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Chapter One

Introduction

The Metropolis design environment provides an infrastructure for de-
signing embedded systems. Metropolis is particularly suited to model
heterogeneous systems at different levels of abstractions and it is constantly
under development with the idea in mind of supporting the platform-
based design [] principle. The main objective, in fact, is not merely to pro-
vide a simulation/verification/synthesis environment for design elec-
tronic systems at a specific level of abstraction, but rather to develop and
infrastructure that is flexible enough to be used for developing design
flows for different application domains.

This ambitious goal is pursued by supporting design principles that
are independent on the specific application. Metropolis follows two basic
principles: orthogonalization of concerns and platform-based design [7]. The
latter can be applied in many fields of engineering. In this design guide,
we use a multimedia design flow as a representative example.

1.1 Platform-based design of Multimedia
Systems

A simple example of platform-based design applied to the logic synthesis
flow is described in appendix A. In this chapter we give an overview of
the method for multimedia applications.
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1. INTRODUCTION

Going from the denotational description of a function down to its im-
plementation is a very hard problem. The number of possible design
choices makes the design space too large to be explored efficiently. The
big design gap can be subdivided into smaller steps by introducing a
stack of platforms, each dedicated to the exploration of the design space
along few directions (figure 1.1).

Figure 1.1: Platform stack for multimedia designs

When using a platform-based design methodology the first impor-
tant step is to define those level of abstractions. Consider, for instance,
the case of multimedia systems design as shown in figure 1.1. Starting
from the denotational description of the function F the first important
decision is to select a suitable platform (that a this level of abstraction
is usually referred to as a model of computation) to describe F . The
only property that we are interested in at this level is correctness. Kahn
process networks (KPN) [6] is a convenient model of computation usu-
ally adopted as the first platform for modeling multimedia systems. The
platform components are processes running on their own threads and
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Platform-based design of Multimedia Systems

communicating through unbounded FIFOs with blocking read and non-
blocking write semantics.

Mapping F onto the Kahn process networks platform implies re-expressing
the denotational algorithm as interconnection of concurrent processes
and unbounded FIFOs. For instance, an FIR filter can be described by in-
terconnecting adders and multipliers together. At this level of abstraction
we can check if our algorithm is correct without caring about deadlocks
due to resource limitations like FIFO boundedness. Also, since processes
are totally concurrent and write is non-blocking, processes don’t have to
competed for shared resources. The designer can then explore the max-
imum amount of concurrency (parallelism) in the functional description
without being constrained by resource limitations. However, the func-
tion is too abstract to be implemented on a real architecture which has
resource limitations, e.g. memory size.

The next level of abstraction is represented by the TTL [4] (task trans-
action level) platform. It is still composed of processes running on their
own threads, but the communication among them is implemented with
bounded FIFOs. Mapping a KPN function onto a TTL platform is a sim-
ple one to one mapping that can be done by a direct refinement of each
unbounded FIFO into a more complicated channel as we will see in the
next section.

At the TTL level of abstraction, we are concerned with memory size
minimization. Each communication channel is parameterized by token-
size and maximum number of tokens that it can contain. Depending
on the interleaving policy between writer and reader of the same chan-
nel, buffer size can be reduced at the expense of a more frequent con-
text switching between the two processes. The memory usage/switching
overhead trade-off is explored at this level of abstraction.

Finally the TTL description is mapped onto a real micro-architecture,
for instance a single processor architecture. At this level of abstraction
we are concerned with memory allocation and organization and task
scheduling. Task scheduling is needed because at this level we have a
computational resources limitation (only one processor in this example).
A real time operating system works as an adaptation layer between the
high level of concurrency of the TTL platform and the sequential opera-
tions of a single processor architecture.

The result of this mapping is the implementation of the original func-
tion on a target micro-architecture that satisfies all the original constraints.
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1. INTRODUCTION

Figure 1.2: The Metropolis framework

1.2 Metropolis design environment

The idea behind the Metropolis framework is to have an unambiguous
common representation of designs and a set of tools that can interpret
the common representation, manipulate it and generate a modified de-
scription using the same representation [3].

The Metropolis framework is pictorially represented as in figure 1.2
The Metropolis infrastructure is the core of the framework. The in-

frastructure is composed of a language for the design description that is
called the Metropolis Meta-Model (MMM). An MMM program is com-
piled into an internal representation that retains all the semantic and syn-
tactic information of the original MMM program.

A given application could be directly described using the MMM. How-
ever, a set of platforms are provided to designers to facilitate the system
description. There are two kinds of platforms: model of computations
and architectures. As described in chapter 3, a model of computation
is presented as a set of basic classes that the user extends to customize
the behavior of processes and obtain the functional description. As de-
scribed in chapter 4, an architecture is presented as a set of services and
their legal compositions.
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Metropolis design environment

Given an application domain, the user selects a suitable model of
computation from the available set of libraries. For instance, Kahn pro-
cess networks (KPN) are widely used in modeling multimedia applica-
tions. The KPN library in Metropolis provides processes and media. A
process is a basic class with an empty behavior. The user extends this
class by adding ports for external communication and overriding his
thread to describe the set of behaviors that belonging to the process. Me-
dia are unbounded FIFOs that the user has only to instantiate and con-
nect to processes in order for them to communicate. The description of
the entire system is still done in MMM but the library considerably sim-
plifies its description.

The user now selects an architecture which could be available already
or has to be assembled from a set of components. The architecture is also
described using the MMM language.

Finally a mapping is obtained by enforcing a synchronization of func-
tion and architecture. Each action in the function side is correlated with
a function on the architecture side using synchronization constraints. Se-
mantically this means that actions in the architecture have to follow the
execution of the same action in the function side and its a way of taking
the intersection of the two in the common semantic domain.

Function, architecture and mapping are all described using the MMM.
Since all back-end tools are developed upon the internal data represen-
tation, they can be applied to the function, architecture and mapping
netlist. It is possible for instance to simulate the architecture without any
function mapped onto it.

Given a metropolis netlist, it can be parsed and compiled to generate
the internal representation using the command metacomp. Compilation
is not the more interesting step but elaboration is probably the most use-
ful. Elaboration can be invoked by metacomp -elaborator ¡topnet¿ ¡files.mm¿
where topnet is the top netlist. This phase compiles the source files and
also run the constructor of each component to determine its initial state.
It also checks interfaces, types and modifiers.

A number of other tools are available in the distribution. The most
used is certainly the SystemC simulator that after elaboration generates
an equivalent description of the original specification in the SystemC lan-
guage. It also generate a makefile to compile the C++ program and gener-
ate an executable. The SystemC back-end can be run using the command
line metacomp -systemc -top ¡topnet¿ ¡files.mm¿.
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1. INTRODUCTION

Also, a shell metroshell is provided to compile and elaborate an MMM
program. This shell provides APIs to browse the design and apply back-
end tools to it.

1.3 Audience and Organization

The design guideline is intended to give directions to users that want to
design embedded systems in the Metropolis framework. This document
touches two aspects: what the user requirements are and how develop-
ers should satisfy them. This document does not describe syntax and
semantics of the MMM, backend tools, or any other implementation re-
lated issues. We target this guidelines to two class of users: system devel-
opers that have to describe applications, select architectures and perform
mapping, and libraries provider that have to provide the necessary in-
frastructure to make the system developers job easier. This guidelines is
then an overview of how the Metropolis framework, and specifically the
MMM, should be used.

The Metropolis guidelines document is organized as follows:

• Chapter two describes the basic components used to describe a sys-
tem. Processes, media, quantity managers and netlists are intro-
duced through a simple example and a brief description of their
usage is given.

• Chapter three shows how a model of computation library should
be used and consequently how it should be developed. Two exam-
ples are given: KPN and a multirate synchronous domain that are
both provided by the Metropolis release.

• Chapter four shows how an architecture platform is assembled and
used. It describes how the services offered by an architecture should
be exposed to a user and consequently how all components should
be developed and described. An example of simple architecture is
given.

• Chapter five described the mapping phase. This chapter only de-
scribes the strategy that we use in the Metropolis framework to de-
scribe a mapping and also give a small example.
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Chapter Two

Basic notions on modeling

The Metropolis Meta-Model (MMM) language provides basic compo-
nents that are used to describe a system. These components represent
computation, communication and synchronization which are three basic
ingredients needed to define a model of concurrency. This chapter uses
a simple producer consumer example to introduce the basic objects de-
fined in the MMM language. For a detailed explanation of MMM syntax
and semantics refer to [2].

2.1 Processes, Interfaces and Media

Consider a simple producer consumer example. The producer generates
a sequence of integers in ascending order starting from 1 and communi-
cates them to the consumer whose it just a sink.

Figure 2.1: A simple producer consumer example
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2. BASIC NOTIONS ON MODELING

Producer and consumer are two objects that execute an algorithm.
More specifically, the producer follows a certain number of steps to im-
plement the original specification. These steps are a set of “actions”. Ob-
jects of this type are defined as processes in the MMM language. A pro-
cess runs on his own thread. A thread is a sequence of actions that can
be thought of as instructions, sub-instructions (in which an instruction
can be decomposed), function calls and awaits (for a formal definition of
actions please refer to [2]).

The code implementing the producer follows:

process producer {
port ReadInterface r;
port WriteInterface w;
parameter int N_writes;
int v;
producer(String n, int nw) {

super(n);
N_writes = nw;

}
public void thread(){

int j;
for (int i=0; i<N_writes; i++){

v = r.read();
j = i + 1;
out.write(j);

}}};

The process has two ports and one parameter, which is specified at
instantiation time. Note that ports don’t have direction, but have a type
associated with them. The type of a port is an interface which declares
services that can be called by the process.

Figure 2.1 also shows a possible connection of the process to the rest of
the system. Processes cannot connect directly to other processes but the
interconnection has to go through a medium which has to define (i.e. im-
plement) the services declared by the interface associated with the ports
that access the medium.

An interface is an “abstract” class which just declares a set of func-
tions with their associated signatures. The WriteInterface for instance
is specified as follows:
interface WriteInterface extends Port {

eval void write(int data);
}

14



Processes, Interfaces and Media

The interface declares a service write which takes an integer data as the
only parameter. It does not define the function so it is impossible to say
what is the semantics of this function. If a process has a port of type
WriteInteraface it has to implement the write service because the pro-
cess is going to use it. The interface is then an agreement on what is
offered and what is required in the sense that a process can only use
services declared in the interface and on the other hand a medium con-
nected to that port has to provide those services.

The syntax used in MMM is very close to Java. A process, like any
other object in the MMM, has a constructor which in this case takes a
parameter nw indicating the number of integers to be produced in as-
cending order starting from one.

A process specifies a thread function. In this example, producer reads
a triggering signal from port r and writes an integer to port w.

From the outside, the process behavior is observed as a trace of read
and write actions, or better yet as a trace of services calls to the me-
dia connected to its ports. More precisely the behavior is a sequence
of events which are the begin and end of each action. Looking at the
process thread, the behavior is more complex. After reading the trigger,
an internal variable (belonging to the state of the process) is assigned to
the result of a sum and written to the output port. The behavior, then,
not only includes read and write but also begin and end events of the
assignment and sum actions.

A process is then an object that generates a sequence of events. Each
process in a system evolves by executing one event after the other. At
each step (which is formally described in [2] in terms of a global execu-
tion index), each process in the system executes one event. This is the
semantics of a synchronous language but a special event called NOP is
defined in such a way that it can always be interleaved between to events
of a process. The NOP event correspond to the stalling of a process mak-
ing it possible to implement asynchrony. For instance, if producer wants
exclusive access to medium M2 we can force consumer to execute the
NOP event while producer is writing a data.

The juxtaposition of events from all processes is an event vector. At
each step, there is a set of event vectors that could be executed to make a
transition from the current state to the next state. If there are no schedul-
ing constraints specified then the choice among all possible transitions is
done non-deterministically.
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2. BASIC NOTIONS ON MODELING

A communication medium is an entity that implements services. It
does not have a thread of execution but rather inherits the thread from
the process that uses the services. A communication medium imple-
ments a protocol to exchange information between processes. Separation
between processes and media follows the principle of orthogonalization
of concerns described in [7].

A media implements an interface which is a declaration of a set of ser-
vices and gives them a semantics. This example shows a simple channel
that implements two services: read and write.
medium Channel implements ReadInterface, WriteInterface {

int[] storage;
int space, n; reading;writing;
int length;

public IntM(String name, int nelement) {
n = 0;
space = nelement;
storage = new int[nelement];
length = nelement;
reading = 0;
writing = 0;

}

public update void write(int token) {
await {

(space > 0;;) {
space = space - 1;
n = n + 1;
storage[writing] = w;
writing = writing + 1;
if (writing == length) writing = 0;}}}

public update int read() {
int _retval = 0;
await{

(n > 0; ;) {
n = n - 1;

space = space + 1;
_retval = storage[reading];
reading = reading + 1;
if (reading == length) reading = 0;}
return _retval;}}

The await statement can define parallel critical sections. Each critical sec-
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Processes, Interfaces and Media

tion has a premises (guard; testlist; setlist). In this example we only have
a guard condition that is a boolean expression. If the guard is true that
the critical section can be entered. The meaning of testlist and setlist will
be explained later through an example

The channel has a limited storage space. A reading process will be
blocked until there is at least one token in the FIFO while a writing pro-
cess will be blocked until there is at least one token space in the FIFO.
Note that a channel implementing the same interfaces but using a differ-
ent implementation could change the communication semantics. For in-
stance, we could implement a non-blocking write operation by just over-
writing the current data.

In this example, there is no restriction on the simultaneous access to
the storage variable in the medium. A reader and a writer can access the
medium at the same execution step and modify the internal state simul-
taneously. When this situation occurs, the final value of the variables is
not known. In order to avoid data corruption, a synchronization method
between the two processes has to be implemented. The synchronization
protocol can be described directly in the medium (using the set lit and
test lit in the await statements) or using an external scheduler that we
call quantity manager.

We could use an empty interface to act as a semaphore and include it
in the await test and set lists as follows:
interface Sem {};
medium Channel implements ReadInterface, WriteInterface, Sem {

...
public update void write(int token) {

await {
(space > 0;Sem;Sem) {

...
}

}
}

public update int read() {
await{

(n > 0;Sem ;Sem) {
...

}
}

}}
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2. BASIC NOTIONS ON MODELING

We can imagine that each interface has a flag associated with it. Each
time a critical section is entered, the flags of all the interfaces in the set
list are raised. Before entering a critical section, though, not only the
guard has to evaluate to true but all interfaces in the test list have to have
their flags not raised. In our implementation, if the producer is executing
a write operation it means that the Sem interface was flagged and hence
a consumer will be forced to execute the NOP event. In this example
the await statement is used to synchronize (schedule) the two process.
The same result can be achieved by using another object called quantity
manager as explained in section 2.3

2.2 Netlists

A netlist is an object used to instantiate and connect other components
like processes, media an other netlists. A netlist has a constructor where
all components and instantiated and connected. An API is provided
to add a component to a netlist and to connect a port of an object to a
medium. In our case for instance the netlist code looks as follows:

netlist ProducerConsumer {
public ProducerConsumer(String n, int nw){

super(n);
producer p = new producer(‘‘Prod’’,nw);
consumer c = new consumer(‘‘Cons’’);
controller ctrl = new controller(‘‘Contr’’);
Channel ch = new Channel(‘‘CommCh’’)
addcomponent(p,this,’’ProdInstance’’);
...
connect(p,w,ch)
...

}
}

An object is created as in Java using the keyword new. Even if an object
is in memory it has to be added to the netlist before using it. The function
addcomponent add the object to the netlist provided as second argument
(the current netlist in this case). Finally it is possible to connect ports to
medium using the function connect.
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Quantity managers

2.3 Quantity managers

Quantity managers are used to assign tags to events. A tag is an abstract
quantity from a partially order set. Time, for instance, is a real number
so in this case the set of tags is totally ordered. When an event has to
be tagged with a quantity, an explicit request is made to the manager
of that quantity. Due to concurrency of processes, multiple requests can
be issued to a quantity manager that has to resolve them and schedule
the processes in order to satisfy the ordering relation on the set of tags.
Consider the simple producer/consumer example of figure 2.2. We want

Figure 2.2: A quantity manager

to make sure that internal variables are not accesses simultaneously by a
reader and a writer. We can use a quantity manager to scheduled the two
processes:

quantity RWManager implements QuantityManager {
port StateMediumSched reader;
port StateMediumSched writer;

public RWManager(String n){
super(n);
_pending = new ArrayList();

//Constructor code }

public eval void request(event e, RequestClass rc){
_pending.add((Object)rc.clone());}

public update void resolve(){

19



2. BASIC NOTIONS ON MODELING

//For all pending requests
// order them depending on the tags ordering

}

public update void postcond(){
//Do the first event
//Don’t do the others
_pending.clear();}

public eval boolean stable(){
return true;}

ArrayList _pending;
}

The set of tags contains four elements: br,er,bw,ew. Each time the read
service is called, before modifying the internal state it makes a request
to annotate the begin of the read function with the tag br. Also, before
exiting the read function, another request is made to annotate the end of
the read function with the tag er. A similar set of requests is generated
by the write service.

The quantity manager specifies an order on this set of tags that could
be, for instance, br < er, bw < ew, bw < br. The last inequality says that
in the case of simultaneous access of a reader and a writer, the read is
executed first.

In general, quantity managers are used to adapt two different concur-
rency models. On one side, the set of processes are fully concurrent and
can freely execute the sequence of events defined in their threads. On
the other side, we have a specific process scheduling mechanism that we
want to implement in order to give our program the semantics that we
want. For instance, in a discrete time model, time is a totally ordered set
of tags and hence a process that wants to execute and event at time ti has
to wait for other processes that are executing events at time tj < ti.

2.4 Constraints

An important part of the design specification is represented by constraints.
They are declarative formulas that are used to specify property that the
implementation have to satisfy. In our simple example, we might want
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Constraints

to declare that the time needed to complete a write operation has to be
less than a certain quantity T .

Two kind of formulas are provided by the MMM language: linear
temporal logic (LTL) and logic of constraints (LOC). The syntax is ex-
plained in [2].

Constraints are propagated down while marching towards the imple-
mentation and have to be constantly checked at each level of abstraction.
A back-end tool called LOC − Checker is provided in the framework to
verify that LOC formulas are satisfied.

At the functional level, where performance annotation are not avail-
able yet, constraints are uninterpreted formulas.
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Chapter Three

Developing platforms for functional
description

A design process always starts with the idea of what the system is sup-
posed to do. In our terminology this is the function. It can be described,
informally, using natural languages like English, or its description can
be more formal. A denotational definition of the function usually in-
volve formulas describing the outputs in terms of inputs. A maximum
likelihood estimator, for instance, can be described as the solution of a
maximization problem:

max ln P (r|c)

where r is the vector of the received bit stream and c is the vector rep-
resenting the code. The description of the algorithm is denotational and
only tells us what the system should do.

Practical and implementable algorithms exists to solve this problem.
For example, the Viterbi decoding algorithm is an interconnection of
blocks whose final result is an approximation of the maximum likelihood
estimation. Being an approximation means that the result is different
from the denotational description by a quantity e. If nothing has been
stated about the error, then it could be any number but what we really
want is that the implementation follows as close as possible the denota-
tional description, where “as close as possible” is estimated by the error
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3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

e. Usually another important part of the functional description is a set of
constraints that an implementation of the algorithm is subject to. In our
example, for instance, a bound on the maximum admissible error can be
set as constraint.

The denotational function is then mapped onto a platform that allows
its description in a more “structured” way, usually as interconnection
of sub-functions. Precise rules have to be imposed on this structure in
order to have a non ambiguous description, or better, we need a uniquely
defined way of interpreting the model that gives all and only the system’s
execution traces.

The set of rules define the semantics of a model of computation (MoC).
An MoC is defined in terms of how computation, communication and
coordination must be carried out in a structured interconnection of ob-
jects.

This chapter gives few design guidelines for building an MoC (that
we shall call functional platform in the sequel) in the Metropolis frame-
work and introduces some examples of models of computation.

3.1 Models of computations for describing
functions

This section is divided in three parts. This introduction explains briefly
what are the properties characterizing a model of computation. The sec-
ond shows how a user wants an MoC to be exposed to her/him in order
to make the functional description easier. The third part is how a devel-
oper should build a platform and expose a model of computation to the
users.

We will use the tagged signal model [8] (TSM) formalism (whose ba-
sic definitions are given in appendix B) as a denotational framework for
stating properties about a model of computation.

Informally speaking, a model of computation can be defined by the
set of values V , the set of tags T and the ordering relation on the tags ≤,
the legal processes P and their communication semantics.

For instance, Kahan process networks are characterized by a set of
tags that is partially ordered (it is an untimed model) and, since a com-
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Function platforms use-case

Figure 3.1: Block diagram of a digital receiver

munication channel has a first-input-first-output semantics, each signal
is totally ordered.

An MMM process is used to describe all the possible behaviors of a
process P while media are used to enforce a communication semantics.
An order on the set of tags can be enforced by using a quantity manager
which has the task of assigning tags to events. Consequently a quantity
manager has to decide the scheduling of the process in order to satisfy
the ordering of tags.

3.2 Function platforms use-case

Description of applications is considerably simplified when a suitable
model of computation is chosen. Depending on the application domain,
the first step in a design flow is to choose a natural function platform
where the description and interconnection of functions is easy to carry
out. For instance, digital signal processing algorithms are naturally ex-
pressed using a model where computation is done by blocks called actors
that communicate through FIFOs.

Consider the following example. We would like to design a digital re-
ceiver which is the cascade of a digital demodulator, a root raised cosine
filter, a timing recovery loop and a decoder. The block diagram is shown
in the top part of figure 3.1.
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3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

The system input signal i is a sequence of totally ordered events. As
a first choice we select the Kahan process networks [6] (KPN) model of
computation. We would like to describe the system as follows.

netlist DigitalReceiver {
public DigitalReceiver(...){

//components instances
StimuliGen s = new StimuliGen(...);
Demodulator demod = new Demodulator(...);
RRCTiming rrct = new RRCTiming(...);
Decoder dec = new Decoder(...);
//add components to this netlist
addcomponent(s,this,"sinstance");
...
//Interconnections
FIFOinstance(s.out,demod.in);
FIFOinstance(demod.out,rrct.in);
FIFOinstance(rrct.out,dec.in);

}
}

We first instantiate all components and add them to the current netlist
and finally we interconnect them. Ideally we would like to have a way
of specifying a connection by calling a function and passing the source
and destination ports as parameters. In our example, this function is
FIFOinstance(port src, port dest) that will instantiate a FIFO channel and
connect the two ports to it. If the domain that we are using is KPN,
there is no need for scheduling the processes since the blocking read and
non-blocking write communication semantics will take care of the pro-
cess synchronization. As result, the platform will not include a quantity
manager or other synchronization constraints.

Consider now the refinement of the timing recovery loop shown in
the bottom part of figure 3.1. The domain that we want to use in this case
has different properties from the previous one. In particular we want
to enforce a specific scheduling of the two processes. The sequence of
reaction should be an infinite sequence of the RRC filter bank and the
error detector. Using a quantity manager for ordering the events is the
right solution. Every time a process want to read its inputs and com-
pute its outputs it has to ask the quantity manager first. This request is
basically asking to annotate the read-compute-write sequence of events.
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The quantity manager, based on its pending queue of events, enforces
the right scheduling deciding which process can proceed and which has
to wait

A user of this model of computation would like to describe the new
netlist as in the previous case without having any concern about the
quantity manager and synchronization schemes.

A refinement of the original system is obtained by using the keyword
refine which is explained in [2]. It is also necessary to redirect the original
connection to the refining netlist. In this particular case, the communica-
tion semantics of the two domains is the same so a direct connection is
possible.

However, a complex system could require the use of an heteroge-
neous model of computation because it spans multiple application do-
mains. A communication system, for instance, is the interconnection
of the radio sub-system to the base-band sub-system which is in turn
connected to the data-link sub-system. Each of them has very different
properties and a single model for their description is not the right solu-
tion. The radio sub-system is best described in a continuous time domain
while the base-band sub-system is basically a dataflow kind of applica-
tion. A direct connection of the two is not possible but a specific interface
has to be designed to transform a dataflow signal into a continuous time
one.

A user of the framework would like to have a set of interfaces between
models that are available to be used. Moreover, each interface should be
parameterizable so that the impact of translation of one signal into the
other can be evaluated at this level of abstraction.

3.3 Architecture of a model of computation

A model of computation is provided as a library of components that a
user extends and interconnects to describe a function. Section 3.2 intro-
duces the user expectations which will determine the design guidelines
for platform developers.

When developing a new platform we focus on the components to be
exposed to the user, the way of customizing their behavior and a way
of interconnecting them. The basic components to develop are shown in
figure 3.2:
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Figure 3.2: Components of a platform

• Processes for describing computation. A base class has to be pro-
vided together with a set of API to access ports values. After ex-
tending this class, a user has only to override a method to describe
the process behavior.

• Media for describing communication between processes. The com-
munication semantics is usually fixed in a model of computation,
so a medium should not be touched by the platform user. However
some parameters could be exposed to configure the medium.

• Quantity Managers for enforcing a scheduling policy of processes.
Scheduling is also a property of a model of computation and should
be out of the user control. The instantiation and interconnection of
quantity managers should be totally transparent to the user. For
instance, in a synchronous model of computation all events in an
event vector have the same tag and even if this property is know to
the MoC user, she/he should not be aware of how this property is
enforced.

In the Metropolis framework, platforms for functional specification
are provided as a packages. All platforms reside in the repository tree
under the directory metro/lib/metamodel/plt. It is good practice to create
a new directory for each platform under development. For instance, a
dataflow platform will reside under metro/lib/metamodel/plt/dataflow.
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The rest of the chapter shows two examples of platforms available in
the Metropolis framework. The first one does not use quantity managers
while the second one, whose semantics has the notion of computation
steps, needs a synchronization of the processes execution.

3.4 YAPI: Y-Chart Application Programming
Interface

For a complete description of the YAPI semantics refer to [5]. Briefly,
YAPI is a KPN model of computation where a non-deterministic choice
has been added. More precisely, a process is allowed to check on the
number of tokens on an input channel which is a way of implementing
non determinism in a model of computation.

Processes communicate through unbounded FIFOs. Processes can
read form and write to communication channels using two functions:
T[] read(int n) and void write(T[] data) where T is the data type. It is possi-
ble to parameterize the functions with respect to the data types by using
templates but another valid option is to define an interface that all valid
data types have to implement. We will use the first option because it is
more natural for designers to use templates that are widely used in C++.

The first thing to define are the interfaces:
package metamodel.plt.yapitemplate;
//interface to check fifos
public interface yapiinterface extends Port {

eval boolean checkfifo(int n,int dir);}
//write interface
template(T)
public interface yapioutinterface extends yapiinterface {

update void write(T data);
update void write(T[] data,int n);
update void write(T[][] data, int n, int m);}

//read interface
template(T)
public interface yapiininterface extends yapiinterface {

update T read();
update void read(T[] data,int n);
update void read(T[][] data,int n,int m);}

We define a service to check how many tokens are present in the FIFO.
Then we define a writing interface that declares three services for writing
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data: one for writing matrices, one for vectors and one for single data.
Finally we define a reading interface for reading data. This is sufficient
for a designer that don’t really care about the services implementation
but only about their signature and semantics. A communication channel
is implemented as follows:

template(T)
public medium yapichannel implements yapiininterface-<T>-,

yapioutinterface-<T>-,
rdi,wri,cki {

//Definition of internal buffers
...

//Constructor
public yapichannel(String n,int isize){

super(n);
...}

public update void write(T[] data,int n){
await{
(true;this.rdi,this.cki;this.wri){

int i;
if ((ntokens + n) >= size){ //resize internal buffer

... }
else { //OK we can write directly

for(i= 0; i< n ; i++)
FIFO[(wp+i)%size] = data[i].clone();
wp = (wp + n) % size;
ntokens = ntokens + n;}

}}}

public update void read(T[] data,int n){
await{
(ntokens > n-1;this.wri,this.cki;this.rdi){

for(int i=0 ; i<n ; i++){
data[i] = FIFO[rp];
rp = (rp +1)%size;

}
ntokens = ntokens - n;}

}}}

The channel is defined as a medium that implement all the interfaces
shown before. It also implements some dummy interfaces that are used
only to prevent data corruption. Simultaneous access to the same data is
prevented using an await statement that before entering a critical section
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checks if another process is using one of the dummy interfaces. Since the
write is non-blocking, the guard condition on the corresponding await
statement is always true. It might happen that the FIFO has to be re-
sized because there is no more space to write. This method is a way of
implementing an unbounded FIFO.

The read function instead, has a guard condition that checks the num-
ber of tokens in the FIFO before executing the read operation. If the num-
ber of tokens is less than requested, the calling process is blocked.

The YAPI platform process offers a function to select non-deterministically
a port among a set of ports where a read or write operation can eventu-
ally be completed. This function is useful for handling inputs coming
from a user. Reading from these inputs will block a process execution
until a new token arrives. It is important to provide a way of continu-
ing the execution if there are no tokens available on that channel. This
situation occurs for instance when an input is used to change a process
behavior during execution. The YAPI platform implements a process as
follows:

template(T)
public process yapiprocess{

public yapiprocess(String n){
super(n);

}

public int select(ArrayList ports,int[] tokens){
await{

(atLeastOnePortEnabled(ports,tokens);;){
return selectOnePort(ports,tokens);

}
}

}

boolean atLeastOnePortEnabled(ArrayList ports,int[] tokens){
//OR of all checkfifo

}

int selectOnePort(ArrayList ports,int[] tokens){
//non-deterministic selection of one port

}

void thread() {
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execute();}

public void execute(){}

}

The select function is provided in the process implementation. It takes an
array of ports and an array of integers where for each port p[i] we request
to read/write n[i] tokens. Select first checks whether there is a least one
ports where read or write will not block the process execution. If this
condition is true, it selects one among these ports non-deterministically.

The thread function calls an execute function that the platform user
override to describe the process behavior.

As an example of usage of the YAPI platform, consider the cascade
interconnection of a producer, a filter and a consumer. The filter block
implements two algorithm to filter the producer data. A controller de-
cides which filtering algorithm to use (figure 3.3).

Figure 3.3: Block diagram of the producer-filter-consumer example

The filter code is the following:

import metamodel.plt.yapitemplate.*;
process filter extends yapiprocess {

parameter int N_pixels_per_block;
port yapiininterface-<yapiint>- prod;
port yapioutinterface-<yapiint>- cons;
port yapiininterface-<yapiint>- ctrl;

int p,bc;
pixel[] blk;
pixel[] blk_out;
int filtertype;
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filter(String n,int npb,int ft){
super(n);
//constructor code omitted

}

public void execute(){
int enabled;
ArryList = new ports ArrayList();
int[] tokens = new int[2];
tokens[0] = N_pixels_per_block;
tokens[1] = 1;
ports.add(prod);
ports.add(ctrl);

while (true){
enabled = select(ports,tokens);
/* filter always */
if (enabled == 0)
filtertype = ctrl.readint();

if (filtertype == 1){
//use algorithm 1

} else {
//use algorithm 2

}
}

}
}

The user first imports the required library. In order to describe a process,
she/he extends the basic class, defines ports and parameters and then
overrides the execute method. The filter process behavior has an infinite
loop that selects among two inputs: the producer and the controller. If
the controller input is selected, the filter type is read. If the controller has
not requested any filter type change, the process execution can go ahead
and filters the input data.

Finally the top level netlist is described as follows:

import metamodel.plt.yapitemplate.*;
public netlist pfcnetlist extends yapinetlist {

public pfcnetlist(String n){
super(n);
producer p = new producer("Prod",48,72);
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consumer c = new consumer("Cons",48,72);
filter f = new filter("Filt",72,1);
controller ctrl = new controller("CTRL",300,150,2);

yapichannel-<yapiint>- cpf = new yapichannel-<yapiint>-("CPF",100);
yapichannel-<yapiint>- cfc = new yapichannel-<yapiint>- ("CFC",100);
yapichannel-<yapiint>- ccc = new yapichannel-<yapiint>-("CCC",100);
yapichannel-<yapiint>- cfiltdecision = new yapichannel-<yapiint>-("CFD",100);
yapichannel-<yapiint>- ccp = new yapichannel-<yapiint>-("CCP",100);
//add all componets here
addcomponent(p,this,"ProdInstance");
...
//connect components
connect(p,out,cpf);
...

}
}

3.5 Muti-rate Synchronous model of
computation

The semantics of this platform can be informally defined as a sequence of
rounds. Let {Pi} be a set of communicating processes. When a process Pi

executes, it execute a sequence of three actions writei, readi and executei.
writei writes the content of the internal output buffer Oi to the output
ports. readi read from the input channels and store the data into an inter-
nal buffer Ii. Also a process is characterized by two numbers: Pi.r which
is the execution rate and Pi.p which is the process priority.

Each round has satisfy the following constraints:

• process Pi has to be executed Pi.r times;

• if Pi.p > Pj.p then Pi has to finish his execution in this round before
Pi can execute.

This condition is clearly an ordering of the processes execution depend-
ing on rates and priorities. A quantity manager is then needed to model
this situation. A detailed description of this platform can be found in the
user manual under metro/doc/polychronyscaled.

Each process is connected to a quantity manager that is instantiated
into a scheduling netlist. The quantity manager is defined as follows:
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quantity SynchScheduler implements QuantityManager {
port StateMediumSched[] synchprocesses;
public SynchScheduler(String n,int st,int nproc){

super(n);
//constructor code
...}

public eval void request(event e, RequestClass rc){
//add requests to the pending list }

public update void resolve(){
if ((!_inround) && (_pending.size() == _numberofsynchprocesses)){

_inround = true;
toWerePending();
fairScheduling();

}else
if (_pending.size() == _numberofsynchprocesses){

if (_st == 0){
fairScheduling();

};
}else {

SynchRequest sr;
for(int i=0;i<_werepending.size();i++){

sr = (SynchRequest)_werepending.get(i);
_notdoevents.add((Object)sr.clone());

}}}

void fairScheduling(){
int currentpriority,subround;
_inround = false;
SynchRequest sr;
currentpriority = findMaxPriority(_werepending);
for(int i=0;i<_werepending.size();i++){

sr = (SynchRequest)_werepending.get(i);
subround = sr.getClock();
if ((subround >0) && (sr.getP() == currentpriority) ){

_inround = true;
sr.setClock(subround - 1);
_doevents.add((Object)sr.clone());

}else{
_notdoevents.add((Object)sr.clone());

};
};

}
...
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public update void postcond(){
int i;
int id;
SynchRequest sr;
event e;
for(i = 0; i < _doevents.size();i++){

sr = (SynchRequest)_doevents.get(i);
e = sr.getEvent();
synchprocesses[sr.getId()].setMustDo(e);
id = sr.getId();

};
for(i = 0; i < _notdoevents.size();i++){

sr = (SynchRequest)_notdoevents.get(i);
e = sr.getEvent();
synchprocesses[sr.getId()].setMustNotDo(e);

};
_doevents.clear();
_notdoevents.clear();
_pending.clear();

}

public eval boolean stable(){
return true;

}
}

If the resolve method is called then the quantity manager checks whether
we are in the middle of a round or if a new round should start.

We are in a round, then the fairScheduling algorithm is called. This
algorithm first compute the maximum priority among all processes with
pending requests. Then collects all processes with this priority in a queue.
These processes are the one that have to be executed while all the others
have to wait. Finally in the postcond function orders to execution or not
the requested events are given to the processes.

If we are not in a round, then we first wait until all processes have
made a request, then we save all requests in an internal array (function
toWerePending) and then we call the scheduling algorithm.

36



Chapter Four

Developing platforms for
architectural description

There is no significant difference between function and architecture plat-
forms. A platform is a set of library components and a set of rules that
define their legal compositions. In the case of architecture it is impor-
tant to have a way of associating costs and performances to each compo-
nent and a way of estimating costs and performances of a composition
of components. This is very important in order to be able to explore the
implementation space and compare solutions to decide which one is the
best.

There is though a radical difference between a functional description
and an architectural description. Once the denotational description of a
function has been mapped onto a platform representing a model of com-
putation, the resulting interconnection of components only implements
the original specification. In the case of architecture, an interconnection
of library components results in a structure that can implement a set of
functions. For instance, a single processor architecture can be used to im-
plement an MPEG decoder or a finite impulse response filter depending
on the software that is poured into the program memory.

A platform provider should expose all possible functions that an ar-
chitecture can support and let the system developer chooses one by de-
termining the architecture behavior in the mapping phase.
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4.1 Architecture platforms use-case

We have to consider two different views: platform developers that as-
semble a platform starting from a set of preexisting library components
and platform users that use a platform, configure it and map a set of ap-
plications on it. Looking at figure A.1, platform developers would like to
define the red point in the platform space starting from the set of IPs that
are available in the library. Platform users, instead, want to have control
over the total power that the platform can offer which is represented by
the light red triangle in the common semantic domain.

Platform developers view. A platform developer has two main con-
cerns:

• she/he wants to define a point in the platform space with certain
characteristics (that are usually requested by platform creators) like
number of operations per seconds, number of processors, energy
per operation etc.

• she/he needs a way of exposing all implementable functions to the
platform users. In fact, she/he needs a way of defining the pink
triangle and make it available for mapping a function onto the ar-
chitecture.

Each component in the library should be characterized with parame-
ters that configure its properties. Parameters like bus arbitration policy,
instruction set architecture or packet length for a serialization block are
examples of configuration options.

Each component should hide its implementation details and only ex-
pose its interfaces which declare the services that the component imple-
ments and requires. A bus, for instance, exposes the master interface and
has ports whose type is a slave interface. Interfaces constraint the way in
which components can be connected. A platform developer would con-
nect components together being aware of the valid compositions that can
be statically checked by the Metropolis compiler.

Each component is also characterized by costs and performances. These
quantities are modeled using quantity managers. When multiple compo-
nents are connected together quantities could become dependent form
each other. Physical time, for instance, is a global quantity that should
be the same for all components. Even for quantity that are not global, a
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dependence could arise from the composition. Consider a real time op-
erating system and a bus arbiter. When a task mapped on a CPU reads
a variable form the memory, the CPU has to ask permission to the bus
arbiter. If the bus is busy in another transfer, the opinion of whether the
task should continue its execution or not is different for the two sched-
ulers. A coordination mechanism is then needed in presence of multiple
quantity managers.

Coordination among quantity managers could become very cumber-
some for a platform developer. Ideally, she/he wants the coordination
to be totally transparent. A standard coordination algorithm should be
provided to the platform developer with very few parameters to act on.
For instance, each quantity manager could have a configuration param-
eter indicating its priority with respect to the other managers. When a
platform is built, platform developers could set the priority in order to
make the decision of a quantity manager dominate the one of a lower
priority manager. In our example, the bus arbiter would have a higher
priority than the real time operating system.

Platform user view. A platform user starts with a functional descrip-
tion which is then mapped onto several architectures. Each mapping
explores the cost/performance trade-off of the particular architecture un-
der consideration. The goal of this design step is to select the best map-
ping, or better, the best implementation of the original function at a lower
level of abstraction.

A platform user operates in the common semantic domain. The archi-
tecture is presented as a set of services and all their valid compositions.
The function is described using the same king of services. The mapping
is then the solution of a covering problem.

Two are the features that a user requires:

• a way of modifying the characteristics of an architecture. This re-
quires that a platform exposes a set of parameters through which it
is possible to configure its elements. A platform developer has to
export the important parameters, characterizing each architecture
component, to the level of the platform users.

• A way of “intersecting” the function with the architecture in the
common semantic domain. This step can be viewed as a determi-
nation of the architecture non-determinism and will be clarifies in
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Figure 4.1: A model of a bus

chapter 5. Intuitively, it is a way of assigning pieces of functions to
architectural resources that can implement them.

4.2 Architecture platforms development

A platform developer could miss components that she/he needs to built
a platform. In this section we provide guidelines for doing two things:
providing components and providing an interconnection of components
that can implement several functions.

A component offers services that can be used at a cost. A very abstract
view of a component is then a medium which exposes some interfaces.
Later on a medium can be refined into a netlist if a more detailed descrip-
tion is needed.

Figure 4.1 shows an example of a bus component. The elements to
define are:

• the master interface which declares the services that a master can
use. In this example there is one service for writing to a specific
target and a symmetric service for reading.

• the set of parameters to configure the bus. In this example they are
the number of connected masters, the number of connected slaves
and the priority of each master.
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• A quantity manager that schedules accesses to the bus. This com-
ponent represents the bus arbiter and decides the ordering of bus
accesses among all requests coming form the masters.

• A global time quantity manager. This component is already pro-
vided by the Metropolis framework. It is a global quantity and it’s
in the picture only to show that there is a connection between the
bus an the time manager.By using the global time, it is possible to
model performances in terms of time required for each operation.

• Statemedia for bus to quantity managers communication. This com-
ponents implement the communication protocol between the re-
source and the algorithm that handles it. At sufficiently high level
of abstraction, this component implement the identity function pass-
ing requests from one component to the other. At lower level of ab-
straction the communication protocol could be more complicated
and the statemedia have to be refined.

The left hand side of the diagram will be part of a scheduled netlist while
the right hand side will be instantiated in the scheduling netlist. The
developer should be relieved from the burden of instantiating compo-
nents, quantity mangers and statemedia and connecting them together.
For each component, a function should be provided with the following
signature:

public myBus addmyBus(netlist theScheduledNetlist,
netlist theSchedulingNetlist,
ArrayList parameters, int priority)

The function will create instances of all components and set their pa-
rameters. Then, it will add components to the proper netlist and make
connections. The last parameter is needed in the case of multiple quan-
tity managers interacting with each other. The priority parameter will
be used in the resolution phase to decide which manager has precedence
over the others.

Each component can be described following this basic structure and
then refined into a more detailed entity. Refinement could require to
move part of the scheduling algorithm from the quantity managers to
the scheduled netlist.
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Figure 4.2: Block diagram of a double processor architecture

Consider now a library of components. As platform developers, we
want to interconnect them to provide an architecture that can support
a variety of applications. We will not deal with the characterization of
an architecture as a stand-alone object regardless of the function that is
mapped onto it. We rather speculate on how elements of an architectures
are connected together, how their parameters are exported and how its
potentials are exposed to the platform user.

We chose to provide a double processor architecture. The structure is
clear and is shown in figure 4.2.

The architecture exposes an interface which is the real time operating
system view of the underlying platform. We select a multi-processor real
time operating system, two processors, a communication system, and
two memories. We have not specified what kind of components we want
to use nor what are the event traces that can be generated by this inter-
connection of components. Actually, in this abstract architecture there
are no processes and hence no events can be generated, or better in the
TSM terminology, the only possible execution is the empty behavior.

Before discussing how events are generated and exposed, we describe
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how components are interconnected and how parameters are exported.

public netlist doubleProc {
public doubleProc(String n,

String comm,
String rtossched,
double timeslice, double clk1, double clk2){

//Instance of components
Netlist dpscheduled = new Netlist(n+’’scheduled’’);
SchdulingNetlist dpscheduling = new

SchedulingNetlist(n+’’scheduling’’,true);

MPRTOS myrtos = new MPRTOS(n,dpscheduled,dpscheduling,
rtossched,timeslice);

MProc mp1 = MProc(n,dpscheduled,dpscheduling,clk1 );
MProc mp2 = MProc(n,dpscheduled,dpscheduling,clk2 );
if (comm == ‘‘xbar’’){

XBar cmm = new XBar(n);
} else {

FCFSBus cmm = new FCFSBus(n);
};
....
connect(myrtos,p1,mp1);
...

}
}

The netlist is an example of how the architecture is described. The impor-
tant thing to notice is that the netlist represents a family of architectures
that are not only different because of the parameters of each component
but also because the user can decide which communication architecture
she/he wants to use. The architecture will still be double-processor-
double-memory but it is possible to select a different way of commu-
nicating between the two masters and the two slaves. Parameters are
simply exported from the components to the top netlist constructor.

We now describe how all the functions that an architecture can im-
plement are exposed to the platform users. Until now, an architecture
appears as an interface that offers services. In our example, the multi-
processor real time operating system offers services like request from a
task to use the CPU, sleep, request of ownership of a semaphore etc. We
want to give a description of all legal sequences of those services. We use
a non-deterministic requests of the services by a set of tasks. We might
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Figure 4.3: Connection of tasks to the architecture

want to limit not only the number of tasks that can be mapped on the real
time operating system but also the way in which the services are called
or the parameters that are passed to the services. For instance, we cannot
read a memory location which is out of the memory space or we cannot
execute a bus read if we don’t ask the ownership of the CPU before.

Figure 4.3 shows how processes are connected to the architecture model.
Before giving a pseudo code for the thread of a process we observe that
all quantity managers have to be connected to the process in order to
schedule them.

A thread of a process Ti looks like the following:

void thread(){
while(true){

await{
(true; ;){ cpuRequest(nondeterminism(int));}//number of cycles
(true; ;){ dataRead(nondeterminism(int),nondeterminism(int));}

//address , number of bytes
(true; ;){ dataRead(nondeterminism(int),nondeterminism(int));}
...

}
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}
}

It is an infinite loop with only one await statement belonging to it.
The await has parallel critical sections all enabled at the same time. It
semantically says that at each time the while loop is executed, one of the
critical section is non-deterministically selected. The parameters of each
service are non-deterministic values even if bounds should be given in
order to satisfy constraints like memory limitations.

4.3 The single-processor-single-memory
architecture

In this section we will create a single processor architecture. We start
from the interfaces and then we describe the implementation.

Let’s start from the description of a bus. First of all it defines the in-
terfaces to use it. Each bus has its own set of interfaces. The AMBA [1]
bus for instance defines the signals that a master and a slave interfaces
have to have. Those are very low level characterization of the intercon-
nection and here we want to focus more on the services that are pro-
vided/requested by/from a bus. For instance, the Open Core Protocol
(OCP) [9] defines different king of transactions that can be requested by
a master and defines also the set of services that a slave has to provide.

We want to provide very basic services to transfer n bytes to a target
slave T :

public interface MasterInterface extends Port {
eval void read (int target, int addr, int n, int p);
update void write(int target, int addr, int n, int p);

}

public interface SlaveInterface extends Port {
eval void read (int target, int addr, int n);
update void write(int target, int addr, int n);

}

Parameters of this functions are:

• target: the target slave;
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• addr: the address on the target memory space;

• n: the number of bytes to transfer;

• p: the priority assigned to the master.

Note that we are not concerned with the actual transfer of data even if
adding this information is easy. The parameters are needed only to es-
timate the time required for transferring the n bytes. A bus needs two
quantity managers: the global time manager that annotates time for the
begin and end events of a transaction, and a quantity manager that de-
cides the bus owner (the bus arbiter). When a write or read transaction is
requested by a master, a request is issued to the bus arbiter that checks if
whether the bus is available. If multiple request are pending, the highest
priority master will get the bus ownership. The following piece of code
is an idea of how the read service is implemented:

public eval void read (int target, int addr, int n, int p) {
event e, r;
br1{@;

{$
beg{

e = beg(getthread(), this.bri);
_src.setSchedReqClass(e,REQUEST);
_portSM.request(e, _src);

}

$}@};

{
_portSlaves[target].busSlaveRead(target, addr, n);

}
br2{@;

{$
end{

r = end(getthread(), this.br2);
_src.setSchedReqClass(r, e , RELEASE);
_portSM.request(r, _src);

}
$}@};

}

The service uses two labels: br1 marks the initial request of the bus while
br2 marks the release of the bus indicating that the tranfer has been suc-
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cesfully done. With reference to figure 4.1, when a master calls a read ser-
vice on a bus a requrest is issued at the begin event of label br1. portSM
is a port to the statemedium S1 that passes the request to the bus arbiter.
The arbiter decides if the request can be satified in which case the pro-
cess can continue with its execution and the read on the target slave is
called by the bus. When the read finishes, a request to release the bus is
issued and the arbiter selects a new owner of the bus (if there are pending
requests).

The bus arbiter can also ask the global time manager to account for
arbitration overhead in which case the begin event of the read operation
on the target slave can begin only if the the amount of time needed for
arbitration has elapsed. Also the slave read can take a certain amount
of time meaning that the end event of the read function can be executed
only if such amount of time has elapsed. This algorithm is implemented
in the global time quantity manager.

A master could be for instance a CPU. In order for the CPU to be con-
nected to the bus, it must have a port of type MasterInterface. A real
time operating system is connected on top of the CPU to share the re-
sources among multiple tasks. Instead of going into the details of the
CPU code, whose implementation in MMM can be intuitively under-
stood looking at the bus implementation, we want to give an idea of how
multiple quantity managers coordinate to guide the architecture execu-
tion.

As in the case of the bus and bus arbiter, the real time operating sys-
tem has a scheduler which is a quantity manager. The question is: how
do we coordinate them in order to make the right decision? Each sched-
uler implements three functions: resolve, postcond and stable. The re-
solve function looks at the pending requests and based on its scheduling
algorithm annotates tags to events. It also decides if an event can be exe-
cuted or not. The postcond function is used to let each quantity manager
know about decisions of the others. The stable function returns a boolean
value that should be true only if the schedulers decisions has not changed
since last iteration.

The three functions are implemented by the user. The quantity man-
agers are instantiated in a scheduling netlist which is a regular netlist
with a resolve method that has to be implemented by the user. The re-
solve method is called whenever a scheduling decision is needed (for a
detailed explanation of this method please refer to [2]). The scheduling
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netlist resolve method can recursively call the quantity managers resolve
methods until all of them are stable. Finally it calls the postcond meth-
ods.

In our case, we could call the bus resolve method first and then the
real time operating system scheduler, thus giving the bus arbiter a higher
priority. The real time operating system will execute his scheduling algo-
rithm considering only the pending requests that can be executed, with-
out considering tasks that have requested the bus and have to wait until
it is available.

After all components are connected together, the real time operating
system exposes the following set of services:

public interface SwTaskService extends Port {
eval void request(int n);
eval void read (int target, int addr, int n);
update void write(int target, int addr, int n);
eval void readProtect (int target, int addr, int n);
update void writeProtect(int target, int addr, int n);
eval void readLongProtect (int target, int addr, int n, int[] data);
update void writeLongProtect(int target, int addr, int n, int[] data);

}

The request method only asks the CPU for computation. Three read and
write services are provided. The protect version will first try to acquire
a semaphore and then accesses the memory location at address addr on
target target. The long version will transfer the actual data.

The last component that we need are the tasks that use the services
provided by the operating system. In our experiment we want to provide
services to transfer data and a service for carrying out computation. The
task will look like the following:

public process SwTask {
Nondet _target, _addr, _nTimes;
// Constructor
port SwTaskService rtos;
public SwTask(String n, int num_sms, int num_cpus){

super(n);
rtos = new SwTaskService[num_cpus];
...

}
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public void thread() {
while(true){

await{
(true; ; ) query_space();
(true; ; ) guard_query_space();
(true; ; ) claim_space();
(true; ; ) release_space();

(true; ; ) query_data();
(true; ; ) guard_query_data();
(true; ; ) claim_data();
(true; ; ) release_data();
...

}
}

}

public void query_space() {
rtos[0].readProtect(_target.get(), _addr.get(), 1);

}

public void release_space() {
int[] tokens = new int[1];

rtos[0].readLongProtect(_target.get(), _addr.get(), 1, tokens);
tokens[0] = tokens[0] - _nTimes.get();
rtos[0].request(1);
rtos[0].writeLongProtect(_target.get(), _addr.get(), 1, tokens);

}
}

Part of the code has been omitted. Nondeterministic data structures have
been defined to contain the target slave, the address and the number of
bytes to transfer (respectively target addr nTimes). These variables are
non deterministic quantities in the architecture model but they will be
assigned to particular values during the mapping phase.

This architecture provides services for transferring data from and to
the memory. They are the same set of services that characterize com-
munication in the Task Transactions level [4] platform described in sec-
tion 1.1.

For instance, the releasespace method will first read the number of
tokens in a FIFO. This variable is stored in memory so it requires to read
from the memory an actual data. Moreover the read has to be protected
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to avoid data corruption. Then the number of tokens in the FIFO has
to be updated. This operation also requires an arithmetic instruction to
be executed on the CPU. The request function takes into account this
overhead. Finally the new number of tokens are written back to memory.
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Chapter Five

Mapping a function onto an
architecture

Traditionally, a mapping has been thought of as the assignment of pieces
of function to architectural resources. If the part of the function S is as-
signed to resource R it means that R can implement S but R might be
able to implement other functions as well. Assigning S to it is a way
of restricting the set of its behavior. This chapter uses the more general
idea of mapping as intersection of function and architecture in a common
semantic domain.

Another important aspect of mapping is scheduling. Function and
architecture have two different concurrency models. The amount of con-
currency on the architecture side is usually determined by the number
computational resources that are available (number of processors for in-
stance). A model of computation like KPN has instead a different model
of concurrency. If processes don’t communicate at all for instance, they
all run concurrently. A scheduler then is needed to adapt this difference.

5.1 Mapping functions onto architectures

The mapping phase has to objectives: implementing a function onto an
architecture using its services and selecting the “best” architecture for a
particular function (or, more generally, a set of functions belonging to the
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same application domain). This last objective is usually called architecture
exploration or design space exploration.

A mapping can be done automatically (if a tool exists to do so) or
manually. A designer who is purposed to the mapping phase, starts
with a function on one side and a set of architectures on the other side.
She/he wants to find a “good” mapping. Words like “best” and “good”
are quoted because they are uninterpreted by now, but they implicitly
assume that mappings can be compared using a metric representing a
trade-off between performance and cost.

An important point that has to be considered is the level of abstrac-
tion at which the design exploration is carried out. Each level, in fact,
corresponds to a design decision, or a set of decisions, that have to be
made in order to reach the implementation level. The common seman-
tic domain should be defined in such a way that these decisions can be
made. In this section, we assume that such domain as been selected al-
ready which means that function and architecture are described in terms
of a common set of services. Note that this assumption is not required by
the Metropolis framework but it is suggested by the methodology that
we advocate.

Figure 5.1: Examples of function and architecture services re-
quests/offers

Figure 5.1 shows two mapping scenarios. The function F is described
as a set of trace where each trace is a sequence of services. The archi-
tecture A is pictorially represented as a set resources offering services.
For instance, case A shows an architecture with two resources R1 and R2.
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Each resource offers two services S1 and S2 but only one of them can be
in execution at a time.

For each service we shall distinguish between its begin and end event.
We shall denote with beg(Si) the begin event of Si and with end(Si) its end
event.

Using this simple notation, the function execution trace of case A
can be denoted with the sequence < beg(S1), end(S1, beg(S2), end(S2)... >.
The architecture execution is described by a trace of pairs of events be-
cause there are two resources. Two examples of its partial behaviors are
the following:

< {beg(S1), NOP}, {end(S1), NOP}, {NOP, beg(S2)}, {NOP, end(S2)}... >

< {beg(S2), beg(S2)}, {end(S2), end(S2)}, .. >

Even without a formal definition of common semantic domain and
intersection, the reader can easily recognize that while the first trace is
compatible with the function trace, the second is not because service S1 is
never executed. Moreover, the first trace corresponds to the assignment
of S1 to resource R1 and service S2 to resource R2.

Case B requires some more observations. Function F requires the
concurrent execution of service S1 and S2. If there are no constraints
on the begin and end events of these two services that they can both be
mapped on resource R1 and executed in whichever order (S1 first and
then S2 for instance) because the events are in the function are only par-
tially ordered. If we add the constraint that beg(S2) as to be executed be-
fore end(S1) then the mapping is possible only if a preemptive scheduling
is available on R1.

If a mapping is not feasible, intersection of function and architecture
results in the empty execution.

5.2 Describing mappings using metamodel
synchronization constraints

A mapping can be specified by synchronizing the function execution
with the architecture execution. First of all we have to define synchro-
nization of events. Two events e1 and e2 are synchronized if e1 ∈ v ⇐⇒
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e2 ∈ v where v is an event vector. The synchronization relation is transi-
tive.

Synchronization among events can be enforced using constraints. Con-
sider for instance case A of figure 5.1. We want to map service Si on re-
source Ri. This result can be obtained by synchronizing the begin event
of Si in the function side, with the begin event of Si on resource Ri in the
architecture side. We also want to synchronize their end events.

Synchronization is obtained using LTL formulas whose declaration is
as follows:

ltl synch(e1,e2,...[: v1@(e1,i)==v2@(e2,i),...])

it means that all the events in the first part are in the synchronization
relation. The second part is optional and is used to assign values dur-
ing mapping. In chapter 4 we have seen that values in the architecture
are non-deterministic. They become deterministic when during mapping
where an actual value is decided fir them. For instance, the memory ad-
dress of a variable is decided in the mapping phase.

The LTL formulas are interpreted and synthesized by the simulator
that will try to schedule events in order to satisfy them.

AppendixAppendix
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Appendix A

Platform-Based Design example

The platform-based design methodology is a recursive paradigm where
the action of mapping a function onto an architecture generates a new
function described at a lower level of abstraction and therefore more de-
tailed than the original one.

A design process should start with a denotational description of the
function that we want to implement, plus a set of constraints that the
implementation has to satisfy. Filtering a signal x(t), for instance, can
be denotationally described as x(t)⊗ h(t), namely the convolution of the
signal with the filter impulse response h(t). Design constraints are usu-
ally specified as propositional formulas over the system quantities. In the
case of filtering, for example, we can specify a lower bound on the off-
band signal attenuation. Constraints specified at this level of abstraction
are propagated down to all subsequent levels, until the implementation
level is reached.

While constraints are propagated in a top-down fashion, performances
are abstracted in a bottom-up manner. Performance abstraction is the
process of hiding details that are not relevant for the level of abstrac-
tion under consideration. In fact, each level of abstraction focuses on a
particular design choice on which only few quantities have impact. Ab-
straction of quantities that are not relevant is essential for speeding up
the design space exploration.

In this section we focus on one step of the design flow characterized
by a function, an architecture and the mapping of the former onto the lat-
ter. We use a simplified logic synthesis flow as a representative example.

Figure A.1 shows the design process. The function is described in
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Figure A.1: Platform based representation of a simplified logic synthesis
flow

the register transfer level (RTL) domain. In this domain a function is
described as interconnection of combinational logic blocks communicat-
ing through registers. Furthermore, each combinational block takes zero
time to compute its logic function.

The platform is composed of all possible logic functions that can be
implemented on a chip using standard cells technology. The library of
components, from which the platform is built up, contains pre-characterized
logic functions that are usually custom designed to achieve extremely
high performances. Each library element is characterized by the its logic
function, performance and cost. An OR logic gate, for instance has a truth
table, gate delay and power consumption associated with it.

A common semantic domain for the RTL functional description and
the standard cell platform is the domain of all circuits built out of 2-
inputs NAND gates. In fact, every logic function can be expressed only
using NAND gates. Mapping an RTL function onto the standard cell
platform can be done in the following way. First, we analyze the RTL
description and, for each combinational block, we express its function
using 2-inputs NAND gates. Secondly, we express each library cell logic
function using the same elementary gate. Finally, the problem reduces
to a minimum cost covering of the original function with the library ele-
ments with a given cost function (e.g. power or minimum slack).
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The covering problem is an optimization problem subject to the con-
straints coming from the original specification. Typical constraints that
are associated with the functional specification are clock speed, inputs
arrival time and output required time. After the covering algorithm has
finished, those constraints must be checked (using timing analysis). If
they are not met, the designer has two choices: going back and modify-
ing the RTL description by using a different block partitioning, or moving
the covering algorithm out of the local minima.

The resulting netlist is an interconnection of standard cells which is
indeed a new function F ′. This function represents a refinement of the
original one which was described at a much higer level of abstraction. F ′

is the new specification for the next design step whose platform library is
composed of transistors and wires. Original constraints are propagated
further down and must be satisfied by the transistor level implementa-
tion.

The simple design process described above turns out to be very gen-
eral. Once a common semantic domain has been defined so that both the
function and the platform elements can be expressed using a common
mathematical formalism, design exploration reduces to a covering prob-
lem. The covering algorithm has to minimize a cost function which is the
sum of the costs of each platform component that has been used during
the covering. The whole optimization problem is subject to the original
constraints.
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Appendix B

Tagged Signal Model Definitions

The tagged signal model is a denotational framework to compare models
of computation. In this framework an event e is an element of the cross
product V × T where V is a set of values and T is a set of tags. An order
relation defined on T induces and ordering of events. A signal s is a set
of events and can be viewed as subset of V × T . It is useful to define a
set of signal s and also the set SN of all sets of N signals. A behavior of
a process is an element of the set SN and a process P is a subset of SN .
s ∈ SN satisfies a process if s ∈ P and it is called a behavior of the process
P .
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