
Simple Case Study in Metropolis

Haibo Zeng
Vishal Shah

Douglas Densmore
Abhijit Davare

November 3, 2004

Memorandum UCB/ERL M04/37

Copyright c© 2004 The Regents of the University of California.
All rights reserved.

1

Contents

Contents 2

1 Introduction 5
1.1 Audience . 5

2 Functional model 7
2.1 Overview . 7
2.2 Computation vs. Communication 7
2.3 Abstraction Layers . 9

3 Architectural model 11
3.1 Overview . 11
3.2 Architectural Execution Semantics 11
3.3 A Simple Architecture . 12
3.4 A Refined Architecture . 25

4 Mapping 27
4.1 Mapping Overview . 27
4.2 Mapping Details . 28

Bibliography 33

2

Abstract

The case study documented in this tutorial exercises the capabilities of
the Metropolis Design Environment with an industrial-sized design. As
a typical design example in Metropolis, this case study consists of a func-
tional network, an architectural network, and a mapping network. The
functional network models a simple application where data is obtained
from two independent sources, manipulated in some way. This docu-
ment will describe each of these three major components.

3

One

Introduction

The case study documented in this tutorial exercises the capabilities of
the Metropolis Design Environment with an industrial-sized design. As
in the platform-based design methodology [5] which is one of the basic
principles espoused in Metropolis, each step of the design flow is charac-
terized by a function, an architecture and the mapping of the former onto
the latter (see Figure 1.1). The design process [9] typically starts with a
functional network which is a denotational description of the function to be
implemented, plus a set of constraints the implementation has to satisfy.
The functional network specifies the application space as in Figure 1.1.
An architectural network is also modeled as an interconnection of library
components resulting in a structure that can implement a set of function-
alities. The architectural network specifies the architectural space as in
Figure 1.1. Then the action of mapping a function onto an architecture
generates a new function described at a lower level of abstraction. As a
typical design example in Metropolis, this case study consists of a func-
tional network, an architectural network, and a mapping network. The
following chapters will describe each of these three major components.

1.1 Audience

This document illustrates a concrete example of a multimedia design
within the Metropolis environment. The reader is expected to have a ba-
sic familiarity with the concepts of Platform-based design [5], the Metropo-

5

1. INTRODUCTION

Figure 1.1: Design Process in Platform-based Methodology

lis metamodel specification language [1, 7, 11], and the Metropolis infras-
tructure [1, 11].

6

Two

Functional model

The functional network for this case study is a simplistic application
that consists of two source processes, a join process, and a sink process.
This application is modeled in Metropolis as a process network consist-
ing of a number of processes and channels. The channels are modeled at
various levels of abstraction, which will be described later in this chapter.

2.1 Overview

The simple application models an application where data is obtained
from two independent sources. These sources write their data to inde-
pendent channels. A separate process then reads a data item from each
channel, possibly manipulates it in some way, and then outputs the data
to another channel. Finally, a sink process reads the items from this last
channel. According to user-specified parameters, the size of the items
and the number of items to be processed can be controlled. A block dia-
gram of this functional network is shown in Figure 2.1.

2.2 Computation vs. Communication

One of the major concepts espoused in Platform-based design is the or-
thogonalization of concerns. For the functional model, we focus on the
orthogonalization between computation and communication. The com-

7

2. FUNCTIONAL MODEL

Figure 2.1:

putation portion of the application is concentrated in processes while the
communication portion resides in channels. Depending on the level of
abstraction, the channels are modeled using media or netlists of media.

Each process in the network represents a separate thread in the appli-
cation. The processes execute concurrently. Interaction with other pro-
cesses (e.g. communication, handshaking, blocking) only takes place by
utilizing the services provided by the communication channels.

For most designs, the computational portion (process network) is the
differentiator. Inter-process communication schemes are usually stan-
dardized across a wide class of applications. With this idea in mind,
Metropolis provides users with a library of frequently used communica-
tion schemes (channel implementations) to simplify the design process.
The application in this case study makes use of two such communication
schemes from the library.

8

Abstraction Layers

2.3 Abstraction Layers

Modeling an application at different layers of abstraction allows the de-
signer to focus on different aspects of functional modeling as the design
process progresses. At the beginning, the designer may be interested in
debugging the computational portion of the design, and may not want to
worry about possible deadlocks caused by the communication scheme.
Later on, the modeling goals may change as the designer starts to think
about future implementation on an architectural platform. For instance,
the designer may choose to concentrate on the memory requirements of
the functional design.

Following this line of thinking, the application in this case study is
modeled at two major levels of abstraction: YAPI and Task Transaction
Layer (TTL). The YAPI layer models communication with an unbounded
point-to-point FIFO. The TTL layer also model point-to-point communi-
cation, but with bounded resources.

YAPI layer

The YAPI layer models point-to-point FIFO communication with unbounded
resources [6]. Following the Kahn Process Networks [4] model of com-
putation, YAPI channels have non-blocking write and blocking read se-
mantics. Since unbounded communication resources cannot introduce
deadlock in an otherwise correct functional specification, this communi-
cation layer is ideal for initial debugging of a functional model. However,
the assumption of unbounded resources makes this communication layer
unsuitable for mapping onto architectures with finite resources.

The interface provided by a YAPI channel to the processes is very
simple. Two major functions are provided: write and read. The argu-
ments to these functions are the data arrays and the number of items to
be written or read respectively. Since this communication scheme (in-
deed, the subsequent scheme as well) makes use of templates, the same
implementation can be reused for different data types. The write function
is nonblocking, due to the assumption of infinite resources, while the read
function blocks until at least one data unit becomes available.

9

2. FUNCTIONAL MODEL

TTL layer

The TTL layer models point-to-point FIFO communication with bounded
resources [3]. Since the resources are bounded, TTL channels have block-
ing write and blocking read semantics. The user can specify the storage
capacity of the TTL channel as a parameter. As long as the size of the
channel is at least 1, the TTL protocol guarantees that resource limita-
tions themselves will not cause deadlock. However, the smaller the size
of the TTL channel, the more context switches that will be required to
transfer the entire amount of data. This represents an interesting tradeoff
between storage space and computation.

10

Three

Architectural model

This chapter describes the architecture networks as in Figure 1.1. These
architectures are designed for the application described in Chapter 2. In
addition, they can be examples of how an architecture can be described
using the Metropolis metamodel language.

3.1 Overview

In Metropolis an architecture is defined as a interconnection of computa-
tional and communication resources characterized by certain metrics. It
is important associate metrics to each component as a way of estimating
cost and performance. This is very important in order to be able to ex-
plore the implementation space and compare solutions to decide which
one is the best. For this simple case study, we define a simple architec-
ture composed of a CPU/RTOS component, a bus and a memory, and a
refined architecture that refines some components in the simple architec-
ture such as the CPU/RTOS into a more detailed netlist.

3.2 Architectural Execution Semantics

One of the major concepts espoused in Platform-based design is the or-
thogonalization of concerns. This can also be a solution to the reuse prob-
lem. There are several concerns in embedded system design that can be

11

3. ARCHITECTURAL MODEL

orthogonalized, such as behavior versus architecture, computation ver-
sus communication. Even within a model of architecture there are two
aspects that could be represented separately, capability, i.e. the set of be-
haviors the architecture can implement versus the cost it bears when it
implements a given behavior. For example, in modeling a CPU in terms
of the instructions it supports, one would capture the behavior of each
instruction such as addition or data move, as well as the cost of the in-
struction such as the number of required clock cycles or latency in the
local time defined for the CPU.

To facilitate this orthogonalization, in Metropolis methodology, a typ-
ical architecture model consists of the scheduled network that models all
the capabilities, and the scheduling network that models performance and
coordination between components of the architecture. The architecture
network then executes in two phases, the request phase and the resolu-
tion phase. This two-phase execution semantic allows us to use quantity
managers not only for annotating behavior with quantity but also for
modeling scheduling policies for shared resources. Quantity managers,
as a part of their syntactic requirements [11], implement two methods,
request(...) and resolve(...), corresponding to the two phases. The re-
quest method allows a designer to describe the queuing model, and the
resolve method can model the scheduling policy.

In the request phase, architectural components instantiated in the sched-
uled network enqueue the events and the quantity amount with which
these events should be annotated to the quantity managers. After all
the requests from the scheduled network have been made, the resolution
phase starts, and in this phase the scheduling network will iteratively call
the resolve(...) method of each quantity manager until all of them reach
a stable decision on which tasks to let run.

In Section 3.3, an example is shown to explain the execution of archi-
tectural network.

3.3 A Simple Architecture

Netlist

The structure of the simple architecture is provided in Figure 3.1. In this
abstract architecture model, there are three types of media: a CPU/RTOS,

12

A Simple Architecture

a Bus, and a Memory.

Figure 3.1: Structure of the simple architecture

The tasks in the architectural model are also called mapping processes,
which serve as the interface between the architectural components and
the functional model during the mapping stage. The tasks nondetermin-
istically model all the possible programs that could be executed on the
architecture. The software tasks are connected to the CPU/RTOS and use
the services that those components offer for computation or communica-
tion. The CPU/RTOS is connected to the Bus. This component is a multi-
master multi-slave communication device that allows the CPU/RTOS to
communicate with the Memory. The Memory is a slave device connected
to the Bus. The CPU/RTOS component is shared among several tasks.
Each of these could require a service. When more than one request is
issued to the CPU/RTOS, arbitration is needed. We can think of the
CPU as a device that must be distributed among the tasks. Each time
there is a request from a task, the request is passed to the CpuSched-
uler quantity manager which decides the task that will be the owner of
the CPU/RTOS. The same procedure occurs when more than one master
asks for ownership of the Bus or Memory. In this case, the BusSched-
uler or MemScheduler quantity manager will decide the winner. There
is another quantity manager called GTime which annotates instances of
events with the Global Time physical quantity.

13

3. ARCHITECTURAL MODEL

As mentioned in Section 3.2, the architecture is composed of two
netlists: a scheduling netlist and a scheduled netlist. Each process and
medium in the scheduled netlist has a statemedium associated with it.
These statemedium belong to the scheduling netlist. The scheduled netlist
also contains all of the quantity managers. The CPU/RTOS or the bus
media can issue requests to the quantity managers by calling the request(...)
method of corresponding statemedium. The user defines the statemedium
and the implementation of the request method. The statemedium request
method will call the request method implemented in the quantity man-
agers. This method will store all the requests in order to make a decision
on which one will be satisfied. The quantity managers resolve all the
conflicts in the requests and decide the next event vector that will make
the state transition in the scheduled netlist. In order to specify the event
vector, the quantity managers can call the methods setMustDo(e) or set-
MustNotDo(e) implemented by the statemedium which connects to the
software tasks (where e is the event). Basically, setMustDo(e) says that for
this quantity manager, if there are some event that can be granted in this
execution phase, it can only be e (but whether e can be granted is depen-
dent on the decision of other quantity managers); setMustNotDo(e) says
that e can’t be granted in this execution phase.

Components

In this section, all the components in the architectural model are ex-
plained in more details.

Data Types

In order to pass requests from scheduled netlist to scheduling netlist, we
define a request class SchedReqClass which contains the useful informa-
tion about the request. Based on it, the corresponding quantity managers
will make their decisions such as arbitration or quantity annotation.

public class SchedReqClass extends RequestClass {
private event _requestEvent;
private event _referenceEvent;
private int _serviceID;
private int _nService;

14

A Simple Architecture

private int _masterID;
private int _slaveID;
private double _time;
private int _prio;

}

requestEvent is the event this request is made for. referenceEvent is
the event which can be a reference event to the requestEvent. serviceID
specifies the Id representing the service associated with this request, for
example, CPU REQUEST which is a computation service provided by
the CPU component. nService is the number of atomic services to be
satisfied. masterID is the id of the master which calls this service in-
terface function. slaveID is the id of the slave whose service will be
called to accomplish this request. time is the time stamp to be annotated
with the requestEvent. prio specifies the priority associated with this
request, which is essential in some priority-based scheduling algorithm.

Software Tasks

Software tasks in the architectural model are also called mapping processes,
which serve as the interface between the architectural components and
the functional model during the mapping stage. The tasks provide to the
functional model all the programs that could be executed on the archi-
tecture. To complete all the capabilities needed by functional model, the
software tasks are connected to other components such as media and use
the services those components offer for computation or communication.

In the architectural models, the software tasks offer two types of ser-
vices: a generic computation service execute() which is an execution of a
specific functionality associated with a parameter on how complex it is,
and two communication services – generic read and write.

public process SwTask {
public void execute(funId, comp)
public void read (base, offset, objSize, numObj)
public void write(base, offset, objSize, numObj)

}

15

3. ARCHITECTURAL MODEL

CPU/RTOS

The medium CPU/RTOS implements the services used by the software
tasks. One basic service is the request of the cpu ownership for a cer-
tain number of clock cycles. In this simple model this service can be
used to model computation. We need also some communication services
like read and write. Here is the definition of the services offered by the
CPU/RTOS to the software tasks:

public interface SwTaskService extends Port {
eval void request(n);
eval void read (target, addr, n);
update void write(target, addr, n);
eval void readLong (target, addr, n, data);
update void writeLong(target, addr, n, data);
eval void readProtect (target, addr, n);
update void writeProtect(target, addr, n);
eval void readLongProtect (target, addr, n, data);
update void writeLongProtect(target, addr, n, data);

}

The CPU/RTOS medium definition is as follow:

public medium Cpu implements SwTaskService {
port SchedReq _portSM;
port CpuSlave[] _portSlaves;

//Methods implementation
...

}

The Cpu medium has two types of ports: portSM is the port that will
be connected to the statemedium. The cpu can make requests through
this port to the corresponding quantity managers. The ports portSlaves
will be connected to the busses which have to implement the CpuSlave
interface (see section 3.3).

As an example, the implementation of the request service is shown as
below. request(...) service can be used by a task to request the CPU/RTOS
ownership for a certain number of cpu cycles. The implementation is as
follow:

16

A Simple Architecture

public eval void request(int n) {
{$

beg{
e = beg(getthread(), this.request);
_src.setSchedReqClass(e, SERVICE_ID_CONTEXT_SWITCH, 1, -1, -1);
_portSM.request(e, _src);

}
$}

creq{@;
{$

beg{
e = beg(getthread(), this.creq);
_src.setSchedReqClass(e, SERVICE_ID_REQUEST, n, -1, -1);
_portSM.request(e, _src);

}

end{
r = end(getthread(), this.creq);
_src.setSchedReqClass(r, e, SERVICE_ID_RELEASE, 1, -1, -1);
_portSM.request(r, _src);

}
$}@};

}

At the beginning of the method, a request asking to be the owner
of CPU/RTOS is issued to the CpuScheduler quantity manager through
the corresponding statemedium. Then a request asking for a certain
number of cpu cycles’ computation is issued. At the end, the owner
will try to release the CPU/RTOS medium by another request. The two
events (beg(getthread(), this.creq) and (end(getthread(), this.creq) will be
annotated with two different timestamps and the latency between them
will be the number of cycles requested (if no preemption occurs). The
CpuScheduler quantity manager will take care of annotating the events.
The read and write services are offered in many different flavors. There
are simple read and write that take as parameters the target device and
the number of bytes. There is also a protected version where the target
address is exclusively accessed by the current owner until the read or

17

3. ARCHITECTURAL MODEL

write operation ends.

Bus

Similar to CPU/RTOS, the Bus medium implements the CpuSlave inter-
face which offers services its masters), and has an array of ports to con-
nect to its slaves.

Memory

The memory is simply a slave component. It is connected to the bus
meaning that it implements the BusSlave interface and the bus has a port
connected to the memory.

Quantity Managers

The Metamodel facilitates cost annotation of architectural services and
modeling scheduler policies for shared resources using special objects
called quantity managers. The quantity manager objects provide a clean
way to separate the functionality offered by an architecture from the esti-
mate of its performance and its scheduling. Figure 3.2 shows a high-level
anatomy of a quantity manager. Its input can be seen as a set of anno-
tation requests from the software tasks wanting a share of the quantity
modeled by this manager. These requests are queued in using the re-
quest(...) method implementation and its output can be seen as either a
single result, or a sequence, indicating the execution order of the request-
ing tasks. The algorithm for scheduling the access to the shared resource
is modeled in the resolve(...) method of the quantity manager.

The release includes models of two schedulers, a time-slice based
scheduler and an First-Come-First-Serve (FCFS) based FIFO scheduler
found in SchedulerTimeSliceBased.mmm and SchedulerFIFO.mmm respec-
tively. The scheduler models are independent from the models of cpu,
bus and memory and can be used with either of them. The reader should
follow the resolve method of each of scheduler model to understand the
scheduling policy it implements. The architecture models are modular
enough to allow a single parameter change to switch between either
of the schedulers. The following section discusses the time-slice based
scheduler model.

18

A Simple Architecture

Figure 3.2: Quantity Manager Anatomy

Time-slice based scheduler model

We describe the basic ideas and the algorithm used in the time-slice sched-
uler model found in SchedulerTimeSliceBased.mmm. In order to achieve
efficiency in simulation time, our model seeks to reduce the number of
calls to the scheduling network. With this aim in mind, a software task, in
order to estimate the performance of its code, can request the annotation
of a set of sequential instructions, e.g. a basic block. Using methods as
proposed in [8, 10, 12], a designer can construct a model for software, in
which the cycle usage of all the instructions in a basic block is aggregated,
and a single request for the time annotation of this aggregated amount
of cpu cycles is made to the quantity manager. We focus on modeling
a time-slice task scheduler when the annotation granularity of the pro-
cesses to be executed is coarser than the time-slice, as can happen in the
case outlined above. The model is applicable to different kind of shared
resources, such as cpus, buses, memories, etc., but in the following, we
will concentrate, without loss of generality, only on cpus, since this is by
far the most common case.

Our goal is to avoid starting a new resolution phase each time a time-
slice elapses; otherwise we would loose possible gains in simulation per-
formance that can be achieved using coarser annotations at the process
level. When the annotation granularity is fine, on the other hand, our
technique, while still applicable, does not provide significant advantages,
since the bottleneck is in other parts of the system. Algorithm 1 details
the resolution mechanism to be implemented in quantity managers to
model time-slice based task schedulers. At the start of the resolve phase,

19

3. ARCHITECTURAL MODEL

each quantity manager, instantiated in the scheduling network, will have
a set of requests from the software tasks that wish to use the resource
controlled by the quantity manager. Based on the scheduling policy it
models, the quantity manager will decide which task should be allowed
to use the resource. Step 1 of the algorithm selects the request R from the
input set X, containing the task requests.

To model time-sliced behavior when the annotation granularity can
be coarser than instruction-level, our quantity manager model instead of
choosing a single software task as its scheduling decision, will choose
a sequence of tasks. The sequence corresponds to the alternation of ex-
ecution slices of the various tasks mapped to the shared resource. The
sequence stops, and the resolve() method terminates, when the last slice
selected completely fulfills the request of a task. This task is then sig-
naled to proceed, while all the others are kept suspended since they need
more slices to finish. Step 2 models this.

It first checks whether the resource amount requested by the selected
software task exceeds the time slice defined for the resource. If it does,
then the request is updated to reflect that the task was allotted resource
amount = time slice, and is put back in the request set X. It then records
the selected task in a sequence Y and the control goes back to step 1.

When a task is selected whose requested resource amount <= time slice,
the task is recorded in the sequence Y and control is transferred to Step
3, which exits with Y as its scheduling decision. If t1, t2,..., tn denote n
software tasks respectively, and the value of Y is t1, t2, t1, t2, t1 then the
scheduling decision can be seen as, t1 got the entire amount of resource it
had requested for and that it can proceed, while t2 got resource amount-
ing to two time slices and is waiting to get more resource. In reaching
this scheduling decision, t1 and t2 were each preempted twice.

The value of Y represents the execution order of tasks. In this case,
the order of execution of tasks is t1, t2, t1, t2.

Example

Consider the HW/SW model of Figure 3.3. Here three tasks A, B and C
request cpu cycles. Suppose A requests 10 cycles, B 20 and C 30 cycles
and the time-slice for using the cpu is defined as 10 cycles. Figure 3.4(a)
shows the state of request queue of cpu time quantity manager after the

20

A Simple Architecture

Algorithm 1: Select resource owners
Input: Set X of requests from software tasks
Output: Sequence Y representing the execution order
of software tasks
1. R = remove(X, selection policy)

where selection policy = FCFS, priority based, etc.
2. if requested amount(R) > time slice

requested amount(R) =
requested amount(R) - time slice

insert(X, R)
insert(Y, task owner(R))
go to 1

else
insert(Y, task owner(R))
go to 3

3. return Y

execution of phase 1 . The number next to each task name indicates the
number of cycles the task is waiting to be allocated.

Figure 3.3: Shared Cpu

In this case, our model of scheduler, based on FCFS selection policy,
will allocate first 10 and the next 10 cycles to C and B respectively, and
then put them back in the queue since their entire quantity request has
not been filled. Figure 3.4(b-d) shows the state of the queue at the end
of each time slice. At the end of 3 time slices the scheduler has with it

21

3. ARCHITECTURAL MODEL

at least one request, that of task A whose entire request for quantity has
been satisfied. The cpu quantity manager will remove the request of task
A from the queue and transfer the execution control to it. Figure 3.4(d)
shows the status of the queue after this scheduling decision.

Figure 3.4: CpuQM Request Queue state

It should be noted here that in theory, the control should have trans-
ferred to tasks C and B at the end of 10 and 20 cpu cycles respectively, but
the coarseness of the annotation requested by the designer did not make
this a requirement. If the designer wants the control to be transferred to
the software task at the expiry of each time slice, his annotation requests
should within time slice defined for the resource. This allows him to in-
troduce more details in his model at the cost of simulation efficiency. Our
quantity manager can handle this case without requiring any changes in
the modeling code.

Execution Example

We take Figure 3.5 as an example to explain how the architectural net-
work executes. The numbers beside the function names identifies the
sequence to call them during this execution example.

1. Assume at some point one of the software tasks, say T1 calls the
function read(...) to read some data from the memory. Within the read(...)

22

A Simple Architecture

Figure 3.5: Architecture Execution Example

method of software task, to finish this operation, it calls the cpuRead(...)
service implemented in the CPU/RTOS medium.

2. Through the statemedium connected to CPU/RTOS, it calls the re-
quest(...) to make a request to the CpuScheduler quantity manager which
arbitrates its access.

3. The control now passes to the scheduling netlist (assuming that all
other software tasks are also waiting for some arbitration or annotation).
Now the scheduling netlist is executed and the resolve(...) methods of the
quantity managers is called cyclically until the solution is stabilized.

4. The result, in our simple example, would be that T1 will be the
next owner of the CPU/RTOS. The interface function setMustDo(...) in
the statemedium will be called to notify the scheduled network that the

23

3. ARCHITECTURAL MODEL

corresponding event is granted and T1 can proceed.
5. T1 now goes to the next line within the cpuRead(...) method; Other-

wise, it will be stuck and call request(...) to make a request again.

Configurability

Configurability is an essential property in architecture modeling such
that the designer can easily choose from a reasonable number of can-
didate architectures. This can leverage the automation of architecture
configuration, thus facilitating the architecture exploration during map-
ping stage.

In this simple architecture, all the configuration can be done by in-
stantiating an architecture and specifying the following arguments of its
constructor. For a concrete example, please refer to Top.mmm in the sim-
ple architecture.

Parameterize architecture components

Each component in the architecture has some properties that characterize
its performance. For example, at the abstraction level where the simple
architecture is modeled, a CPU/RTOS component can be configured by
some parameters as the cpu clock cycle, the OS scheduling algorithm,
and the number of cycles a specific service will cost. These parame-
ters are easily configurable as some arguments in the constructors of
CPU/RTOS medium and CpuScheduler.

Specify architecture structure

In addition, we need to specify how these architecture components are
connected. In this simple architecture, the user can specify the connection
by some “natural language”, e.g. saying that T0 connects to Cpu0. The
appropriate number of statemedia and quantity managers and their con-
nections, e.g. the connection between statemedia and processes/media
will be generated automatically. Of course, the connection should sat-
isfy some property, for example, if a CPU/RTOS is connected to a Bus
through a port CpuSlave, the Bus must implement the CpuSlave interface.

24

A Refined Architecture

3.4 A Refined Architecture

Once the initial architecture has been created, a natural desire is to create
derivate architectures. Instead of randomly creating models, it is advan-
tageous to do this in a disciplined manner which promotes the ability to
make statements regarding the level and type of refinement performed.
In addition, this approach can lend itself to formal verification techniques
such as property checking. This section describes a refined architecture
provided for the simple case study. This is a Vertical Refinement model
and is meant to provide an alternate, lower level of abstraction model as
compared to the model described previously.

Vertical Refinement

Vertical refinement is the notion that within the model changes are made
”vertically” where these changes are additions/subtractions/divisions
of media. This will consist of topological changes to existing media as
well. This means that you do not swap aspects/relationships/devices
between netlists but rather you move within a particular netlist. Natu-
rally this contrasts to horizontal refinement.

Vertical refinement of an architecture can be seen as a whole spec-
trum of refinement with the levels being defined as to what elements are
passive (media) and which are active (processes). For example you can
change the number and types of processes in the scheduled netlist or you
can change the number and type of media in the scheduled netlist.

What this would imply is that the most abstract would only have the
clock be the only active element while the least abstract would have all
processes (vice versa depending on perspective).

The primary method of vertical refinement in practice is likely to be
the addition of media. This ultimately is the addition of services. This
is adding a level of granularity to the abstract services provided initially.
Vertical refinement is most likely the most common form of refinement
from a structural standpoint concerning the netlists. This is also the most
straightforward of the refinement styles. This will require the following
types of changes:

• Need to add/create services themselves

• Need to add requests for each services

25

3. ARCHITECTURAL MODEL

• Need to add schedulers for these services. There is a one-to-one
correspondence between the services and schedulers.

• Need to introduce these into the corresponding netlists

Notice that with a vertical refinement you are moving vertically in
both netlists. For example, the addition of a service in the scheduled
netlist requires an additional scheduler in the scheduling netlist.

Refinement Details

Figure 3.6 shows the changes introduced by the vertical architecture
model.

Figure 3.6: Original vs. Vertical Architecture

The vertical architecture provided adds two services:

• RTOS service. This provides a separation between the CPU and the
service which schedules the tasks to the CPU. This uses the FCFS
and Time Slice Based Scheduling mechanisms.

• Cache service. This provides an alternate way to service memory
requests as opposed to going over the bus and to physical memory.

For more information detailing the specifics, please see [2].

26

Four

Mapping

Mapping in Metropolis associates a functional model with an archi-
tectural model such that the events corresponding to services in both
models are synchronized with each other. The mapped implementation
inherits the quantity annotations given by the architectural model and
the ordering on the service usage by processes as specified by the func-
tional model. Also, the mapping itself may add additional information in
the form of service configurations which is also inherited by the mapped
implementation. This section describes how mapping is realized in the
Metropolis Metamodel for this case study.

4.1 Mapping Overview

The top-level netlist for mapping usually instantiates both the functional
and architectural models with the required parameters. Events are then
gathered from both models which correspond to the services that com-
prise the system platform. Then, synchronization constraints are added
with the synch keyword to synchronize these events.

The design space for the system can be explored in the mapping netlist
by changing the way in which the architectural and functional models are
instantiated, by choosing the events to map together, and by configuring
the services that correspond to these events.

27

4. MAPPING

The architectural model may be instantiated in different ways indi-
cating the number of CPUs, buses and memories to be used and also the
type of scheduling algorithm to be used in the CPU. The events which
are to be synchronized indicate the beginning and end points of differ-
ent services in the system platform. By choosing the appropriate events
(e.g. the beginning of a read service in a particular task and the begin-
ning of a read service for a particular media from a particular process) to
synchronize, we can indicate the assignment of functional processes to
architectural tasks.

Finally, the services that are mapped together may have parameters
that we can configure. For instance, a read service may have parameters
indicating the number of items to be read, the size of each item, and the
base address. The functional process may fix the first two parameters
when it uses the service, but may have no concept of an address space
or base address. In this case, when we map the functional service to an
architectural service, we need to specify the base address to the archi-
tectural service explicitly as part of the synchronization constraint. This
indicates a mapping choice, perhaps the assignment of a storage area in
the functional model to a particular physical memory in the architecture.

4.2 Mapping Details

In the mapping netlist for this case study, we first instantiate the func-
tional model. From the functional model, we obtain the references to the
processes within it. We then instantiate the architectural model with the
number of tasks equal to the number of functional processes. We then
also obtain the references to the architectural tasks.

At this point, we have two arrays of equal size with references to the
functional processes and the architectural tasks. We are now ready to cre-
ate a one-to-one association between these two sets and map each func-
tional process onto a single architectural task. This will be accomplished
by associating the events of the read and write services together.

However, we first need to gather the events corresponding to these
services from the process and task arrays that we currently have. Re-
member that in the functional model, these read and write services are
located in the storage media inside the TTL netlists which interconnect
processes. By using metamodel netlist accessor functions, we can tra-

28

Mapping Details

verse the functional netlist, starting from processes, to obtain references
to these storage media, and ultimately the events which we need. There
are two events we need for every service in the functional model (a read
or a write by a particular process in a particular media) corresponding to
the beginning and the end of the service function.

After we have all the read and write events from all the media for
a particular functional process and the read and write events from the
corresponding architectural task, we are ready to synchronize them to-
gether. We accomplish this by using two sets of one-way synch con-
straints.

The first set of constraints specifies that each one of the functional
events implies the corresponding event in the architectural model. If
these events refer to the beginning of a service, we also include a vari-
able equality section in the one-way synch constraint that indicates the
assignment of variables. Some of these variables (number of items, data
offset) are simply assigned from the functional model to the architectural
model. Others, such as the base address, are specified as constants in the
synchronization constraint. If the events refer to the end of the service,
then no variable equality portion is required.

The second set of constraints states that the architectural event im-
plies any non-zero subset of the functional events (OR statement). Since
the services have been configured with the previous set of constraints, no
variable equality is needed in this set of constraints.

29

Metropolis Acknowledgement

This work was supported in part by the following corporations:

• Cadence

• General Motors

• Intel

• Semiconductor Research Corporation (SRC)

• Sony

• STMicroelectronics

• and the following research projects:

– NSF Award Number CCR-0225610 and the Center for Hybrid and
Embedded Systems (CHESS, http://chess.eecs.berkeley.edu)

– The MARCO/DARPA Gigascale Systems Research Center (GSRC,
http://www.gigascale.org)

The Metropolis project would also like to acknowledge the research contri-
butions by:

• The Project for Advanced Research of Architecture and Design of Elec-
tronic Systems (PARADES, http://www.parades.rm.cnr.it/) (in particu-
lar Alberto Ferrari)

• Politecnico di Torino

• Carnegie Mellon University

• University of California, Los Angeles

31

4. MAPPING

• University of California, Riverside

• Politecnico di Milano

• University of Rome

• La Sapienza

• University of L’Aquila

• University of Ancona

• Scuola di Sant’Anna and University of Pisa

Metropolis contains the following software that has additional copyrights.
See the README.txt files in each directory for details

examples/yapi cpus/arm/arm sim arm sim is an ARM processor simulator
that was originally released under the GNU Public License. The ARM
Simulator is only necessary if you would like to create your own trace
files. Most users need not build the ARM Simulator.

src/com/JLex JLex has a copyright that is similar to the Metropolis copyright.

src/metropolis/metamodel Portions of the Java code were derived from sources
developed under the auspices of the Titanium project, under funding from
the DARPA, DoE, and Army Research Office. The Java code was further
developed as part of the Ptolemy project. The Java code is released under
Metropolis copyright.

src/metropolis/metamodel/frontend/Lexer Portions of JLexer are: ”Copy-
right (C) 1995, 1997 by Paul N. Hilfinger. All rights reserved. Portions
of this code were derived from sources developed under the auspices of
the Titanium project, under funding from the DARPA, DoE, and Army
Research Office.”

src/metropolis/metamodel/frontend/parser/ptbyacc ptbyacc is in the public
domain.

s

32

Bibliography

[1] Felice Balarin, Luciano Lavagno, and et al. Concurrent Execution
Semantics and Sequential Simulation Algorithms for the Metropolis
Metamodel. Proc. 10th Int’l Symp. Hardware/Software Codesign, pages
13–18, 2002.

[2] Doug Densmore. Metropolis Architecture Refinement Styles and
Methodology. Technical Report UCB/ERL M04/36, University of
California, Berkeley, CA 94720, September 14, 2004.

[3] Om Prakash Gangwal, Andre Nieuwland, and Paul Lippens. A
Scalable and Flexible Data Synchronization Scheme for Embedded
HW-SW Shared-Memory Systems. In ISSS, pages 1–6, 2001.

[4] G. Kahn. The Semantics of a Simple language for Parallel Program-
ming. In Proceedings of IFIP Congress, pages 471–475. North Holland
Publishing Company, 1974.

[5] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. System Level Design: Orthogonolization of Concerns
and Platform-Based Design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(12), December 2000.

[6] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.Y. Brunel,
W.M. Kruijtzer, P. Lieverse, and K.A. Vissers. YAPI: Application
Modeling for Signal Processing Systems. Proceedings of the 37th De-
sign Automation Conference, 2000.

[7] E.A. Lee and A. Sangiovanni-Vincentelli. A Framework for Com-
paring Models of Computation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17:1217–1229, Dec. 1998.

33

BIBLIOGRAPHY

[8] S. Malik, M. Martonosi, and Y.T.S. Li. Static Timing Analysis of Em-
bedded Software. In Proceedings of the Design Automation Conference,
pages 147–152, June 1997.

[9] Alessandro Pinto. Metropolis Design Guidelines. Technical Report
UCB/ERL M04/40, University of California, Berkeley, CA 94720,
September 14, 2004.

[10] K. Suzuki and A. Sangiovanni-Vincentelli. Efficient Software Perfor-
mance Estimation Methods for Hardware/Software Codesign. In
Proceedings of the Design Automation Conference, pages 605–610, June
1996.

[11] The Metropolis Project Team. The Metropolis Meta Model Version
0.4. Technical Report UCB/ERL M04/38, University of California,
Berkeley, CA 94720, September 14, 2004.

[12] V. Zivojnovic and H. Meyr. Compiled HW/SW Co-Simulation. In
Proceedings of the Design Automation Conference, pages 690–695, June
1996.

34

	Contents
	Introduction
	Audience

	Functional model
	Overview
	Computation vs. Communication
	Abstraction Layers

	Architectural model
	Overview
	Architectural Execution Semantics
	A Simple Architecture
	A Refined Architecture

	Mapping
	Mapping Overview
	Mapping Details

	Bibliography

