(a1[i], this);
connect(a1[i], port1, c1[i]);
connect(a1[i], port2, lc);

}
c2 = new C2[getconnectionnum(llc, Read)];
a2 = new Adaptor[getconnectionnum(llc, Read)];
for(i=0; i < getconnectionnum(llc, Read); i++) {

c2[i] = new C2(); addcomponent(c2[i], this);
a2[i] = new Adaptor(); addcomponent(a2[i], this);
connect(a2[i], port1, c2[i]);
connect(a2[i], port2, lc);

}
// establish external connections
for(i=0; i < getconnectionnum(llc, Write); i++)

refineconnect(this, getnthconnectionsrc(llc, Write, i),
getnthconnectionport(llc, Write, i), c1[i]);

for(i=0; i < getconnectionnum(llc, Read); i++)
refineconnect(this, getnthconnectionsrc(llc, Read, i),

getnthconnectionport(llc, Read, i), c2[i]);
}
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In this example, Netlist1 supports two kinds of refinement scenarios. One is the case
where the object modeling the lossy channel has been already created elsewhere and
is provided as input. The other case is that no object is provided and all the internal
objects are created in this netlist. The netlist has two constructors for this reason. The
method create() is the main body of defining the refinement. It is written so that this
netlist can be used for an arbitrary number of writers and readers connecting to the
original object llc being refined. For each writer w, it creates a pair of objects c1[i] and
a1[i] and connect them. a1[i] also connects to the lossy channel lc. Then the connection
from w to lc is refined so that it is connected to c1[i], using the refineconnect statement.
The readers are similarly handled. The created objects are registered as components of
the netlist.
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Specification of Network

Executions

This section covers the meta-model constructs used to specify a set of executions of
a single network. The execution of a model, is defined by the trace of events that
each process executes. Each process executes under its own thread of control, which is
formally sketched in the next section. In particular we also provide an overview of the
statements listed here distinguish metropolis from the Java multithreaded programming
model of concurrent sequential threads. The statements covered are: await, bounded-
loop, nondeterminism, and blackbox. The complete semantics is given in [1].

3.1 Semantics

The semantic domain we use to interpret executions of meta-model netlists is a set of
sequences of observable events. An observable event is a beginning or an ending of an
observable action, and observable actions are calls of media functions made through
ports.

While the behavior is defined by observable actions only, we also use other actions
to help us define the semantics. This extended set of actions include all the statements
in the program, as well as certain expressions within a statement. A precise definition
of an action is given in the next section.

The execution of netlists evolves through a sequence of state transitions, where each
transition consists of a current state, a set of observable actions (at most one for each
process) and the next state, which is also the current state of the subsequent transition.
A state of the program consists of two parts. The first is the state of the memory which
consists of assignments to state variables. The second part of the state corresponds
intuitively to the program counters and stack of all the processes in the network.
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3.2 await

This construct is used to specify an execution under a guarantee that a certain condition
holds. The await statement can only be used in methods of process and medium objects.
The await statement is used to describe a situation that a process object waits

for a given condition to become true, and once the condition holds, it continues its
execution. This semantics is different from that of the usual if statement, because
the latter does not wait until the condition becomes true and there is no guarantee
in concurrent programming that the condition still holds when the execution of its
statements begins. Further, one can specify in the await statement a set of activities that
cannot be carried out by other process objects during the execution of the statements.
The syntax of the await statement is the following:

Syntax 3.2.1

await {
< (guard; << PortName.TestList >> ; << PortName.SetList >> ) [statements;] >
<< (default; << PortName.TestList >> ; << PortName.SetList >> ) [statements;] >>
}

guard is an expression to be evaluated as true or false. PortName.TestList is either
the keyword all, or else a list of elements separated by commas, where each element
is in the form of PortName.IfName. Here, PortName is either a port of the object in
which the await resides, or else a keyword this. IfName is either a port interface, or
else a keyword all. As a special case, PortName.TestList may be empty. The syntax of
PortName.SetList is same as that of PortName.TestList. [statements;] refers to a block
of statements. These blocks are also called critical sections. There may exist more than
one list of (guard; PortName.TestList; PortName.SetList) {statements;}. The last line
with default is optional.
The semantics of await is defined only if guard’s are pure state predicates, i.e.

executing a guard should not change the value of any variable, nor generate any ob-
servable events . If this is not the case, the semantics is undefined. With each Port-
Name.TestList and PortName.SetList we associate a set of actions of other process de-
noted by [[PortName.TestList]] and [[PortName.SetList]] respectively. If PortName.TestList
is empty, then so is [[PortName.TestList]]. If PortName.TestList is the keyword all, then
[[PortName.TestList]] contains all the actions of all other processes. Finally, if Port-
Name.TestList is a list, [[PortName.TestList]] is the union of sets [[PortName.IfName]],
one for each element of the list. To determine [[PortName.IfName]], we first determine
the port [[PortName]] associated with PortName, as follows;

• if PortName is the keyword this and the object it appears in is a medium, then
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[[PortName]] is that medium, if PortName is the keyword this and the object it
appears in is a process, then [[PortName.IfName]] is empty,

• if PortName is a port name, then [[PortName]] the medium connected to that port.

Now, if IfName is the keyword all, then [[PortName.IfName]] contains calls to any
interface function of medium [[PortName]], on any interface, and IfName is an interface
name, then [[PortName.IfName]] is restricted to the functions in the interface IfName.
The set [[PortName.SetList]] is determined according to the same rules.

We say that a critical section is enabled if its guard is true, and no actions in
[[PortName.TestList]] are currently being executed. If an await statement has no enabled
critical sections, then it blocks until at least one becomes enabled. If some critical
sections are enabled, then one is chosen (non-deterministically) to begin its execution.
During this execution no actions in [[PortName.SetList]] can start.

3.3 boundedloop

Another important construct in the meta-model is boundedloop. It has following syntax:

Syntax 3.3.1

boundedloop(iterVar, iterCount) {
[statement;]

}

Its semantics is equivalent to:

for(iterVar=0; iterVar < iterCount; iterVar++) {
[statement;]

}

However, while the latter may iterate infinitely, boundedloop can be used (under
the user’s responsibility) only with a guarantee that the iteration stops within the spec-
ified steps. Such an explicit guarantee eases the analysis task for a compiler. Note that
iterVar cannot be modified by any of the statements inside the construct.

3.4 nondeterminism

Processes may have non-deterministic characteristics. Such non-determinism comes from
(1) incomplete specification (i.e. a system described in a relatively high level) or (2) frag-
mentary information, i.e. a system too complicated to describe completely. Modeling the
environment can be such an example. In the meta-model, an operator nondeterminism
is introduced to describe such non-deterministic behavior. Its syntax is:
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Syntax 3.4.1

data type nondeterminism(data type);

where nondeterminism(data type) can return any value of data type; and data type
can be of any supported primitive type in the meta-model. In the following example,

Example 3.4.1

tk = nondeterminism(int) % 2;

nondeterminism(int) can return any value of int type.

3.5 label

The meta-model supports labels. As in C, a label is an identifier followed by a colon,
and may appear anywhere in a method. Unlike C, the scope of a label is the whole class
where it appears, in order to make constraint specification easier. In addition, it is also
possible to attach a label to a block of statements. This is useful mostly for naming
the blocks of statements such as if , else, for and so on. It is done by using the block
construct:

Syntax 3.5.1

block(label) {
[type VarName;]
[statements;]

}

block(label) can precede any block of statements defined in Java, i.e. a contiguous
region of code that consists of statements, where the block is surrounded by { and }.
It only annotates the block so that constraints can refer to it. Of course, prefixing the
block with a label is semantically equivalent:

Example 3.5.1

l1: while (i < 3) block(l2) { ... }
l1: while (i < 3) l2: { ... }

l3: if (j < 3) block(l4) { ... } else block(l5) { ... }
l3: if (j < 3) l4: { ... } else l5: { ... }

label{@ ... @} is a general way to specify labeled statement(s). In addition, it is
more powerful than labels and blocks. It can label an expression inside a statement.
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For example,

Example 3.5.2

l1{@ while (i < 3) l2{@ ... @} @}
l1{@ while (l2 {@i < 3@}) { ... }@}
l1{@ i = l2{@i + 1 @} @}

3.6 blackbox

This construct is used to specify a section of code that is not analyzed by the meta-
model compiler. This is useful to insert texts such that their syntax or semantics is not
supported by the meta-model but the texts are meaningful to some Metropolis tools that
take the meta-model specification as input. For example, one may want to write a text
that can be printed on the display during a simulation of the meta-model specification
conducted by a SystemC-based Metropolis simulator. If the simulator has a feature that
it can execute SystemC code directly written in the meta-model, as far as it is specified
using the blackbox construct with ”SystemCSim” identifier, then one can write in the
meta-model:

blackbox(SystemCSim)%%
count¡¡”The write command executed at port0.”¡¡endl;

%%

Such a Java statement is not supported in the meta-model, but the simulator un-
derstands and executes it during the simulation. The syntax of the construct is the
following.

Syntax 3.6.1

blackbox( identifier)%% text %%

Here identifier is an arbitrary sequence of characters, and text is any text not in-
cluding %%. This construct can be placed anywhere in a file that corresponds to type
declaration, member declaration (i.e. methods and fields), or statements. As with the
constraint clause, the control flow points of the meta-model do not enter inside this
construct. Therefore, its semantics is undefined at the meta-model level; it is simply
provided as a convenient mechanism to provide tools with specific capabilities, as de-
fined by identifier , with data in their own format to be interpreted in specific positions
in the meta-model. Intuitively, it is analogous to allowing uninterpreted macros inside
the meta-model code, each annotated with its expansion in a given context such as sim-
ulation or synthesis. Right now, identifier can take “SystemCSim” and “elaborator” to
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include native codes for the SystemC-based simulator and the elaborator respectively.
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Chapter 4

Annotating and Restricting

Network Executions

This chapter describes meta-model mechanisms to annotate and restrict (i.e. declare
invalid) executions of a single network. Both annotation and restriction is necessary to
model design refinement. Annotations are typically used to represent cost of perform-
ing certain computations on a given architecture, e.g. delay or energy information. In
the metamodel, annotations are the responsibility of objects called quantity managers.
Models of architecture can include the cost information through annotation requests.
For example, to specify that certain operation o requires d time units to execute, we
would generate a request that the difference in time stamps between the beginning and
the end of o is exactly d. Quantity managers collect requests from all the processes and
try to satisfy them. If there is an event for which the annotation request cannot be
granted, that event needs to be prevented from occurring. In other words, the quantity
managers not only annotate events, but also determine which events should occur, i.e.
they schedule the execution of the model. That is why the collection of quantity man-
agers (and some other related objects) is called the scheduling network, and the system
model, which we so far have referred to just as network, is also sometimes referred to as
the scheduled network.

As explained earlier, the semantics of the scheduled network is described as a se-
quence of state transitions. In every state there is a set of enabled events and possibly
a set of annotation requests. Execution of the scheduling network, as described in the
following sections, determine which events should actually occur, and what their anno-
tations should be. In other words, execution of the scheduling network disables some of
the enabled events, and annotates the rest.

In addition to restricting network executions by scheduling networks, the meta-
model provides a declarative alternative. The user may use certain logic formulas over
sequences of state transitions to express constraints. In this way, a given sequence of
annotated state transitions is a legal behavior of a metamodel restriction if and only if:
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• it can be generated by the execution of the scheduled network restricted by the
scheduling network,

• it satisfies all the constraints specified by logic formulas.

In the rest of this section we explained both of these mechanisms in more detail.

4.1 Actions, Events and Event References

Actions are executions of the pieces of code in the scheduled network. We have already
mentioned that function calls to media through ports are observable actions, but the set
of all actions is much richer, and it includes each statement in the code of the scheduled
network.
With each action a we associate two events, a+ indicating the start of an execution

of a, and a− indicating the end. For each process P we define the set of events ΣP that
contains a+ and a− for each action a of P , and a special symbol P : nop, indicating
that no events are occurring in P . When no ambiguity can arise, we will abbreviate
P : nop to nop. Cross-product of all the sets of events in the system is called the set
of event vectors. Occasionally, we will treat an event vector σ = (σ1, . . . , σn) as the set
{σ1, . . . , σn}, and write expressions like σ2 ∈ σ. Two representations of σ are equivalent,
because ΣP ’s are disjoint, and we will make no notational distinction between them.
In several places in the meta-model, there is a need to refer to an event. This can be

done with an expression of type event. To specify such an expression, we use expressions
of types process, medium, and action, which we define next.
Expressions of type process are used to specify processes. Given some expression e

of type process, we use [[e]] to denote its semantic value, i.e. the process that it specifies.
An expression e of type process can be one of the following:

• within a process declaration, it can be the keyword this, in which case [[e]] is that
process,

• within a netlist declaration, it can be a process name defined in that scope, in
which case [[e]] is the process identified by that name,

• within a medium declaration, it can be a getnthconnectionsrc expression, in
which case [[e]] is the process that is the value of that expression,

• within a netlist declaration, it can be a getnthconnectionsrc or getcomponent
expression, in which case [[e]] is the process that is the value of that expression,

• within a method definition in a medium or a process it can be getthread() in
which case [[e]] is the process currently executing that code.

The semantic value of an expression e of type medium is a medium denoted by [[e]].
Such an expression can be one of the following:
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• within a process or a medium declaration, it can be a port name, in which case
[[e]] is the medium connected to that port,

• within a netlist declaration, it can be a medium name defined in that scope, in
which case [[e]] is the medium identified by that name,

• within a medium declaration, it can be a getnthconnectionsrc or getconnectiondest
expression, in which case [[e]] is the process that is the value of that expression,

• within a netlist declaration, it can be a getnthconnectionsrc, getconnectiondest
or getcomponent expression, in which case [[e]] is the process that is the value of
that expression.

Since connections can be made from a process to a medium or from a medium to another
medium, it is an error to use getnthconnectionsrc and getconnectiondest as an
expression of type process (respectively medium) identifier, if the object returned by
these two constructs is a medium (process). The same applies to getcomponent, which
could return a process or a medium in a netlist. This kind of error can be discovered
after netlist elaboration.
Expressions of type action are specified as follows:

Syntax 4.1.1

all

〈object〉.〈name〉

where all is a keyword, 〈object〉 is an expression of type process or medium, and
〈name〉 is either a label, or a function name. In either case, 〈name〉 must be in scope at
the declaration of the process or medium specified by 〈object〉.
The semantic value of an expression e of type action is a set of actions denoted by

[[e]]. If e is the keyword all, then [[e]] contains all the actions in the system. If e is of
the form 〈object〉.〈action〉, then its semantic value is determined as follows:

• if 〈action〉 is a function name, then [[〈object〉.〈action〉]] contains all the calls to the
function with that name that is a member of the object ( a process or a medium
) specified by 〈object〉,

• if 〈action〉 is a label name, then [[〈object〉.〈action〉]] contains all the statements or
blocks of statements labeled with 〈action〉 that appear in a member function of
the object specified by 〈object〉.

Event reference is an expression of type event, which can be specified as follows:

Syntax 4.1.2
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beg(〈process〉, 〈action〉)
end(〈process〉, 〈action〉)
none(〈process〉)
other(〈process〉)

where 〈process〉 is an expression of type process, or the keyword all, and 〈action〉
is an expression of type action.

If 〈process〉 is the keyword all, then the semantic value of an event reference
beg(〈process〉, 〈action〉) is the set of beginnings of all actions in [[〈action〉]], and the se-
mantic value of end(〈process〉, 〈action〉) is the set of endings of all actions in [[〈action〉]].
If 〈process〉 is an expression of type process, then these sets of events are restricted to
events executed by the process [[〈process〉]].

If 〈process〉 is the keyword all, then the semantic value of none(〈process〉) is the
set containing events P : nop for all processes P . If 〈process〉 specifies a single process
P , then the semantic value of none(〈process〉) is the singleton {P : nop}. Finally,
the semantic value of other(〈process〉) contains all events of process(es) specified by
〈process〉, that cannot be specified by any of the other three constructs (i.e. all events
associated with actions that are not function calls or labeled statements or blocks).

We say that event references beg(〈process〉, 〈action〉), and end(〈process〉, 〈action〉)
are scoped if neither 〈process〉 nor 〈action〉 are the keyword all. With each scoped event
reference we associate the set Scope which contains names of all the variables that are
in the scope when the corresponding events occur.

More precisely, if 〈action〉 is a statement label, then Scope(beg(〈process〉, 〈object〉.〈action〉))
and Scope(end(〈process〉, 〈object〉.〈action〉)) are the same, and they contain the names
of all variables that are in the scope at that point of code.

If 〈action〉 is a block label, then Scope(beg〈process〉, 〈object〉.〈action〉)) contains names
of all the variables that are in scope just after the left brace starting the block (excluding
thus any variable defined inside the block), and Scope(end(〈process〉, 〈object〉.〈action〉))
contains names of all the variables that are in scope just before the right brace ending
the block.

If 〈action〉 is a function name, then Scope(beg(〈process〉, 〈object〉.〈action〉)) contains
the names of all variables that are in scope just after the left brace starting the func-
tion body (including thus all the formal arguments from its declaration, but excluding
any variable declared inside the body), Scope(end(〈process〉, 〈object〉.〈action〉)) contains
names of all the variables that are in scope just before the right brace ending the function
body, and the keyword retval, which is used as a name for the state variable containing
the return value of the function.

In general, there may be more than one state variable with the same name. In
particular, return value of all the functions are named retval. However, since a given
scoped reference (say r) determines a unique code location executed by a unique process,
there is a straightforward mapping from names in Scope(r) to state variables.
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4.2 Annotations with quantities

To specify performance constraints in the meta-model, behaviors must first be annotated
with a quantity, such as time, power, or Quality of Service. In the meta-model, such
annotations are defined with a concept called quantity. Each quantity has an associated
type, for example, double for time. In the meta-model, for each quantity there is
an object called a quantity manager that is responsible for assigning annotations to
events. Code executed by a process can make a request for a specific annotations. For
example, to model that the delay between two events e1 and e2 is 10, the process makes
a request that a time-stamp of e2 must be equal to the time-stamp of e1 plus 10. It is
the responsibility of a quantity manager to collect all requests and satisfy them. If a
request cannot be satisfied, the manager must disable the event for which that request
was made. For example, if one process wants to execute event e1 and request for it
time-stamp 10, and the other process wants to execute e2 with time-stamp 20, time
manager must set the current time to 10, let e1 occur, and disable e2.
In the meta-model, all the objects related to quantities are grouped in a separate

network called the scheduling network. In the rest of this section we describe the struc-
ture of the scheduling network, the way it executes, and the objects it contains: quantity
managers, statemedia (communication channels between processes and quantity man-
agers), and requests (messages between processes and quantity managers).

4.3 Scheduling network

By default, the scheduling network consists of:

• a statemedium for each process in the scheduled network,

• a manager for each quantity in the scope, where a quantity is in the scope if:

– it is defined in the netlist

– it is passed as argument in the netlist constructor

• any additional user-defined processes and media (You may ignore this for now. It
is explained in Section 4.3.5.)

While these objects are defined by default, it is the user’s responsibility to interconnect
them.
In contrast to ordinary (“scheduled”) networks, scheduling networks have some

methods associated with them. Who calls these methods and when, is described in
Section 4.3.4, but for now we only describe the functions themselves.
Boolean function ifTop() returns true if and only if that network is at the top level,

i.e. it is not contained in any other scheduling network. The user should not redefine it.
The default function resolve() of type void recursively calls the resolve() func-

tion of all the subnetworks. The user may redefine it. One typical way to redefine it
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is to keep calling the resolve() function of all quantity managers in its scope until a
fixed point is reached.

The default function postcond() of type void recursively calls the postcond()

function of all the subnetworks. The user may redefine it.

4.3.1 Statemedia

Each process in the scheduled network has a representative in the scheduling network.
This representative is an object of type statemedium. The primary purpose of stateme-
dia is to exchange information between processes in the scheduled netlist and quantity
managers in the scheduling netlist. Through statemedia, processes can request anno-
tations for their enabled events. Quantity managers can examine which events are
enabled and which requests are made, and they disable events by calling setMustDo or
setMustNotDo.

The function eval process getProcess(); returns the process associated with the
statemedium.

The functions:

eval int getNumEnabledEvents();

eval event getEnabledEvent(int i);

eval event getMustDo();

eval ArrayList getCanDo();

let the quantity managers examine currently enabled events of the process associated
with the statemedium. Function getCanDo returns an array of enabled events. The
user can examine the array element by element, or equivalently, she can use functions
getNumEnabledEvents and getEnabledEvent to iterate over enabled events. If there is
a unique enabled event, function getMustDo returns it. Otherwise, it returns NULL.

Once an enabled event is accessed it can be stored in a variable, but its status
may change. To check if an event is still enabled, the user may call eval boolean

isEventEnabled(event e);

Finally, the quantity managers may change the status of event by calling update

boolean setMustDo(event e); which disables all events but e, or by calling update

boolean setMustNotDo(event e); which disables e.

4.3.2 Quantity managers

Quantity managers implement a function called A, which is used to refer to annotations.
The type of A is the type of annotation. This function takes two arguments: e of type
event, and i of type int. Intuitively, Q.A(e,i) denotes the value of Q annotation for
the i-th occurrence of event e. In an executable piece of code (e.g. making a request
is executable code, but a constraint is not) it is legal to substitute i with the keyword
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LAST. The value of LAST is basically the number of occurrences of event e up to that
point in the execution.
The user may or may not define A. Typically, it is defined only after the design is

mapped to a particular platform. The user must ensure that A is not used in constraints,
or otherwise, if it is not defined.
The process may request a particular annotation for an enabled event. The statemedium

is the first to receive the request (exactly how will be described in the following sections).
The statemedium should forward the request to the appropriate quantity manager by
calling:
eval void request(event e, RequestClass rc);

which the designer of the quantity manager should define.
RequestClass is a container used to package requests for various quantity managers.

With each quantity manager, there should be one or more associated sub-classes of this
class that correspond to various types of requests. Some examples might be:

• a request for a specific value,

• a request that specifies minimum and maximum acceptable values,

• a request for an annotation that is the same as the annotation of some other event,

• a request that does not specify a particular value, but specifies a priority level.

A quantity manager designer also needs to define functions update void resolve();

and update void postcond();. Typically, in the resolve, a quantity manager looks
at the pending requests, and decides if they can or cannot be granted. If the request
cannot be granted, the managers disables the corresponding events. For example, if
several events request a time-stamp, the time manager must set the current time to the
lowest of all requests, and it must disable all the events requesting a higher time-stamp.
Repeatedly calling the resolve function of all the quantity managers will decrease

the number of enabled events. Eventually, there will be a single enabled event for
each process. The details of how we get to this point are described in Section 3.1. At
this point, the vector of events that will occur has been set, and the quantity man-
agers can assign annotations to these events. This is the primary use of the function
update void postcond();, which the quantity manager designer should define. Other
typical uses of this function is to clean-up data used in the resolution process.
Since, many managers need to cooperate in selecting an event vector that can be

annotated consistently with all made requests, the function resolve is often called many
times. If during a particular call, the quantity manager disables some event, or makes
some annotation, then a subsequent call to function eval boolean stable() returns
false, and otherwise it returns true. In other words, stable is useful to decide if the
resolution process has converged, i.e. it has reached the point at which further calls to
resolve will not change enabled events. Currently, the user must define stable, but in
the future it may be provided by default.
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As a part of a definition of a new quantity, the user may specify some axioms, i.e.
properties that corresponding annotations must always satisfy. Axioms are specified
with a constraint{} construct that may contain LOC and ELOC formulas.

The meta-model provides a pre-defined integer-valued quantity called global execu-
tion index, denoted with GXI. For a given sequence of event vectors v1, v2, . . ., the value
of GXI for all events in the vector vi is i. Informally, and event has GXI annotation of i,
if it occurs in the i-th “step” of system execution.

4.3.3 Annotation requests

Code executed by a process can have inserts with the following syntax:

{$
[ beg{ 〈begin code〉 }]
[ end{ 〈end code〉 }]
$}

By their position in the code, these inserts are always associated with an action. More
precisely, 〈begin code〉 is associated with the beginning of that action, and 〈end code〉 is
associated with its end. These two pieces of code are also called request making code, or
RM code for short. The primary purpose of RM code is to generate an annotation request
for the event it is associated with. To do so, it typically involves some computation, and
then a call to the request function of some quantity manager.

For example in the following code fragment:

while(j>0){

labela{@

{$

end{

currentTime=pgt.A(beg(getthread(), this.labela), LAST);

pgt.request(end(getthread(), this.labela),

new GlobalTimeRequestClass(currentTime+cycle));

}

$}

j--;

@}

blackbox(SystemCSim) %%

cout<<"In process "<<(pc->p->name())<<": cycle="<<cycle<<" j="<<j<<endl;

cout<<"GlobalTime @ beg ="<<currentTime<<endl;

cout<<"GlobalTime @ end ="<<currentTime+cycle<<endl;

%%

}
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the RM code is associated with the block with label labela. It makes a request for the
difference in time stamps between beginning and the end of execution of the the block
labela to be exactly cycle time units.
The RM code must be written in a way that no two pieces of RM code interfere,

i.e. interleaving their execution in an arbitrary way should not change the requests that
they make. It is the user’s responsibility to satisfy this requirement. If it is not satisfied,
the semantics of the scheduling network is not defined.
We give precise rules for execution of RM in the next section.

4.3.4 Scheduling network execution

The scheduling network is executed each time the scheduled network reaches a state
in which it is about to execute an event for which there is an associated RM code. A
scheduling network consists of the following stages:

1. request making: In this phase RM codes of all enabled events are executed.
This typically generates request for annotation of enabled events.

2. negotiation: In this phase, the top function of the topmost scheduling netlist
is executed. This will typically result in iterative calling of resolve functions of
quantity managers.

3. selection: In this phase, the number of enabled events is reduced to one per
process. No code that a user can modify is executed in this phase. In practical
terms, the simulator looks at all enabled events, looks at all the active constraints,
and selects a vector of enabled events that is consistent with constraints.

4. annotation: In this phase the postcond function of the topmost scheduling netlist
is executed. This typically results in calling postcond functions of all quantity
managers, which in turn results in making the annotation and doing any clean-up
that may be required.

4.3.5 Recursive scheduling network

Scheduling networks can be extended by media and process. Quantity managers and
statemedia can be extended with additional ports and these ports can be connected to
additional media. We require strict layering: media and processes that can be reached
through ports of quantity managers and statemedia must be distinct from media and
processes in the scheduled network. Therefore, these extra media and processes form a
lower-layer scheduled network. This lower-layer scheduled network can have a scheduling
network of its own, but again, we require that quantities in this lower-layer scheduling
network are distinct from the quantities in the higher-layer scheduling network. This
layering can extend to any level of depth. The execution rules for these networks remain
essentially the same, except that for the negotiation (respectively annotation) phase
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to terminate, its is not sufficient for topmost top (respectively postcond) function to
terminate, but also the network of processes and media at that level must reach a steady
state, i.e. a state in which all processes are blocked in await statements.

4.4 Constraints

Constraints in the meta-model can generally be divided into two classes: coordination
constraints, and performance constraints. Coordination constraints are used to rule
out certain sequences of event vectors that would otherwise be legal according to the
execution semantics. Thus it is a quick and convenient way to restrict concurrency,
possibly to model restrictions of the intended implementation platform. This effect
can be obtained using schedulers, but we also provide an alternative way, using linear
temporal logic (LTL). LTL [5] is a well known and well studied logic used to reason about
behaviors of concurrent systems. We do not change any of the standard LTL definitions.
However, to integrate it into the meta-model, we have to define precisely the notion of
atomic formulas which are usually dealt with quite abstractly in the classical literature.

Performance constraints deal with quantities like time and power, that are usually
known only at later stages of the design, when many implementation decisions have
been made. To describe such attributes, the meta-model provides a special class called
Quantity. To specify performance constraints, the meta-model uses logic of constraints
(LOC). LOC formulas are used to specify constraints that a design must meet, but
in addition to these constraints, the meta-model also enables expressing properties or
quantities that hold always, and not just for a specific design (e.g. time cannot decrease).
These properties are called axioms of a property. To express them, the meta-model uses
a generalization of LOC called extended logic of constraints (ELOC).

Formulas of various logics are specified in the meta-model as follows:

Syntax 4.4.1

ltl 〈name〉(〈args〉) 〈ltl-wff〉;
loc 〈name〉(〈args〉) 〈loc-wff〉;
eloc 〈name〉(〈args〉) 〈eloc-wff〉;

where 〈ltl-wff〉, 〈loc-wff〉 and 〈eloc-wff〉 are well-formed formulas, to be defined shortly.
If the formula appears inside a constraint{} construct, then 〈name〉 and arguments
must be omitted. Only these formulas define actual constraints. Named formulas defined
outside a constraint{}, provide a convenient way for constraints to share sub-formulas,
increasing thus readability, re-usability and compactness of the code (but not its expres-
sive power). All variables appearing in well-formed formulas must be in scope of their
declaration. The scope of variables appearing in the argument list is the well-formed
formula following it. In addition to standard meta-model types, arguments can also be
of type event and action, defined in the next section.
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In the subsequent sections, we define syntax and semantics of well-formed formulas
of the three logics. We start by defining the part that they all share.

4.4.1 Meta-model LTL syntax

Well-formed LTL formulas 〈ltl-wff〉 can be one of the following:

1. an event reference, as described in Section 4.1,

2. an expression of type bool involving member variables and functions of type eval
of the object in which the formula appears,

3. an expression of the form 〈eventRef〉=>〈localExpr〉 where 〈eventRef〉 is a scoped
event reference, and 〈localExpr〉, is an expression that may involve variables in
Scope(〈eventRef〉) in addition to variables and functions mentioned in the previous
item,

4. an expression of the form 〈name〉(〈args〉), where 〈name〉 is the name of a previously
defined LTL formula (as usual, the number and type of arguments must match
the declaration)

5. expressions of the form F f , G f , X f , f U g, (f), !f , f&&g, f ||g, f -> g, and f
<-> g, where f and g are well-formed LTL formulas

The first three items above are meta-model specific. They define formulas that
correspond to atomic propositions in the classical definition. The fourth item provides
a simple way to re-use parameterized formulas, and the fifth item defines the standard
way of building up LTL formulas from atomic propositions.

4.4.2 Meta-model LTL semantics

Given a meta-model netlist, and its execution:

s0
σ1−→ s1

σ2−→ . . .
σi−→ si

σi+1
−−−→ . . . ,

we interpret LTL formulas over the sequence:

(s0, σ1), (s1, σ2), . . . , (si, σi+1), . . . .

If α is such a sequence, then we say that:

1. α satisfies an event reference r if one of the events in [[r]] appears in σ1,

2. α satisfies a meta-model expression e if s0 is in True(e), (where True is defined
as in Section 3.2),
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3. α satisfies an expression of the form r=>e, where r is a scoped event reference and
e is an expression, if either no events in [[r]] appears in σ1, or if s0 is in True(e),

4. if f a name of some LTL formula, and y1, . . . , yn are variables appearing in the
argument lists of the definition of f , then α satisfies f(x1, . . . , xn), if it satisfies
the formula obtained from the definition of f by substituting yi with xi, for all
i = 1, . . . , n,

5. α satisfies other types of LTL formulas as in the standard definition [5].

4.4.3 Meta-model LOC and ELOC Syntax

In the meta-model, the syntactic elements of LOC and ELOC are defined as follows:

Annotations: For each quantity and variable name (including retval) in a given
netlist, we create an LOC annotation. Syntactically, we use F.A(〈e〉, 〈t〉) to
represent f(e[τ ]), where F is quantity or variable name that corresponds to anno-
tation f , 〈e〉 is a reference to e, and 〈t〉 is a meta-model integer expression that
corresponds to τ .

Event names: The set of event names is exactly the set of scoped event references
described in Section 4.1.

Algebra: LOC and ELOC are defined relative to a multi-sorted algebra given by the
type system, including both built-in and user-defined types.

Terms: The type system also defines all the operators and relations, i.e. any expression
allowed by the type system is a legal term.

Well-formed formula: An ELOC well-formed formula can be one of the following:

• a term of type bool

• an expression of the form 〈name〉(〈args〉), where 〈name〉 is the name of a pre-
viously defined ELOC formula (as usual, the number and type of arguments
must match the declaration),

• an expression of the form forall(〈args〉)f or exists(〈args〉) f , where f is an
ELOC well-formed formula, and 〈args〉 is a list of arguments as in function
declaration,

• an expression of the form !f , f||g, f&&g, f->g, or f<->g, where f and g are
ELOC well-formed formulas.

LOC well-formed formulas are ELOC well-formed formulas that do not contain
any quantifiers, either directly, or indirectly, through calls to previously defined
ELOC formulas.
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Formulas: An ELOC formula is an ELOC well-formed formula in which every variable
is in scope in one of the following ways:

• the formula is named, and the variable appears in the argument list associated
with the name,

• the formula is in scope of a quantifier, and the variable appears in the argu-
ment list of the quantifier.

LOC formulas are un-named ELOC formulas of the form:

forall(int 〈var〉)〈wff〉 ,

where 〈var〉 is an arbitrary variable name (not necessarily i), and 〈wff〉 is an LOC
well-formed formula.

Notice that there is no way to refer to the value of events, only their annotation. This is
because, we do not define any value for events in the meta-model, and store all relevant
information in the annotations.
For example, if in some network contains producer processes P0, P1, P2, P3 and

consumer processes C0, C1, all of type IntX, and Rd and Wr are labels inside IntX

marking the reading and writing of some token, then the latency constraint on time
between a token is produced (written) and consumed (read) can be specified as follows:

loc latency(IntX p, IntX r, int C)

GTime.A(end(r, r.Rd), i) - GTime.A(beg(p, p.Wr), i) < C;

constraint {

loc latency(P0, C0, 10);

loc latency(P1, C0, 10);

loc latency(P2, C1, 10);

loc latency(P3, C1, 10);

}

4.4.4 Meta-model semantics of LOC and ELOC

Meta-model executions, as defined in Chapter 3, together with defined quantities, con-
tain all the information needed to evaluate LOC and ELOC formulas. However, we
still need to put this information in a form consistent with the definition of annotated
behaviors.
To do this, we first define a transformation from sequences of event vectors (as

defined by the execution semantics) to annotated behaviors. Since the meta-model
does not use event values, we omit defining value in basic behaviors, and focus on
defining annotations, which corresponds quantity and variable names. In general we
will use X to denote the annotation associated with the quantity or variable name X.
We introduce the slight difference in fonts to maintain the consistent use of fonts for
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meta-model constructs on one side, and LOC concepts on the other. However, the
distinction between annotations and quantity and variable names is better inferred from
the context, rather than the difference in fonts.

The semantics of LOC require that values and annotations be defined for the n-
th occurrence of any event, where n can be arbitrary large. On the other hand, in a
behavior of a netlist, a particular event may occur only a finite number of times, even
if the behavior is infinite. To bridge this difference, we add the special symbol ⊥ to
value domains of all types, as well as the value domain of LOC and ELOC formulas (i.e.
the value domain of formulas is now {true, false,⊥}). Intuitively, this symbol indicates
that a formula or a term has undefined value.

Now, we can define annotations for all quantity and variable names. Given an event
e, integer n, and a meta-model netlist execution:

s0
σ1−→ s1

σ2−→ . . .
σi−→ si

σi+1
−−−→ . . . (4.1)

we first set GXI(e, n) to be i such that e occurs in σi for the n’th time. More formally:

GXI(e, n) =

{

i s.t. e ∈ σi and |{j ≤ i|e ∈ σj}| = n if such i exists,
⊥ otherwise.

Given event e, integer n, execution (4.1), quantity name Q, and variable name X, we
define annotations Q and X as follows:

Q(e, n) =

{

the value of Q.A(e,n) if Q.A is defined and GXI(e, n) 6= ⊥
⊥ otherwise.

X(e, n) =

{

the value of X in state sGXI(e,n)−1 if X ∈ Scope(e) and GXI(e, n) 6= ⊥

⊥ otherwise.

To deal with the new “undefined value” ⊥, we add the following semantic rules for
determining a value of a formula:

• evaluating any operator, except &&, ||, -> and <-> gives ⊥ if any of the operands
have value ⊥; the rule for the remaining four operators are given in Table 4.1

• the value of exists(〈args〉) 〈wff〉 is:

– true, if there exists an assignment of values to the variables in list 〈args〉 such
that the value of 〈wff〉 is true,

– false, if the value of 〈wff〉 is false for all assignments to variables in list
〈args〉,

– ⊥, otherwise,

• the value of forall(〈args〉) 〈wff〉 is:

50 CHAPTER 4 Annotating and Restricting Network Executions



Relating Executions of Networks

Table 4.1: Extensions of Boolean operators to ⊥.
x y x&&y x||y x->y x<->y

true ⊥ ⊥ true ⊥ ⊥
false ⊥ false ⊥ true ⊥
⊥ true ⊥ true true ⊥
⊥ false false ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

– true, if the value of 〈wff〉 is false for all assignments to variables in list 〈args〉,

– false, if there exists an assignment of values to the variables in list 〈args〉
such that the value of 〈wff〉 is true,

– ⊥, otherwise,

Finally, we say that execution (4.1) satisfies ELOC formula φ, if the value of φ at (4.1)
is not false.

4.5 Relating Executions of Networks

This section describes meta-model mechanisms to relate executions of two networks.
The ability to do so is crucial to keeping functional and architectural models orthogonal,
because then they can execute simultaneously due to the relations. This resembles the
functional model being implemented or mapped to the architectural model.
In the meta-model, the relation is specified at event level by using ltl synch con-

straints. Its syntax is

ltl synch (e1, e2, ..., en [: v1@(e1,i)==v2@(e2,i), ...]);

or

ltl synch (e11 || e12 || ... || e1n => e21 || e22 || e2m

[: v1@(e11,i)==v2@(e21,i), ...]);

In the first syntax, it says that all events from e1 to en must execute simultane-
ously, or none of them can execute. If the optional equality comparison part is given,
additional conditions must also be satisfied in order to let all events execute. These
conditions are specified by the equality comparison result made on two variables in the
scope of two events respectively. This synch syntax can be used to model a group of
simultaneous events, such as is often the case when a functional event is mapped to an
architectural event. For example,

ltl synch (e1, e2 : b@(e1,i) == a@(e2,i));

This relation requires that the variable b in the scope of event e1 must be equal to
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the variable a in the scope of event e2; at the same time, e1 and e2 must be enabled.
If both conditions are satisfied, then these two events can occur simultaneously. In the
equality comparison parts, the variable i is the global execution index. In synch, it
should always be i, which means the current occurrence of the event.
Comparing with the first syntax, the second synch syntax offers more expressive

power in specifying event relations. Now, it is not necessary that all events appearing
in synch must execute simultaneously. The condition relaxes to that if any event on the
left hand side executes, at least one event on the right hand side must execute. This
event occurrence implication is usually used to model multiple functional events being
mapped to a single architectural event, for instance the architecture provides a shared
resource that will be used by more than one function. The semantics of the variable
comparison part are the same as in the previous synch syntax, except that if an event is
already disabled, then the equality comparisons involving variables in the scope of that
event are considered satisfied. For example, in
ltl synch (e1 || e2 => e3 : b@(e1,i) == a@(e3,i), b@(e2,i) == a@(e3,i));
The following occurrence of events are all consistent with the semantics.

e1 e2 e3 b@(e1,i) == a@(e3,i) b@(e2,i) == a@(e3,i)

T T T T T

T F T T -

F T T - T

F F T - -

F F F - -

In addition to relating events from functional and architectural networks, sometimes
it is necessary to pass values from one side to the other in order to capture more precisely
the system behavior. For example, the execution time of a hardware divider depends
on the operands. In this case, it is desirable to pass operands to the divider. In order
to achieve that, the metamodel provides a non-deterministic variable approach.
In the metamodel.lang package, there is a class called Nondet. It provides a mecha-

nism to model a variable that could have nondeterministic values. The following is its
definition.1

public class Nondet extends Object {

int data;

boolean nondet;

public Nondet();

public Nondet(int i);

public void set(int i);

public void setAny();

1Ideally, Nondet should be defined with template type data, not hard coded with integer type data.
However, since the limitation of the current backend tools, we keep this temporarily.
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public int get();

public boolean isNondet();

}

When a variable, say a, in the equality comparison part is defined as Nondet, the se-
mantics of the equality comparison part becomes different. Instead of simply comparing
the two variables, it will first check whether a.isNondet() returns true. If so, and the
other variable, b, is either a regular variable or a Nondet variable but b.isNondet() is
false, then the value of b (or b.get()) will be passed to variable a by calling a.set(b) (or
a.set(b.get())). Note that in the expression v@(e,i), v could be not only a variable but
also a constant, such as 123@(e,i).
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Chapter 5

The Compilation

5.1 The Metropolis Infrastructure

The overall Metropolis infrastructure is shown in figure 5.1. It captures the Metropolis
design methodology and tool infrastructure. For Metropolis design methodology and
design guidelines, please refer to the document [4]. In this chapter, the focus will be put
on the Metropolis tool infrastructure.

5.2 Compilation Flow

The Metropolis compilation flow starts from the user’s design entry, which is written in
Metropolis Metamodel language. See figure 5.2. The design entry is then passed to the
Metropolis compiler frontend to perform syntax checking and semantics checking, and
at the same time, generate abstract syntax tree (AST), the internal data representation.
Then, based on user’s need, one or more backend tools can be invoked. During the
execution of the different tools, the AST is decorated or modified for later analysis
purposes, such as simulation and verification.

The different steps described above can be invoked automatically by script commands
provided by Metropolis. Right now, there are such script commands for metamodel file
compilation (metacomp) and systemc based simulation (systemc). An equivalent but
interactive way to perform the function of these scripts is to use the Metropolis shell
(metroshell). With metroshell, users can invoke each step interactively, examine the
result of each step, and have more freedom to invoke different backend tools without
going through the compilation and possibly elaboration phase, etc.

In the following sections, we will introduce each of the key components in the com-
pilation flow.
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Metropolis Infrastructure

Synthesis:

− refinement synthesis
− scheduler synthesis

Verification:
− property verification
− architecture verification

Metropolis Tools

Simulation:
− C++, Java, SystemC, ..
− Non−deterministic
− ... − ... − ...

Function
Specification

Design
Constraints

Architecture
Specification

Base tools

− elaborator

Metropolis meta−model

− meta−model parser

Reused
DesignsLibraries

Figure 5.1: The Metropolis Infrastructure
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Figure 5.2: Metropolis Compilation Flow

5.3 The Frontend

The Metropolis frontend is in charge of syntax checking, template elimination and meta-
model semantics checking. Portions of the code in the compiler frontend were derived
from sources developed under the auspices of the Ptolemy II project. In the Metropolis
frontend, there are several passes:

• Pass 0: Package resolution

– Initialize the environments for semantic analysis (Scope, Decl)

– Resolve import statements

– Resolve type names

– Additional classes might be loaded during this pass

• Pass 1: Class resolution

– Add class members (fields, methods, ports, parameters) to the environments

– Add inherited members to the environments

– Additional classes might be loaded during this pass

CHAPTER 5 The Compilation 57



SECTION 5.4

• Pass 2: Template elimination

– Locate all instantiations of templates in the source file. Identify the set of
type instantiations of each template.

– For each template and each type instantiation of the template, generate an
”instantiated template” class file.

– Replace all references to the template by references to the ”instantiated tem-
plate” class.

– Of course, ”instantiated template” class must be loaded and undergo at least
pass 0 and pass 1.

• Pass 3: Name resolution

– Resolve references to local variables, parameters and labels

– Resolve references to class members (fields, methods)

• Pass 4: Meta-model checks

– Check that the program is valid. At this point, we have enough information
to proceed to the back-end. This pass can be time-consuming, and so it
should be optional. It should be possible to skip this pass using compiler
flags.

– Perform thorough type-checking of all statements, expressions and variable
initializations. This includes type-checking of meta-model constructs like
await, non-determinism, pc, beg, etc.

– Perform non type-related checks of meta-model statements.

For more information about each pass, please refer to the detailed description file
metro/src/metropolis/metamodel/VISITORS.txt.

5.4 Abstract Syntax Tree

The abstract syntax tree (AST) is the standard way to represent programs in compiler
technology. In the metamodel compiler, the AST is also used to represent the meta-
model design entries. During compilation, the frontend will generate an AST for each
metamodel file. Each node in the AST corresponds to a particular language construct.
It could be a keyword, an operator, a user defined name such as a process name or
variable name, or a higher-level construct such as an if-else structure.

Each node in the AST has the following attributes:

• an identifier of this class of nodes
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• a list with a fixed number of children, e.g. a metamodel process declaration node
will have children representing its modifiers, name, super process name and its
body.

• a list of annotations, e.g. again a metamodel process declaration node will have
annotations of its package, its own properties and a list of its members.

To make the manipulation of AST easy, a set of functions are defined. The basic
operations that can be performed on an AST node include

• Retrieve its parent – getParent()

• Retrieve a child – getChild(index)

• Replace a child – setChild(index, val)

• Set/get methods for each child – e.g. getName()/ setName(val)

• Get the unique ID of the class – classID()

• Get a copy of a subtree – clone()

• Traverse the AST – accept(visitor, args)

The operations that can be used to decorate an AST node include

• Annotate the node – setProperty(index, val)

• Read an annotation – getProperty(index)

• Check existence of an annotation – hasProperty(index)

• Remove an annotation – removeProperty(index)

The Metropolis compiler (metacomp) can take a -dumpast argument, with which
a textual view of the AST will be printed out to standard output. This is especially
helpful to backend tool developers for understanding the program and AST structure.
Note: AST nodes are defined in file metro/src/metropolis/metamodel/NodeTypes.def.

The corresponding Javadoc description is at metro/doc/codeDoc.

5.5 The Backend

Once the design entry goes through the frontend and the AST is generated, based on
user’s need, one or more backend tools can be invoked. Backend tools have a standard
interface. Every one of them takes an AST and specific switches as input. They usually
perform analysis first on the AST, and then output data of another sort in order to do
analysis. For instance, the SystemC-based simulator will traverse the AST to collect the
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built-in synchronization constraints (await and interface interactions) and user-specified
explicit constraints (synch statements), and then optimize away unnecessary ones. This
optimization result is annotated to the AST. In a later simulation code generation step,
the backend tool will output optimized SystemC code.
For more details about how to develop a new backend tool or the description of

existing Metropolis backend tools, please refer to the next section.

5.6 The Metropolis Interactive Shell

Metropolis shell (metroshell) gives users a textual interface to interact with the Metropo-
lis compiler. With it, users can have finer control of the compilation process. Based on
the need, they can invoke the compiler frontend and any other backend tools whenever
they want. This is especially helpful to examine the result after applying an individual
tool. For instance, there is a backend tool called elaborator. It will extract the sys-
tem structure of the design entry. With metroshell, a user can invoke elaborator after
feeding the design entry into the frontend. Then, the elaboration result is available for
examination. This is very helpful when the system becomes very big or involves many
refinements.
In the following, let us show the basic usage of metroshell by using the example

in metro/examples/producers consumer. Remember that whenever you need, you can
type ’help’ in metroshell to get help messages.

• Invoke metroshell
> metroshell ←↩

"$JAVAHOME/bin/java" -Xms1g -Xmx1g

-classpath "/users/berkeley/metro/src:/users/berkeley/metro/lib/ptjacl.jar::"

metropolis.metamodel.shell.Shell

-classpath "/users/berkeley/metro/lib"

/------------------------------------------------------------------------\

| Metropolis: Design Environment for Heterogeneous Systems |

| |

| Copyright (c) 1998-2004 The Regents of the University of California. |

| All rights reserved |

\------------------------------------------------------------------------/

New to Metropolis? Type ’help’ for information on the available commands.

<> Loaded script ’/users/berkeley/.metroshrc’
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metropolis> _

• Set up classpath
The classpath is used by the compiler frontend to look for user specified packages.
It should include the parent directory of the user’s top level package. In this
example, classpath should have /users/berkeley/metro/examples in it. There are
several ways to set up classpath.

– In metroshell
metropolis> classpath show ←↩

1 dirs in classpath

/users/berkeley/metro/lib

metropolis> classpath add /users/berkeley/metro/examples ←↩

Added ’/users/berkeley/metro/examples’ to classpath.

– In environment variable METRO CLASSPATH
This environment variable should be set before invoking metroshell. It is a
convenient way to specify classpath if metroshell will be run many times.

– In metroshell script file
Every time metroshell is invoked, it will look in the user’s home directory for
a metroshell script file called ’.metroshrc’. If there is one, then it will execute
it as if the commands in the file had been typed in by the user. Obviously,
the user can add classpath into the script file.

• Read in user’s design
metropolis> metroload pkg -semantics producers consumer ←↩
This command loads the user’s package (pkg) producers consumer into memory
and performs semantics checks. If the design passes the checks of the frontend,
nothing will be printed out after issuing this command, otherwise, the user will
see error messages. Instead of loading in a package, there are other options like
loading a class or a file. The user can also choose to perform checks other than
semantics check. Please use help to find out more.

• Elaborate the design
metropolis> elaborate producers consumer.IwIr ←↩

Choosing a temporary directory...

Finding java compiler and interpreter...

Generating Java elaboration code...
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Compiling elaboration code...

Running elaboration code...

In this command, the argument after elaborate is the top level netlist name.
It must be a fully qualified name. After issuing this command, the elaboration
backend is invoked. The response reflects the internal steps run by the elaborator.
For details, please read the next section.

• Examine the system structure
metropolis> network show ←↩

Top-level netlist:

netlist producers_consumer.IwIr {

o Instance name: top_level_netlist

o Component name:

o Components:

- MEDIUM (instance name: InstIntM)

- DummyReader (instance name: DummyR)

- DummyWriter (instance name: DummyW)

- Producer0 (instance name: Producer0)

- Producer1 (instance name: Producer1)

- Consumer (instance name: Consumer)

o Not refined by a netlist

o Does not refine any node

o No constraints

}

After elaboration, the system structure is available. Issuing network show lists
the components of the top level netlist. Recall that each component has one
component name in each netlist and only one instance name. The names listed
under ’Components:’ are component names in the current netlist, and the names in
parentheses are instance names. The user can use the same command to examine
individual components by giving instance names, e.g. network show InstIntM.

• Simulate the design
metropolis> simulate systemc ←↩

Generating SystemC code...

We choose to do SystemC-based simulation. After entering this command, the
special makefile ’systemc sim.mk’ is generated. Note that the user can also give
the top level netlist after simulate systemc, in which case the SystemC backend
will automatically invoke the elaborator.
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Now, we can compile and run the SystemC simulation code in either a regular
shell or within metroshell using exec command. e.g.
metropolis> exec make -f systemc sim.mk ←↩
Once the compilation finishes, we can run the executable, which is by default called
’run.x’.
metropolis> exec run.x ←↩
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The Backends

6.1 Write a Backend Tool

The Metropolis tool infrastructure is open. It allows adding backend tools easily into
the infrastructure by using the standard interface and by following the six steps below.

• Write a class that implements the Backend interface
The Backend interface defines a single abstract function invoke(). This function
takes two arguments. One is a list of ASTs, the other is a list of arguments that
are passed from the metamodel frontend.

• Write the method invoke in that class
The abstract function invoke must be implemented. It is the starting point of
executing the backend tool. It needs to define what the arguments mean, and also
control the execution of the backend.

• Write visitors to traverse the ASTs
Visitor functions must be defined for the kinds of AST nodes that this backend
tool is interested in. In case no visitor functions are defined for some kinds of AST
nodes, the default visitors provided for them do nothing.

• Add flags to the compiler command-line
After having the backend implemented, it must be linked into the Metropolis
infrastructure. The compiler frontend needs to know the existence of this backend
and set up appropriate command line arguments when invoking it. Note that the
backend and command line arguments registration point is in
metro/src/metropolis/metamodel/Compiler.java.

• Add the backend in makefile
Another registration point for the new backend is the makefile in
metro/src/metropolis/metamodel/backends directory. The new backend must be
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residing in a subdirectory of the backends directory. In the makefile, the new sub-
directory must be added to the DIRS variable, otherwise when building metropolis,
this backend will be omitted.

• Add the package to the ALLPACKAGES variable in metro/doc/makefile
It is always helpful to provide clear documentation for programs. In Metropolis,
since most of the files are written in Java, we rely on javadoc to generate nice
HTML documentation from the standard comments in the Java files. So, backend
tool developers should keep in mind to comment their code as well as possible.

For details of how to write a backend, please refer to
metro/src/metropolis/metamodel/backends/metamodel backend howto.ppt.

6.2 Elaboration Backend

As described in section 2.6, netlists are used to represent the system structure. The
construction of a netlist goes through four phases: object instantiation, adding objects
as components, connecting components and refinements. The former three phases often
mingle together. If we view all these phases in the entire compilation flow (see section 5
for details), they all belong to an elaboration backend. Since most of the backend tools
need the elaboration results, therefore they invoke elaboration backend before doing
their own work, sometimes we also say there is an elaboration phase in the compilation
flow.
The goal of elaboration is to capture the system structure as well as to get constraints

associated with each object. The reasons for introducing elaboration are these:

• Solely by static analysis, it is very hard if not impossible to fully capture the
system structure. For example, the number of instances of a particular object
depends on a variable passed in from another netlist, which can be decided only
at run time. For another example, the constraints associated with an object can
involve events defined in the object which depend on the object reference. Again,
this information is not available until the instantiation of the object at run time.

• In the Metropolis infrastructure, there exist several analysis tools organized as
backend tools. Not all of these tools can handle the construction of the network
at run time. Some of the tools do not even have the corresponding concepts of
construction. Therefore, having an elaboration phase reduces the efforts for other
backend tools.

However, the separation of the elaboration phase also imposes a limitation, which is
requiring the network to be fixed after the construction. This implies that no dynamic
changes to the network are possible.
In Metropolis, elaboration is done by translating into Java code all metamodel code

related to network construction, which includes constructors and all functions called
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by constructors. Note that every function that will be called by a constructor must
be declared with the keyword elaborate. Constructors themselves do not need the
elaborate keyword. This keyword tells the elaborator to generate elaboration code for
the function. Otherwise, for reasons of efficiency and easy handling, the function will
be ignored by the elaborator. After the translation, the Java code will be compiled and
executed, constructing the network as described in metamodel code. Upon finishing
the construction, the elaborator will run functions called postElaborate if there are any
defined in metamodel objects. This gives users a chance to look at the network structure
and if necessary set up the post-elaboration information accordingly.

6.3 Elaboration Testing Backend

RuntimeTestBackend is essentially a testing backend added for testing runtime library,
constraint elaboration and other elaborator features. The only thing it does is to elabo-
rate the design, manipulate the elaborated network and print out the results. Users are
supposed to modify this backend and use it to test their own added features of runtime
library and elaborator.
For more details, please refer to

metro/src/metropolis/metamodel/backends/runtimetest/README.txt

6.4 Compilation Backend

This backend is usually used for checking syntax at the early stage of design cycles. It
simply parses the metamodel input files and then re-generate metamodel code from the
ASTs. It is also able to generate a textual view of the AST, which is extremely helpful
for backend tool developers to understand the AST structure.
For more details, please refer to

metro/src/metropolis/metamodel/backends/metamodel/README.txt

6.5 Formal Verification Backend

The promela backend is essentially a translator from Metropolis designs to Promela, a
formal verification language of the model checker Spin. Spin is a formal verification tool
for asynchronous software systems and is chosen as a backend verification engine.
The metamodel description is automatically translated into Promela description, and

the properties are checked using SPIN model checker. The designer may perform any
synthesis step (e.g. composition, decomposition, constraint addition, scheduler assign-
ment) and a new Promela code can be automatically generated to verify the property.
If it does not pass, the error trace may be used to help designers figure out whether the
design needs to be altered. If the verification session runs too long, approximate verifi-
cation can be used to explore a subset of the state space and report the probability that
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the property will pass. Obviously, a partial exploration can not prove that a property
holds.
For more details, please refer to

metro/src/metropolis/metamodel/backends/promela/README.txt

6.6 Simulation Backend

SystemC-based simulator is currently the main validation tool used in Metropolis in-
frastructure. It starts with the abstract syntax tree (AST) generated by the Metropolis
compiler frontend. After performing all applicable optimization techniques, it generates
SystemC code for the metamodel description while maintaining the metamodel seman-
tics. During code generation, it also produces a make file systemc sim.mk for compilation
purpose. Once the SystemC code is compiled and linked with the simulation libraries
provided by both SystemC and this particular backend tool, the executable will show
the metamodel simulation result.
For more details, please refer to

metro/src/metropolis/metamodel/backends/systemc/README.txt

6.7 Debugging Backend

mgdb is a debugger for executable simulations built with the systemc backend. It is
Gnu’s ”gdb” debugger with custom commands that make use of special code added to
the C++ code generated by the systemc backend. It allows debugging the metamodel
(.mmm) source code directly.
For more details, please refer to

metro/src/metropolis/metamodel/backends/mgdb/README.txt
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Metropolis contains the following software that has additional

copyrights. See the README.txt files in each directory for details

examples/yapi_cpus/arm/arm_sim

arm_sim is an ARM processor simulator that was originally

released under the GNU Public License.

The ARM Simulator is only necessary if you would like to create

your own trace files. Most users need not build the ARM Simulator.
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src/com/JLex

JLex has a copyright that is similar to the Metropolis copyright.

src/metropolis/metamodel

Portions of the Java code were derived from sources developed

under the auspices of the Titanium project, under funding from the

DARPA, DoE, and Army Research Office.

The Java code was further developed as part of the Ptolemy project.

The Java code is released under Metropolis copyright.

src/metropolis/metamodel/frontend/Lexer

Portions of JLexer are:

"Copyright (C) 1995, 1997 by Paul N. Hilfinger.

All rights reserved.

Portions of this code were derived from sources developed under the

auspices of the Titanium project, under funding from the DARPA, DoE,

and Army Research Office."

src/metropolis/metamodel/frontend/parser/ptbyacc

ptbyacc is in the public domain.
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Keywords

A.1 Primitive Data Types

void boolean char byte short int float long double event

A.2 Literals

true false null all super this LAST retval

A.3 Modifiers

abstract final private protected public static

A.4 Effects

constant eval update elaborate

A.5 Object Declaration

package import process medium interface netlist statemedium quantity class template
extends implements port parameter useport

A.6 Control Flow Statements

do while for boundedloop switch case default if else break continue return await
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A.7 Other Keywords

beg end none other blackbox label block nondeterminism new

A.8 Constraints

constraint ltl loc eloc forall exists GXI F G U X lfo excl synch mutex simul priority
mindelta maxdelta minrate maxrate

A.9 Network

addcomponent getcomponent getcompname getinstname getprocess getthread connect
getnthport getnthconnectionsrc getnthconnectionport getconnectiondest getportnum get-
connectionnum refine refineconnect redirectconnect isconnectionrefined getscope setscope

A.10 Reserved Keywords

pc pcval gettype scheduler instanceof

A.11 Illegal Java Keywords

catch const finally goto native synchronized throw throws transient try volatile

A.12 Arithmetic and Logical Operations

+, −, *, /, ++, −−, +=, −=, *=, /=, <<, >>, >>>, <<=, >>=, >>>=, &=, ∧=,
|=, =>, − >, < − >, &&, ||, ==, !=, <=, >=
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