
Metropolis Polychrony Platform: User’s
Manual

Alessandro Pinto
University of California at Berkeley
545P Cory Hall, Berkeley, CA 94720

apinto@eecs.berkeley.edu

September 14, 2004

Copyright c© 2001-2004 The Regents of the University of California.
All rights reserved.

1

Contents

1 Execution semantics 2

2 Motivation, platform structure and examples 3
2.1 The synchronous leader election algorithm 4
2.2 Producer/consumer example 4

3 How to describe a synchronous process 5

4 How to describe a synchronous/multirate system 8

5 How to write a top-netlist and simulate it 10

1 Execution semantics

A more appropriate name for this platform would be multi-rare synchronous.
The semantics is defined as a sequence of rounds. Let {Pi} be a set of com-
municating processes. When a process Pi executes, it execute a sequence
of three actions writei, readi and executei. writei writes the content of the
internal output buffer Oi to the output ports. readi read from the input
channels and store the data into an internal buffer Ii. Also a process is
characterized by two numbers: Pi.r which is the execution rate and Pi.p
which is the process priority.

Each round has satisfy the following constraints:

• process Pi has to be executed Pi.r times;

• if Pi.p > Pj .p then Pi has to finish his execution in this round before
Pi can execute.

Processes communicate through one-input one-output FIFOs. An vari-
able can take the empty value ⊥.

2

Figure 1: Execution examples of the multi-rate synchronous platform

Figure 1 shows two examples of possible executions. Processes are rep-
resented by rounded rectangles while medium are represented by circles.
Each process is characterized by the pair of number (Pi.r, Pi.p).

The left side of the picture shows a case where priorities are all differ-
ent. A round execution is also shown in figure. Since P1 has the highest
priority it will be executed first as many times as its rate indicates. Then P2

is executed once and finally P3 is executed.
The right side of the picture shows a case P1 and P2 have the same

priority. In this case the two processes can execute concurrently. However,
P2.r is equal to one so it will finish after one execution. Then P1 can finish
its execution and finally P3 which is the lowest priority process.

2 Motivation, platform structure and examples

Polychrony platform provides a set of predefined components to model syn-
chronous multirate systems. Such systems are characterized by a central-
ized notion of clock round within which computation and communication
are carried out in a specific order (see section 1).

There are many example of synchronous systems. Hardware designer
are used to this kind of modeling framework where each component has
clock input whose event is assumed to reach every component at the same
time. In this kind of application, components can be considered as sequen-
tial machines communicating through registers (memory elements).

While the polychrony platform can be used in this way, each component
is parametrized to allow the user to build more sophisticated multirate sys-
tems. Multirate systems are widely used in signal processing applications
where up-sampling and down-sampling plays a fundamental role.

In polychrony, each process has a rate parameter indicating the number
of requested execution in each clock round. Depending on the nature of the
application and on the user’s needs, the components’ order execution can
be randomly chosen by the platform or can be specified by an appropriate

3

setting of the priority parameter. Using priority, the user can specify a
specific schedule of the components within a round. This parameter allows
the specification of data-flow models where an optimal schedule has been
already computed.

Polychrnony platform provides also a formal system
de-synchronization. This feature is implemented as a refinement step.

Components provided by this platform are:

• SynchTopNetlist

• SynchScheduledNetlist

• SynchSchedulingdNetlist

• SynchProcess

• SynchSignal

There are many other components that are not exposed to the user but are
internally used by the platform. Each component provides a set of services
that will be explained in the following sections.

This document describes the usage of polychrony platform by going
through a concrete modeling example.

2.1 The synchronous leader election algorithm

Consider a network of processes where each process has a unique identi-
fier. Assume that the set of all the identifier is totally ordered. The leader
election algorithm must eventually identify one process as leader of the
network.

A simple algorithm for solving this problem is the FloodMax algorithm.
The algorithm can be described as follows:

This algorithm is executed at every round. All processes have rate equal
to one and all of them have the same priority. This means that all processes
must be executed concurrently in each clock round.

2.2 Producer/consumer example

Producer/consumer example is a very simple system where a producer pro-
cess P has one output P.out, and a consumer process C has one input C.in.
P.out is connected to C.in.

4

Algorithm 1 Synchronous Leader Election
Require: u this process unique identifier
Require: diam ≥ 0 to be the diameter of the network
Require: status← unknown, rounds← 0, maxid← 0

rounds← rounds + 1
let U be the set of all IDs form in neighbors
maxid = max({maxid} ∪ U)
if rounds ≥ diam then

if maxid = u then
status← leader

else
status← nonleader

end if
else

send maxid to all out neighbors
end if

In this simple example, P produces an integer and C consumes the an
integer at every reaction. This example is a test to try different values for
priority and rate.

3 How to describe a synchronous process

Polychrony platform provides a base class SynchProcess to describe a
synchronous process. This is the computation part of this model of compu-
tation.

SynchProcess constructor takes the following parameters:

• String n : a name for this class;

• int ninput : the number of input ports;

• int noutput : the number of output ports;

• int rate : the number of executions per clock round;

• int pr : this process priority.

It provides three methods that are of interest for the user:

5

• public Object Value(int pn) : this method returns the value
of the signal connected to the input port whose number is pn. Each
port has a number and is user’s responsibility to associate a meaning
to a port number. Since connections of processes is done by using
port numbers, the meaning of a port depends on numbers are used
to connect them (see section 4).

• public void Post (int pn,Object data) : this method writes
the content of data into the output buffer whose number is pn. From
the user point of view, it is like writing the data on the output port
whose number is pn.

• public boolean isPresent(int pn) : this method returns true
if the input whose number is pn is present. Since this is a synchronous
platform, a signal can be present or absent. Absence of signals is en-
coded by the special value null .

Also there are some variables that are accessible to the user and that are
very useful in the description of processes:

• int rounds : it counts the number of times a process executes;

• int numberofinput : is the number of input ports;

• int numberofoutput : is the number of output ports;

We want to describe a node of a network that behaves like the algorithm
in section 2.1. First of all we must import the polychrony package. Assum-
ing that the path $(METRO)/lib is in METROCLASSPATH, we can import
the package as follows:

import metamodel.plt.polychronyscaled.*;

Then we define a process called netnode implementing our algorithm:

1 process netnode extends SynchProcess {
2 int _uid;
3 int _diam;
4 int _maxuid;
5 boolean _isleader;
6 public netnode(String _n,
7 int nin, int nout,
8 int clock,int p,

6

9 int uid,int diam){
10 super(_n,nin,nout,clock,p);
11 _uid = uid;
12 _diam = diam;
13 _maxuid = uid;
14 _isleader = false;
15 }
16
17 public void execute(){
18 int i;
19 if (_rounds < _diam){
20 for(i=0;i<_numberofoutput;i++){
21 Post(i,new Integer(_maxuid));
22 };
23 };
24 for (i=0;i<_numberofinput;i++){
25 if (isPresent(i)){
26 if (((Integer)Value(i)).intValue() > _maxuid){
27 _maxuid = ((Integer)Value(i)).intValue();
28 };
29 };
30 };
31 if (_rounds == _diam){
32 if(_maxuid == _uid){
33 _isleader = true;
34 blackbox(SystemCSim)%%
35 cout <<
36 "I am the leader with UID = " <<
37 _uid << endl;
38 sc_stop();
39 %%
40 };
41 };
42 };
43 }

Line 1 declares a process netnode which extends the base class SynchProcess
provided with the platform. Lines 2−5 defines some internal variables like
the unique user identifier uid , the network diameter diam , the maxi-
mum identifier maxuid and a flag isleader which indicates whether

7

the process is the network elected leader or not. Lines 6 − 15 are the pro-
cess constructor. It takes the same parameters of a SynchProcess and also
the unique identifier and the network diameter. Line 10 calls the SynchPro-
cess constructor with parameters like name, number of inputs, number of
outputs, rate and priority. Constructor of the base class will create the nec-
essary ports and all the internal data structure which is totally transparent
to the user. Then internal fields are initialized.

To specify a behavior, users have to overload the execute function (this
is basically a standard procedure common to almost all the platform in
metropolis). This function gets executed as many times in a clock rounds as
specified by the rate parameter. The algorithm description is pretty evident
and I will go through the most important part only.

Code in lines 19− 23 writes the maximum identifier found until now to
all output ports. In this snippet of code it is possible to see the use of the
internal fields rounds and numberofinput . Also Post is used to write
on the outputs.

Code in line 24− 30 computes the maximum identifier. It first checks is
the input is present (line 25) and, if it is present, reads the input value and
compare it with the maximum id found until now.

Finally, lines 31− 41 check if the number or round reached the network
diameter in which case if the maximum id is equal to the process id then the
process is the network leader. When the number of rounds is equal to the
network diameter we know that a leader has been elected, meaning that
the algorithm has successfully terminated. I have introduced a blackbox
(line 34− 38) to stop the simulation.

4 How to describe a synchronous/multirate system

An entire system can be described as interconnection of synchronous pro-
cesses and signals. Polychrony platform provides a base netlist,
SynchScheduledNetlist , that the user extends to describe her/his sys-
tem.

SynchScheduledNetlist implements a set of elaboration method
that can be called in the netlist constructor to build the sytem. The sched-
uled netlist constructor takes three parameters:

• String n : the netlist name;

• int nproc : the number of synchronous processes in the netlist.

• int nssignal : the number of synchronous signals in the netlist.

8

The scheduled netlist constructor builds the internal data structure to
allow the implementation of elaboration methods described below. The in-
ternal data structure is also essential to implement the de-synchronization
refinement algorithm.

The methods that are relevant are:

• public elaborate void addSynchProcess(SynchProcess p) :
this method add process p to the netlist and stores a referent to p into
an array for future purposes. Also it assigns a unique identifier to p.
Finally it connects the process to a special component which is called
clock assistant which is totally transparent to the user (to know more
about the clock assistant please refer to the comments in the code).

• public elaborate void addSynchSignal(SynchSignal s) :
this method adds a synchronous signal to the current netlist and stores
a reference to s into an array.

• public elaborate void synchConnect(SynchProcess p,int
pn,boolean isinput,SynchSignal m) : this method connects
port pn of process p to the synchronous signal m. Here the user de-
cided the binding between a port number and its use inside the pro-
cess (this could be a bit tricky; in my opinion a process should define
an enumeration variable to associate a port name to a port number).
Boolean variable isinput indicates is the port is an input port or an
output port (isinput = true means that p is an input port).

The following code is the description of a producer consumer example:

1 import metamodel.plt.polychronyscaled.*;
2 public netlist prodcons extends SynchScheduledNetlist {
3 public prodcons(String n){
4 super(n,2,2);
5 producer p = new producer("Producer",1,1);
6 consumer c = new consumer("Consumer",1,1);
7 SynchSignal r = new SynchSignal("PtoC");
8 SynchSignal a = new SynchSignal("CtoP");
9 addSynchSignal(r);

10 addSynchSignal(a);
11 addSynchProcess(p);
12 addSynchProcess(c);
13 synchConnect(p,0,true,a);
14 synchConnect(p,0,false,r);

9

15 synchConnect(c,0,true,r);
16 synchConnect(c,0,false,a);
17 }
18 }

Line 1 imports the required package. In line 2 the netlist declaration begins.
The new netlist prodcons extends the base netlist SynchScheduledNetlist .
Netlist constructor described the entire system and connects all the compo-
nents. The first thing to do is to call the base class constructor with the
appropriate parameters (line 4). This netlist contains two processes and
two signals so the parent constructor is called with these two number as
parameters. In line 5 − 8 all components are instanced. Producer and con-
sumer are two synchronous processes taking as parameters name, rate and
priority.

After all components are created we have to add “register” them. We
use the two methods provided by the base class to add synchronous signals
and processes (lines 9− 12). Finally we establish synchronous connections
between processes. Consider line 13: it says that output port number 0
of process p is connected to the synchronous signal a. Similarly, line 15
says that input port number 0 of process c is connected to the synchronous
signal a. The two lines together connect output 0 of process p to input 0 of
process c.

After the system is described in a scheduled netlist, we have to build a
top level netlist and initialize the system.

5 How to write a top-netlist and simulate it

A scheduled netlsit is the description of how porcesses are interconnected
to build the whole system. While computation and communication are
described respectively by synchronous processes and synchronous signals,
coordination is implemented by a scheduling netlist. The top level netlist
contains both a scheduled and a scheduling netlist.

Polychrony platform provides a base class, SynchTopNetlist , that is
meant to be a container for scheduled and scheduling netlsit. A top level
netlist provides the following elaboration method that users can use:

• public elaborate void initSynchTop(SynchScheduledNetlist
synchscheduled) : this method adds the scheduled netlist synchscheduled
to the top netlist, creates an instance of a scheduling netlist, adds it to

10

the current netlist and connects processes in the scheduled netslit to
the scheduler in the scheduling netlist.

The scheduling netlist is then totally transparent to the user. In the case
of producer consumer example, the top level netlist has the following struc-
ture:

1 import metamodel.plt.polychronyscaled.*;
2 public netlist topprodcons extends SynchTopNetlist{
3 public topprodcons(String n){
4 super(n);
5 prodcons prodconsnet =
6 new prodcons("ProducerConsumerNetlist");
7 initSynchTop(prodconsnet);
8 }
9 }

As usual the first line imports the required package. Line 2 declares the
top netlist to be an extension of the base class SynchTopNetlist . The
netlist constructor instances the scheduled netlist (line 5) and then calls the
initSynchTop method (line 6). At this point the netlist has been built and
all connections have been made.

11

	Execution semantics
	Motivation, platform structure and examples
	The synchronous leader election algorithm
	Producer/consumer example

	How to describe a synchronous process
	How to describe a synchronous/multirate system
	How to write a top-netlist and simulate it

