
Metropolis Design Guidelines

Alessandro Pinto
University of California at Berkeley
545P Cory Hall, Berkeley, CA 94720

apinto@eecs.berkeley.edu

November 9, 2004

Copyright c©2004 The Regents of the University of California.
All rights reserved.
UCB/ERL M04/40

1

Contents

Contents 2

Preface and Acknowledgements i

1 Introduction 1
1.1 Platform-based design of Multimedia Systems 1
1.2 Metropolis design environment 4
1.3 Audience and Organization 6

2 Basic notions on modeling 9
2.1 Processes, Interfaces and Media 9
2.2 Netlists . 15
2.3 Quantity managers . 16
2.4 Constraints . 18

3 Developing platforms for functional description 21
3.1 Models of computations for describing functions 22
3.2 Function platforms use-case 23
3.3 Architecture of a model of computation 25
3.4 YAPI: Y-Chart Application Programming Interface 27
3.5 Muti-rate Synchronous model of computation 34

4 Developing platforms for architectural description 39
4.1 Architecture platforms use-case 40
4.2 Architecture platforms development 42
4.3 The single-processor-single-memory architecture 47

2

3

5 Mapping a function onto an architecture 55
5.1 Mapping functions onto architectures 56
5.2 Describing mappings using metamodel synchronization con-

straints . 58

A Platform-Based Design example 61

B Tagged Signal Model Definitions 65

Bibliography 67

Preface and Acknowledgements

The Metropolis design guidelines document describes in which way a
design flow should be implemented using the Metropolis-Meta-Model
(MMM) language. The MMM language does not impose a modeling
scheme since it is just a meta-language that leaves a lot of freedom to
the users that may come up with more appropriate ways of implement-
ing their methodology ideas. The guidelines that we present here are
based on our experience in using the Metropolis framework, and on the
formal definition of the general principle of platform-based design [12],

The guidelines described in this document are divided in three main
parts:

• functional description;

• platform description (or architectural description);

• mapping.

For each section, we describe the theoretical aspects and we give exam-
ples of modeling. The modeling strategy is justified by the theory and by
some considerations about the users expectations in each design stage.

This work was supported in part by the following corporations: Ca-
dence, General Motors, Intel, Semiconductor Research Corporation (SRC),
Sony, STMicroelectronics; and the following research projects: NSF Award
Number CCR-0225610 and the Center for Hybrid and Embedded Sys-
tems (CHESS, http://chess.eecs.berkeley.edu), The MARCO/DARPA Gi-
gascale Systems Research Center.

The Metropolis project would also like to acknowledge the research
contributions by: The Project for Advanced Research of Architecture and
Design of Electronic Systems (PARADES,
http://www.parades.rm.cnr.it/) (in particular Alberto Ferrari),

i

and Politecnico di Torino, Carnegie Mellon University, University of Cal-
ifornia, Los Angeles, University of California, Riverside, Politecnico di
Milano, University of Rome, La Sapienza, University of L’Aquila, Uni-
versity of Ancona, Scuola di Sant’Anna, University of Pisa.

Thanks to Trevor Meyerowitz, Luciano Lavagno and Felice Balarin
for their useful feedback. Thanks to Alberto Sangiovanni-Vincentelli and
Roberto Passerone for the theory of Platform-Based Design.

Chapter One

Introduction

The Metropolis design environment provides an infrastructure for de-
signing embedded systems. Metropolis is particularly suited to mod-
eling heterogeneous systems at different levels of abstractions and it is con-
stantly under development with the idea of supporting the platform-
based design [12] principle. The main objective is not merely to provide a
simulation/verification/synthesis environment for designing electronic
systems at a specific level of abstraction, but rather to develop and infras-
tructure that is flexible enough to allow the development of entire design
flows for different application domains.

This ambitious goal is pursued by supporting design principles that
are independent of the specific application. Metropolis supports two ba-
sic principles: orthogonalization of concerns and platform-based design [8].
The latter can be applied to many fields of engineering. In this design
guide, we use a multimedia design flow as a representative example.

1.1 Platform-based design of Multimedia
Systems

A simple example of platform-based design applied to the logic synthesis
flow is described in appendix A. In this chapter, we give an overview of
the method for multimedia applications.

1

1. INTRODUCTION

Going from the denotational description of a function down to its im-
plementation is a very hard problem. The number of possible design
choices makes the design space too large to be explored efficiently. The
big design gap can be subdivided into smaller steps by introducing a
stack of platforms, each dedicated to the exploration of the design space
along few directions (figure 1.1).

Figure 1.1: Platform stack for multimedia designs

When using a platform-based design methodology, the first impor-
tant step is to define those levels of abstractions. Consider, for instance,
the case of multimedia systems design as shown in figure 1.1. Starting
from the denotational description of the function F the first important
decision is to select a suitable platform (that a this level of abstraction
is usually referred to as a model of computation) to describe F . The
only property that we are interested in at this level is correctness. Kahn
process networks (KPN) [7] is a convenient model of computation usu-
ally adopted as the first platform for modeling multimedia systems. The
platform components are processes running on their own threads and

2

Platform-based design of Multimedia Systems

communicating through unbounded FIFOs with blocking read and non-
blocking write semantics.

Mapping F onto the Kahn process networks platform implies
re-expressing the denotational algorithm as interconnection of concur-
rent processes and unbounded FIFOs. For instance, an FIR filter can be
described by interconnecting adders and multipliers together. At this
level of abstraction, we can check if our algorithm is correct without
caring about deadlocks due to resource limitations like FIFO bounded-
ness. In addition, since processes are totally concurrent and writing is
non-blocking, processes don’t have to compete for shared resources. The
designer can then explore the maximum amount of concurrency (par-
allelism) in the functional description without being constrained by re-
source limitations. However, the function is too abstract to be imple-
mented on a real architecture that has resource limitations, e.g. memory
size.

The next level of abstraction is represented by the TTL [4] (task trans-
action level) platform. The TTL platform is still composed of processes
running on their own threads, but the communication among them is
implemented with bounded FIFOs. Mapping a KPN function onto a TTL
platform is a simple one to one mapping that can be done by a direct
refinement of each unbounded FIFO into a more complicated channel as
we will see in the next section.

At the TTL level of abstraction, we are concerned with memory size
minimization. Each communication channel is parameterized by token-
size and maximum number of tokens that it can contain. Depending
on the interleaving policy between writer and reader of the same chan-
nel, buffer size can be reduced at the expense of a more frequent con-
text switching between the two processes. The memory usage/switching
overhead trade-off is explored at this level of abstraction.

The TTL description is mapped onto a real micro-architecture, for in-
stance a single processor architecture. The platform is composed of a
library of components that includes different kind of processors, busses
and memories. At this level of abstraction, we are concerned with mem-
ory allocation and organization and task scheduling. Task scheduling
is needed because the number of computational resources is limited to
one meaning that the highly concurrent model of the function has to be
implemented as a sequential stream of instruction. A real time operat-
ing system works as an adaptation layer between the high level of con-

3

1. INTRODUCTION

Figure 1.2: The Metropolis framework

currency of the TTL platform and the sequential operations of a single
processor architecture.

The result of this mapping is the implementation of the original func-
tion on a target micro-architecture. We have to verify that the implemen-
tation satisfies the original constraints.

1.2 Metropolis design environment

The idea behind the Metropolis framework is to have an unambiguous
common representation of designs and a set of tools that can interpret
the common representation, manipulate it and generate a modified de-
scription using the same representation [3].

The Metropolis framework is pictorially represented as in figure 1.2
The Metropolis infrastructure is the core of the framework. The in-

frastructure is composed of a language for the design description that is
called the Metropolis Meta-Model (MMM). An MMM program is com-
piled into an internal representation that retains all the semantic and syn-
tactic information of the original MMM program.

A given application could be directly described using the MMM. How-
ever, this approach would lead to a continuous rewriting of code that is

4

Metropolis design environment

common to many application. A more disciplined approach is to provide
a set of platforms from the users can pick components that they need.
This approach facilitate the description of functional models as well as
architectural models.

There are two kinds of platforms: model of computations and archi-
tectures. As described in chapter 3, a model of computation is presented
as a set of basic classes that the user extends to customize the behav-
ior of processes and obtain the functional description. As described in
chapter 4, an architecture is presented as a set of services and their legal
compositions.

Given an application domain, the user selects a suitable model of
computation from the available set of libraries. For instance, Kahn pro-
cess networks (KPN) are widely used in modeling multimedia applica-
tions. The KPN library in Metropolis provides processes and media. A
process is a basic class with an empty behavior. The user extends this
class by adding ports for external communication and overriding the
thread method to describe the set of behaviors that belong to the pro-
cess. Media are unbounded FIFOs that users instantiate and connect to
processes. The description of the entire system is still done using the
MMM language but the library considerably simplifies its description.

After the functional description as been done, the user selects and ar-
chitecture instance in the architecture platform. An architecture platform
is usually available as a parameterized model. The parameters can be of
different nature: number of processors, type of processor and scheduling
policy etc. The user builds an architecture instance by setting all this pa-
rameters. The architecture is also described using the MMM language.
Another way of providing an architecture platform is to provide a set of
components with specified interfaces that limit the ways in which com-
ponents can be interconnected (a port can be connected to a media only
if the interfaces match).

Notice that there is no fundamental difference between models of
computation and architecture platforms since both are provided as a li-
brary of components and composition rules.

Finally, a mapping is obtained by enforcing a synchronization of func-
tion and architecture. Each action in the function side is correlated with
an action on the architecture side using synchronization constraints. Se-
mantically, this means that the sequence of actions in the architecture
side has to follow the execution of the function side which is equivalent

5

1. INTRODUCTION

to the intersection of the set of behaviors of function and architecture in
a common semantic domain (this concept will be explained in details in
chapter 5).

Function, architecture and mapping are all described using the MMM.
Since all back-end tools are developed upon the internal data represen-
tation, they can be applied to the function, architecture and mapping
netlist. It is possible for instance to simulate the architecture without any
function mapped onto it.

A declarative language is defined in the MMM to specify properties
(constraints) of a design. Two verification tools are provided in the cur-
rent release to check that constraints are satisfied at each level of abstrac-
tion.

A meta-model netlist can be parsed and compiled to generate the in-
ternal representation using the command metacomp. This process goes
through distinct phases of which elaboration is probably the most useful.
Elaboration can be invoked by the following command line

metacomp −e l a b o r a t o r <topnet> < f i l e s .mm>

where topnet is the top netlist. The elaboration phase compiles the source
files and runs the constructor of each component to determine its initial
state. It also checks interfaces, types and modifiers.

A number of other tools are available in the current release. The
most used is the SystemC simulator that, after elaboration, generates an
equivalent description of the original specification in the SystemC lan-
guage [9]. SystemC simulation back-end generates also a makefile to
compile the set of C++ files obtained from the translation. The SystemC
back-end can be run using the command line

metacomp −systemc −top <topnet> < f i l e s .mm>

Instead of using command lines, the user can interact with a design
through metroshell, a jacl [6] interface that provides APIs to browse the
design and apply backend tools.

1.3 Audience and Organization

The design guideline is intended to give directions to users that want to
design embedded systems in the Metropolis framework. This document

6

Audience and Organization

touches two aspects: what the user requirements are and how develop-
ers should satisfy them. This document does not describe syntax and se-
mantics of the MMM, backend tools, or any other implementation related
issues. We target these guidelines to two classes of users: system devel-
opers that have to describe applications, select architectures and perform
mapping, and libraries provider that have to provide the necessary in-
frastructure to make the system developers job easier. This guidelines is
then an overview of how the Metropolis framework, and specifically the
MMM, should be used.

The Metropolis guidelines document is organized as follows:

• Chapter two describes the basic components used to describe a sys-
tem. Processes, media, quantity managers and netlists are intro-
duced through a simple example and a brief description of their
usage is given.

• Chapter three shows how a model of computation library should
be used and consequently how it should be developed. Two exam-
ples are given: KPN and a multirate synchronous domain that are
both provided by the Metropolis release.

• Chapter four shows how an architecture platform is assembled and
used. It describes how the services offered by an architecture should
be exposed to a user and consequently how all components should
be developed and described. An example of simple architecture is
given.

• Chapter five describes the mapping phase. This chapter describes
the strategy that we use in the Metropolis framework to describe a
mapping and also gives a small example.

7

Chapter Two

Basic notions on modeling

The Metropolis Meta-Model (MMM) language provides basic building
blocks that are used to describe models. These components represent
computation, communication and synchronization which are three basic
ingredients needed to define a model of concurrency. This chapter uses
a simple producer consumer example to introduce the basic objects de-
fined in the MMM language. For a detailed explanation of MMM syntax
and semantics refer to [2].

2.1 Processes, Interfaces and Media

Consider a simple producer consumer example. The producer generates
a sequence of integers in ascending order starting from 1 and communi-
cates them to the consumer that sinks them.

Figure 2.1: A simple producer consumer example

9

2. BASIC NOTIONS ON MODELING

Producer and consumer are two objects that execute two distinct algo-
rithms. More specifically, the producer follows a certain number of steps
to implement the original specification. These steps are a set of “actions”.
Objects of this type are defined as processes in the MMM language. A
process runs on its own thread. A thread is a sequence of actions that can
be thought of as instructions, sub-instructions (in which an instruction
can be decomposed), function calls and awaits (for a formal definition of
actions please refer to [2]).

The code implementing the producer is shown in listing 2.1.

Listing 2.1: Meta-Model description of the producer
1 process Producer {

port ReadInter face r ;
3 port W r i t e I n t e r f a c e w ;

parameter i n t N writes ;
5 i n t v ;

Producer (S t r i n g n , i n t nw) {
7 super (n) ;

N writes = nw;
9 }

public void thread () {
11 i n t j ;

for (i n t i = 0 ; i < N writes ; i ++) {
13 v = r . read () ;

j = i + 1 ;
15 out . wri te (j) ;

}
17 }
} ;

The process has two ports (lines 2 − 3) and one parameter (line 4)
which is specified at instantiation time. Notice that ports do not have
direction, but have a type associated with them. The type of a port is an
interface which declares services that can be called by the process. In this
example, the producer process used the read and write services respec-
tively offered by the ReadInterface and WriteInterface interfaces.

Figure 2.1 also shows a possible connection of the process to the rest of
the system. Processes cannot connect directly to other processes but the
interconnection has to go through a medium which has to define (i.e. im-
plement) the services declared by the interface associated with the ports

10

Processes, Interfaces and Media

that access the medium. The constraint of having always a medium be-
tween two ports comes form the need for orthogonalization of computa-
tion and communication. The meaning of the communication is written
in a medium that can be changed and refined without changing the com-
putation description that resides in the processes.

An interface is an abstract class which just declares a set of functions
with their associated signatures. The WriteInterface for instance is
specified as in listing 2.2

Listing 2.2: Meta-Model description of the writing interface
i n t e r f a c e W r i t e I n t e r f a c e extends Port {

2 eval void write (i n t data) ;
}

The interface declares a service write which takes an integer data
as the only parameter. It does not define the service so it is impossible to
say what its semantics is.

The syntax used in MMM is very close to Java. A process, like any
other object in the MMM, has a constructor which in this case takes a
parameter nw indicating the number of integers to be produced in as-
cending order starting from one.

A process specifies a thread function (line 10). In this example, pro-
ducer reads a triggering signal from port r (line 13)and writes an integer
to port w (line 15).

From the outside, the process behavior is observed as a trace of read
and write actions, or better yet as a trace of services calls to the media
connected to its ports. More precisely the behavior is a sequence of events
which are the begin and end event of each action. Looking at the process
thread, the behavior is more complex. After reading the trigger, an inter-
nal variable (belonging to the state of the process) is assigned to the result
of a sum and written to the output port. The behavior, then, not only in-
cludes reads and writes but also begin and end events of the assignment
and sum actions.

A process is then an object that generates a sequence of events. Each
process in a system evolves by executing one event after the other. At
each step (which is formally described in [2] in terms of a global execu-
tion index), each process in the system executes one event. This is the
semantics resembles somehow the semantics of a synchronous language
but a special event called NOP is defined in such a way that it can al-

11

2. BASIC NOTIONS ON MODELING

ways be interleaved between to events of a process. The NOP event cor-
respond to the stalling of a process making it possible to implement asyn-
chrony. For instance, if the producer wants exclusive access to medium
M2 of figure 2.1 we can force the consumer to execute the NOP event
while the producer is writing a data.

The juxtaposition of events from all processes is an event vector. Intu-
itively, a program is a big automata where the transition between states is
labeled by event vectors. At each step, there is a set of event vectors that
could be executed to make a transition from the current state to the next
state. If there no scheduling constraints are specified (either imperatively
or declaratively), then the choice among all possible transitions is done
non-deterministically.

While a process uses services declared by interfaces, a communica-
tion medium is an entity that implements services. It does not have a
thread of execution but rather inherits the thread from the process that
uses the services. A communication medium implements a protocol to
exchange information between processes. Separation between processes
and media follows the principle of orthogonalization of concerns de-
scribed in [8].

Listing 2.3 shows a simple channel that implements two services:
read and write.

Listing 2.3: Meta-Model description of a communication medium
1 medium Channel implements ReadInterface , W r i t e I n t e r f a c e {

3 i n t [] s torage ;
i n t space , n , reading , wri t ing ;

5 i n t length ;

7 public Channel (S t r i n g name , i n t nelement) {
n = 0 ;

9 space = nelement ;
s torage = new i n t [nelement] ;

11 length = nelement ;
reading = 0 ;

13 writ ing = 0 ;
} / / C o n s t r u c t o r

15

public update void write (i n t token) {

12

Processes, Interfaces and Media

17 await {
(space > 0 ; ;) {

19 space = space − 1 ;
n = n + 1 ;

21 s torage [wri t ing] = w ;
wri t ing = wri t ing + 1 ;

23 i f (wri t ing == length) wri t ing = 0 ;
} / / C r i t i c a l s e c t i o n

25 } / / a w a i t
} / / w r i t e

27

public update i n t read () {
29 i n t r e t v a l = 0 ;

await{
31 (n > 0 ; ;) {

n = n − 1 ;
33 space = space + 1 ;

r e t v a l = s torage [reading] ;
35 reading = reading + 1 ;

i f (reading == length) reading = 0 ;
37 return r e t v a l ;

} / / C r i t i c a l s e c t i o n
39 } / / a w a i t

} / / r e a d
41 } ; / / Channel

The Channel medium implements two interfaces (line 1) which means
that it will define the operation code for each of the services declared in
those interfaces.

The await statement [2] (line 17) can define parallel branches. Each
branch has a premises and a critical section. The premises has the form
(guard;testlist;setlist) . In this example we only have a guard
condition that is a boolean expression. If the guard is true than the crit-
ical section can be entered. The meaning of testlist and setlist will be
explained later through an example.

The channel has a limited storage space. A reading process will be
blocked until there is at least one token in the FIFO, while a writing pro-
cess will be blocked until there is at least one token space in the FIFO.
Note that a channel implementing the same interfaces but using a differ-
ent implementation could change the communication semantics. For in-

13

2. BASIC NOTIONS ON MODELING

stance, we could implement a non-blocking write operation by just over-
writing the current data.

This example show that the interface is an agreement on the services
that ares offered and the services that are required in the sense that a
process can only use services declared in the interface and on the other
hand a medium connected to that port has to provide those services.

In this example, there is no restriction on the simultaneous access to
the storage variable in the medium. A reader and a writer can access the
medium at the same execution step and modify the internal state simul-
taneously. When this situation occurs, the final value of the variables is
not known. In order to avoid data corruption, a synchronization method
between the two processes has to be implemented. The synchronization
protocol can be described directly in the medium (using the set list and
test list in the await statements) or using an external scheduler that we
call quantity manager.

We could use an empty interface to act as a semaphore and include it
in the await test and set lists as in listing 2.4.

Listing 2.4: Meta-Model description of a communication medium pre-
venting data corruption

1 i n t e r f a c e Semaphore {} ;
medium Channel implements ReadInterface ,

3 W r i t e I n t e r f a c e ,
Semaphore {

5

. . .
7 public update void write (i n t token) {

await {
9 (space > 0 ; Semaphore ; Semaphore) {

. . .
11 }

}
13 }

15 public update i n t read () {
await{

17 (n > 0 ; Semaphore ; Semaphore) {
. . .

19 }

14

Netlists

}
21 }
}

Informally, We can imagine that each interface has an associated boolean
flag. Each time a critical section is entered, the flags of all the interfaces
in the set list are set to true. Before entering a critical section, though,
not only the guard has to evaluate to true but also the flags of all the
interfaces in the test list have to be false. In our implementation of the
communication channel, if the producer is executing a write operation
(line 10) it means that the Semaphore interface was flagged and hence a
consumer that is about to read will be forced to execute the NOPevent. In
this example the await statements are used to synchronize (schedule) the
two processes. The same result can be achieved by using another object
called quantity manager as explained in section 2.3

2.2 Netlists

A netlist is an object used to instantiate and connect other components
like processes, media and netlists. A netlist has a constructor where all
the components are instantiated and interconnected. An API is provided
to add a component to a netlist and to connect a port of an object to a
medium. The netlist code for our example is shown in listing 2.5.

Listing 2.5: Meta-Model description of a netlist
n e t l i s t ProducerConsumer {

2 public ProducerConsumer (S t r i n g n , i n t nw) {
super (n) ;

4 producer p = new producer (”Prod” , nw) ;
consumer c = new consumer (”Cons”) ;

6 c o n t r o l l e r c t r l = new c o n t r o l l e r (”Contr”) ;
Channel ch = new Channel (”CommCh”) ;

8 addcomponent (p , t h i s , ” ProdInstance ”) ;
. . .

10 connect (p , w , ch) ;
. . .

12 }
}

15

2. BASIC NOTIONS ON MODELING

Using a Java like syntax, an object is created with the keyword new
(lines 4 − 7). After creation, even if an object resides in memory, it has
to be added to the netlist before using it. The function addcomponent
(line 8) takes as parameters an object, a netlist and a string. This function
call adds the object to the netlist and associates the string to the instance
name. The connect function (line 10) is used to connect the port of an
object to a medium.

Netlists can be used to organize a design implementing hierarchy.

2.3 Quantity managers

Quantity managers are used to assign tags to events. A tag is an abstract
quantity from a partially order set. Time, for instance, is a real number
so in this case the set of tags is totally ordered. When an event has to
be tagged with a quantity, an explicit request is made to the manager
of that quantity. Due to concurrency of processes, multiple requests can
be issued to a quantity manager that has to resolve them and schedule
the processes in order to satisfy the ordering relation on the set of tags.
Consider the simple producer/consumer example of figure 2.2. We want

Figure 2.2: A quantity manager

to make sure that internal variables of the medium Mare not accessed
simultaneously by a reader and a writer. We can use a quantity manager
to scheduled the two processes. A sample code is shown in listing 2.6.

Listing 2.6: Meta-Model description of a quantity manager
1 quantity RWManager implements QuantityManager {

16

Quantity managers

port StateMediumSched reader ;
3 port StateMediumSched wr i t e r ;

5 public RWManager(S t r i n g n) {
super (n) ;

7 pending = new ArrayList () ;
/ / C o n s t r u c t o r c o d e h e r e

9 }

11 public eval void request (event e , RequestClass rc) {
pending . add ((Object) rc . c lone ()) ;

13 }

15 public update void r e s o l v e () {
/ / For a l l pend ing r e q u e s t s

17 / / o r d e r them depend ing on t h e t a g s o r d e r i n g
}

19

public update void postcond () {
21 / / Do t h e f i r s t e v e n t in t h e o r d e r

/ / Do not do t h e o t h e r s
23 pending . c l e a r () ;

}
25

27 public eval boolean s t a b l e () {
return true ;

29 }

31 ArrayList pending ;
}

Instead of inserting await statements in the medium M, we insert a
special request code to the quantity manager before the read and write
code. The set of tags that we consider, contains four elements: T =
br, er, bw, ew. When a process uses the read service, before modifying
the medium state variables, a request is issued to the quantity manager.
The request asks to annotate the begin event of the read function with the
tag br. Before returning from the read function, another request is issued
to annotate the end event of the read function with the tag er. A similar

17

2. BASIC NOTIONS ON MODELING

set of requests is generated by the write service.
The quantity manager specifies an order on this set of tags that could

be, for instance, br < er, bw < ew, bw < br. The last inequality says that
in the case of simultaneous access of a reader and a writer, the read is
executed first.

In general, quantity managers are used to adapt two different concur-
rency models. On one side, the set of processes are fully concurrent and
can freely execute the sequence of events defined in their threads. On
the other side, we have a specific process scheduling mechanism that we
want to implement in order to give our program the semantics that we
want. For instance, in a discrete time model, time is a totally ordered set
of tags and hence a process that wants to execute and event at time ti has
to wait for other processes that are executing events at time tj < ti.

2.4 Constraints

An important part of the design specification is represented by constraints.
They are declarative formulas that are used to specify properties that the
implementation has to satisfy. In our simple example, we might want to
declare that the time needed to complete a write operation has to be less
than a certain quantity T .

Two kinds of formulas are provided by the MMM language: linear
temporal logic (LTL) and logic of constraints (LOC). The syntax is ex-
plained in [2].

Listing 2.7 shows the declaration of a data consistency constraint.

Listing 2.7: Meta-Model declaration of LOC constraints
c o n s t r a i n t {

2 event Wevent = beg (p , p . wri te) ;
event Revent = end (c , c . read) ;

4 loc (f o r a l l (i n t i)
(v@(Wevent , i) == v@(Revent , i))

6) ;
}

The LOC formula (line 4) says that each data that is written by the pro-
ducer is read by the consumer. The index i is called global execution
index (GXI) and is described in ??.

18

Constraints

Constraints are propagated down while marching towards the imple-
mentation and have to be constantly checked at each level of abstraction.
For instance, if we refine the communication protocol into a more de-
tailed transaction level medium, the formula will not change and has still
to be satisfied by the refinement. A back-end tool called LOC-Checker is
included in the current release to verify that LOC formulas are satisfied.

19

Chapter Three

Developing platforms for functional
description

A design process always starts with the idea of what the system is sup-
posed to do. In our terminology, this is the function. It can be described,
informally, using natural languages like English, or its description can be
more formal. A denotational definition of the function usually involves
formulas describing outputs in terms of inputs. A maximum likelihood
estimator, for instance, can be described as the solution of a maximization
problem:

max ln P (r|c)

where r is the vector of the received bit stream and c is the vector rep-
resenting the code. The description of the algorithm is denotational and
only tells us what the system should do.

Practical and implementable algorithms exist to solve this problem.
For example, the Viterbi decoding algorithm is an interconnection of
blocks whose final result is an approximation of the maximum likelihood
estimation. Being an approximation means that the result is different
from the denotational description by a quantity e. If nothing has been
stated about the error, then it could be any number but what we really
want is that the implementation follows as close as possible the denota-
tional description, where “as close as possible” is estimated by the error

21

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

e. Usually another important part of the functional description is a set of
constraints that an implementation of the algorithm is subject to. In our
example, for instance, a bound on the maximum admissible error can be
declared as a constraint.

The denotational function is then mapped onto a platform that allows
its description in a more “structured” way, usually as interconnection
of sub-functions. Precise rules have to be imposed on this structure in
order to have a non ambiguous description, or better, we need a uniquely
defined way of interpreting the model that gives all and only the system’s
execution traces.

The set of rules define the semantics of a model of computation (MoC).
An MoC is defined in terms of how computation, communication and
coordination must be carried out in a structured interconnection of ob-
jects.

This chapter gives few design guidelines for building MoCs (that we
shall call functional platform) in the Metropolis framework and intro-
duces some examples of models of computation.

3.1 Models of computations for describing
functions

This section is divided in three parts. This introduction explains briefly
what are the properties characterizing a model of computation. The sec-
ond part shows how users want a MoC to be exposed to them in order
to make the functional description easier. The third part shows how a
developer should build a platform and expose a model of computation
to the users.

We will use the tagged signal model [10] (TSM) formalism (whose
basic definitions are given in appendix B) as a denotational framework
for stating properties about a model of computation.

Informally speaking, a model of computation can be defined by the
set of values V , the set of tags T and the ordering relation on the tags ≤,
the legal processes P and their communication semantics.

For instance, Khan process networks are characterized by a set of tags
that is partially ordered (it is an untimed model) and, since a communica-

22

Function platforms use-case

Figure 3.1: Block diagram of a digital receiver

tion channel has a first-input-first-output semantics, each signal is totally
ordered.

An MMM process is used to describe all the possible behaviors of a
process P while media are used to enforce a communication semantics.
An order on the set of tags can be enforced by using a quantity manager
that has the task of assigning tags to events. Consequently, a quantity
manager has to decide the scheduling of the processes in order to satisfy
the ordering of tags.

3.2 Function platforms use-case

Description of applications is considerably simplified when a suitable
model of computation is chosen. Depending on the application domain,
the first step in a design flow is to choose a natural function platform
where the description and interconnection of functions is easy to carry
out. For instance, digital signal processing algorithms are naturally ex-
pressed using a model where computation is done by blocks called actors
that communicate through FIFOs.

Consider the following example. We would like to design a digital
receiver that is the cascade of a digital demodulator, a root raised cosine
filter, a timing recovery loop and a decoder. The block diagram is shown
in the top part of figure 3.1.

23

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

The system input signal i is a set of totally ordered events. As a first
choice we select the Khan process networks [7] (KPN) model of compu-
tation. We would like to describe the system as in listing 3.1.

Listing 3.1: Meta-Model description of the digital receiver
1 n e t l i s t D i g i t a l R e c e i v e r {

public D i g i t a l R e c e i v e r (. . .) {
3 / / Components i n s t a n c e s

StimuliGen s = new StimuliGen (. . .) ;
5 Demodulator demod = new Demodulator (. . .) ;

RRCTiming r r c t = new RRCTiming (. . .) ;
7 Decoder dec = new Decoder (. . .) ;

/ / Add components t o t h i s n e t l i s t
9 addcomponent (s , t h i s , ” s i n s t a n c e ”) ;

. . .
11 / / I n t e r c o n n e c t i o n s

FIFOinstance (s . out , demod . in) ;
13 FIFOinstance (demod . out , r r c t . in) ;

FIFOinstance (r r c t . out , dec . in) ;
15 }
}

We first instantiate all components and add them to the current netlist
and finally we interconnect them. Ideally, we would like to have a way of
specifying a connection by calling a function and passing the source and
destination ports as parameters (line 12). In our example, this function is
FIFOinstance(port src, port dest) that will instantiate a FIFO
channel and connect the two ports to it. If the domain that we are using
is KPN, there is no need for scheduling the processes since the block-
ing read and non-blocking write communication semantics will take care
of the process synchronization. As result, the platform will not include
a quantity manager or other synchronization constraints (for bounded
simulation purposes we might want to control the stimuli generator).

Consider now the refinement of the timing recovery loop shown in
the bottom part of figure 3.1. The domain that we want to use in this case
has different properties from the previous one. In particular, we want
to enforce a specific scheduling of the two processes. The sequence of
reaction should be an infinite sequence of the RRC filter bank and the
error detector. Using a quantity manager for ordering the events is the
right solution. Every time a process wants to read its inputs and com-

24

Architecture of a model of computation

pute its outputs, it has to ask the quantity manager first. This request is
basically asking to annotate the read-compute-write sequence of events.
The quantity manager, based on its pending queue of events, enforces
the right scheduling deciding which process can proceed and which has
to wait

A user of this model of computation would like to describe the new
netlist as in the previous case without having any concern about the
quantity manager and synchronization schemes.

A refinement of the original system is obtained by using the keyword
refine which is explained in [2]. It is also necessary to redirect the orig-
inal connection to the refining netlist. In this particular case, the commu-
nication semantics of the two domains is the same so a direct connection
is possible.

However, a complex system could require the use of a heterogeneous
model of computation because it spans multiple application domains. A
communication system, for instance, is the interconnection of the radio
sub-system to the base-band sub-system, which is in turn connected to
the data-link sub-system. Each of them has very different properties and
a single model for their description is not the right solution. The radio
sub-system is best described in a continuous time domain while the base-
band sub-system is basically a dataflow kind of application. A direct
connection of the two is not possible but a specific interface has to be
designed to transform a dataflow signal into a continuous time one.

A user of the framework would like to have a set of interfaces between
models that are available to be used. Moreover, each interface should be
parameterizable so that the impact of translation of one signal into the
other can be evaluated at this level of abstraction.

The following sections explain how to build a model of computation
based on this few considerations.

3.3 Architecture of a model of computation

A model of computation is provided as a library of components that a
user extends and interconnects to describe a function. Section 3.2 has in-
troduced the user expectations that will determine the design guidelines
for platform developers.

25

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

When developing a new platform we focus on the components to be
exposed to the user, the way of customizing their behavior and a way
of interconnecting them. The basic components, together with the APIs
they should provide, are shown in figure 3.2:

• Processes for describing computation. A base class has to be pro-
vided together with a set of API to access ports values. After ex-
tending this class, a user has only to override a method, say execute
to describe the process behavior.

• Media for describing communication between processes. The com-
munication semantics is usually fixed in a model of computation,
so a medium should not be touched by the platform user. However,
some parameters could be exposed to configure the media like, for
instance, the length of a FIFO.

• Quantity Managers for enforcing a scheduling policy of processes.
Scheduling is also a property of a model of computation and should
be out of the user control. The instantiation and interconnection of
quantity managers should be totally transparent to the user. For
instance, in a synchronous model of computation all events in an
event vector have the same tag. Platform users know this property
but they should not be concerned of how it is enforced.

• Scheduled netlist for describing interconnection of other objects.
This netlist should provide a set of APIs to instantiate processes
and connect them through media in an automatic way that is de-
pendent on the model of computation.

• Scheduling netlist for instantiating and interconnecting quantity
managers and state-media.

• Top netlist to instantiate the scheduled netlist and initialize it. The
initialization function should also create the scheduling netlist and
connect it to the scheduled netlist.

In the Metropolis framework, platforms for functional specification
are provided as packages. All platforms reside in the repository tree un-
der the directory metro/lib/metamodel/plt . It is good practice to

26

YAPI: Y-Chart Application Programming Interface

Figure 3.2: Components of a platform

create a new directory for each platform under development. For in-
stance, a dataflow platform would reside under
metro/lib/metamodel/plt/dataflow .

The rest of the chapter shows two examples of platforms available in
the Metropolis framework. The first one does not use quantity managers
while the second one, whose semantics has the notion of computation
steps, needs a synchronization of the processes execution.

3.4 YAPI: Y-Chart Application Programming
Interface

For a complete description of the YAPI semantics refer to [5]. Briefly,
YAPI is a KPN model of computation where a non-deterministic choice
has been added. More precisely, a process is allowed to check on the
number of tokens on an input channel, which is a way of implementing
non-determinism in a model of computation.

Processes communicate through unbounded FIFOs. Processes can
read from and write to communication channels using two functions:
T[] read(int n) and void write(T[] data) where T is the
data type. It is possible to parameterize the functions with respect to the
data types by using templates but another valid option is to define an in-
terface that all valid data types have to implement. We will use the first

27

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

option because it is more natural for designers to use templates that are
widely used in C++.

The first things to define are the communication interfaces, meaning
the services that the processes need to exchange information. The inter-
faces definition is shown in listing 3.2.

Listing 3.2: Definition of the communication primitives in the YAPI li-
brary

package metamodel . p l t . yapitemplate ;
2 / / I n t e r f a c e t o c h e c k f i f o s

public i n t e r f a c e y a p i i n t e r f a c e extends Port {
4 eval boolean c h e c k f i f o (i n t n , i n t d ir) ;

}
6 / / Wri te i n t e r f a c e

template (T)
8 public i n t e r f a c e y a p i o u t i n t e r f a c e

extends y a p i i n t e r f a c e {
10 update void write (T data) ;

update void write (T [] data , i n t n) ;
12 update void write (T [] [] data , i n t n , i n t m) ;

}
14 / / Read i n t e r f a c e

template (T)
16 public i n t e r f a c e y a p i i n i n t e r f a c e

extends y a p i i n t e r f a c e {
18 update T read () ;

update void read (T [] data , i n t n) ;
20 update void read (T [] [] data , i n t n , i n t m) ;
}

We define a service to check how many tokens are present in a FIFO
(line 4). This service is actually more general because it can be used on
an output port to check the number of available spaces in a FIFO (for a
complete description of a reference implementation of the YAPI platform
please refer to the platform user’s manual). Then we define a writing
interface that declares three services for writing data: one for writing
matrices, one for vectors and one for single data. Finally, we define a
reading interface for reading data. This is sufficient for a designer that
does not really care about the services implementation but only about

28

YAPI: Y-Chart Application Programming Interface

their signature and semantics. A communication channel is implemented
as follows:

Listing 3.3: Implementation of the communication interfaces using a
medium

1 template (T)
public medium yapichannel implements y a p i i n i n t e r f a c e−< T >− ,

3 y a p i o u t i n t e r f a c e−< T >− ,
r d i , wri , c k i {

5 / / D e f i n i t i o n o f i n t e r n a l b u f f e r s
. . .

7 / / C o n s t r u c t o r
public yapichannel (S t r i n g n , i n t i s i z e) {

9 super (n) ;
. . .

11 }

13 public update void write (T [] data , i n t n) {
await{

15 (t rue ; t h i s . rd i , t h i s . c k i ; t h i s . wri) {
i n t i ;

17 i f ((ntokens + n) >= s i z e) {
/ / R e s i z e i n t e r n a l b u f f e r

19 . . .
}

21 e lse { / /OK we can w r i t e d i r e c t l y
for (i = 0 ; i < n ; i ++)

23 FIFO [(wp + i) % s i z e] = data [i] . c lone () ;
wp = (wp + n) % s i z e ;

25 ntokens = ntokens + n ;
}

27 }
}

29 }

31 public update void read (T [] data , i n t n){
await{

33 (ntokens > n−1 ; t h i s . wri , t h i s . c k i ; t h i s . rd i) {
for (i n t i = 0 ; i < n ; i ++) {

35 data [i] = FIFO [rp] ;

29

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

rp = (rp + 1) % s i z e ;
37 }

ntokens = ntokens − n ;
39 }

}
41 }
}

The channel is defined as a medium that implement all the interfaces
shown before. It also implements some dummy interfaces that are used
only to prevent data corruption. Simultaneous access to the same data is
prevented using an await statement that before entering a critical section
checks if another process is using one of the dummy interfaces. Since the
write is non-blocking, the guard condition on the corresponding await
statement is always true (line 15). It might happen that the FIFO has to
be resized because there is no more space to write. This method is a way
of implementing an unbounded FIFO.

The await statement in the read function instead (line 33) has a guard
condition that checks the number of tokens in the FIFO before executing
the read operation. If the number of tokens is less than requested, the
calling process is blocked.

The YAPI platform process offers a function to select non-
deterministically a port among a set of ports where a read or write oper-
ation can eventually be completed. This function is useful for handling
inputs coming from a user. Reading from these inputs will block a pro-
cess execution until a new token arrives. It is important to provide a way
of continuing the execution if there are no tokens available on that chan-
nel. This situation occurs for instance when an input is used to change
a process behavior during execution. The YAPI platform implements a
process as in listing 3.4.

Listing 3.4: Implementation of the library process
template (T)

2 public process yapiprocess {

4 public yapiprocess (S t r i n g n) {
super (n) ;

6 }

8 public i n t s e l e c t (ArrayList por ts , i n t [] tokens) {

30

YAPI: Y-Chart Application Programming Interface

await{
10 (atLeastOnePortEnabled (ports , tokens) ; ;) {

return se lec tOnePort (por ts , tokens) ;
12 }

}
14 }

16 boolean atLeastOnePortEnabled (ArrayList por ts ,
i n t [] tokens) {

18 / / OR o f a l l c h e c k f i f o
}

20

i n t se lec tOnePort (ArrayLis t por ts , i n t [] tokens) {
22 / / non−d e t e r m i n i s t i c s e l e c t i o n o f one p o r t

}
24

void thread () {
26 execute () ;

}
28

public void execute () { }
30

}

The select function is provided in the process implementation. It takes
an array of ports and an array of integers where for each port p[i] we
request to read/write n[i] tokens. The select function first checks whether
there is a least one ports where read or write will not block the process
execution. If this condition is true, it selects one among these ports non-
deterministically.

The thread() function calls an execute function that the platform
user override to describe the process behavior.

As an example of usage of the YAPI platform, consider the cascade
interconnection of a producer, a filter and a consumer. The filter block
implements two algorithms to filter the producer data. A controller de-
cides which filtering algorithm to use (figure 3.3).

The filter code is shown in listing 3.5.

Listing 3.5: A filter described in the MMM using the YAPI library
1 import metamodel . p l t . yapi . ∗ ;

31

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

Figure 3.3: Block diagram of the producer-filter-consumer example

process f i l t e r extends yapiprocess {
3 parameter i n t N p i x e l s p e r b l o c k ;

port y a p i i n i n t e r f a c e−< y a p i i n t >− prod ;
5 port y a p i o u t i n t e r f a c e−< y a p i i n t >− cons ;

port y a p i i n i n t e r f a c e−< y a p i i n t >− c t r l ;
7

i n t p , bc ;
9 p i x e l [] blk ;

p i x e l [] b lk out ;
11 i n t f i l t e r t y p e ;

13 f i l t e r (S t r i n g n , i n t npb , i n t f t) {
super (n) ;

15 / / C o n s t r u c t o r c o d e o m i t t e d
}

17

public void execute () {
19 i n t enabled ;

ArryLis t = new ports ArrayLis t () ;
21 i n t [] tokens = new i n t [2] ;

tokens [0] = N p i x e l s p e r b l o c k ;
23 tokens [1] = 1 ;

por ts . add (prod) ;
25 ports . add (c t r l) ;

27 while (t rue) {
enabled = s e l e c t (por ts , tokens) ;

29 /∗ f i l t e r a lways ∗ /
i f (enabled == 0)

32

YAPI: Y-Chart Application Programming Interface

31 f i l t e r t y p e = c t r l . r e a d i n t () ;

33 i f (f i l t e r t y p e == 1) {
/ / Use a l g o r i t h m 1

35 } e lse {
/ / Use a l g o r i t h m 2

37 }
}

39 }
}

Users first import the required library (line 1). In order to describe a
process, they extend the basic class, define ports and parameters and then
override the execute method. The filter process behavior has an infinite
loop that selects between two inputs: the producer and the controller. If
the controller input is selected, the filter type is read. If the controller has
not requested any filter type change, the process execution can go ahead
and filters the input data.

Finally, the top level netlist is described is shown in listing 3.6.

Listing 3.6: The top level netlist
import metamodel . p l t . yapi . ∗ ;

2 public n e t l i s t p f c n e t l i s t extends y a p i n e t l i s t {
public p f c n e t l i s t (S t r i n g n) {

4 super (n) ;
producer p = new producer (”Prod” , 48 , 72) ;

6 consumer c = new consumer (”Cons” , 48 , 72) ;
f i l t e r f = new f i l t e r (” F i l t ” , 72 , 1) ;

8 c o n t r o l l e r c t r l = new c o n t r o l l e r (”CTRL” , 300 , 150 , 2) ;

10 yapichannel−< y a p i i n t >− cpf =
new yapichannel−< y a p i i n t >−(”CPF” , 100) ;

12 yapichannel−< y a p i i n t >− c f c =
new yapichannel−< y a p i i n t >− (”CFC” , 100) ;

14 yapichannel−< y a p i i n t >− ccc =
new yapichannel−< y a p i i n t >−(”CCC” , 100) ;

16 yapichannel−< y a p i i n t >− c f i l t d e c i s i o n =
new yapichannel−< y a p i i n t >−(”CFD” , 100) ;

18 yapichannel−< y a p i i n t >− ccp =
new yapichannel−< y a p i i n t >−(”CCP” , 100) ;

33

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

20 / / Add a l l componets h e r e
addcomponent (p , t h i s , ” ProdInstance ”) ;

22 . . .
/ / Connect components

24 connect (p , out , cpf) ;
. . .

26 }
}

The effort from the platform developer point of view is to make all
those descriptions (a process, and a netlist of objects) easy and hide as
much as possible the parts that are fixed.

3.5 Muti-rate Synchronous model of
computation

The semantics of this platform can be informally defined as a sequence
of rounds. Let {Pi} be a set of communicating processes. When a pro-
cess Pi executes, it execute a sequence of three actions writei, readi and
executei. writei writes the content of the internal output buffer Oi to the
output ports. readi read from the input channels and store the data into
an internal buffer Ii. A process is characterized by two numbers: Pi.r,
which is the execution rate and Pi.p, which is the process priority.

Each round has to satisfy the following constraints:

• process Pi has to be executed Pi.r times;

• if Pi.p > Pj.p then Pi has to finish his execution in this round before
Pi can execute.

This condition is clearly an ordering of the processes execution depend-
ing on rates and priorities. A quantity manager is then needed to model
this situation. A detailed description of this platform can be found in the
“Polybhrony user’s manual” located in metro/doc/polychronyscaled .

Each process is connected to a quantity manager that is instantiated
into a scheduling netlist. The quantity manager is defined as in listing 3.7.

Listing 3.7: Quantity manager of the polychrony platform
1 quantity SynchScheduler implements QuantityManager {

34

Muti-rate Synchronous model of computation

port StateMediumSched [] synchprocesses ;
3 public SynchScheduler (S t r i n g n , i n t s t , i n t nproc) {

super (n) ;
5 / / C o n s t r u c t o r c o d e

. . .
7 }

9 public eval void request (event e , RequestClass rc) {
/ / Add r e q u e s t s t o t h e pending l i s t

11 }

13 public update void r e s o l v e () {
i f (! inround &&

15 (pending . s i z e () == numberofsynchprocesses)) {
inround = t rue ;

17 toWerePending () ;
f a i r S c h e d u l i n g () ;

19 } e lse
i f (pending . s i z e () == numberofsynchprocesses) {

21 i f (s t == 0) {
f a i r S c h e d u l i n g () ;

23 } ;
} e lse {

25 SynchRequest s r ;
for (i n t i = 0 ; i < werepending . s i z e () ; i ++) {

27 s r = (SynchRequest) werepending . get (i) ;
notdoevents . add ((Object) s r . c lone ()) ;

29 }
}

31 }

33 void f a i r S c h e d u l i n g () {
i n t c u r r e n t p r i o r i t y , subround ;

35 inround = f a l s e ;
SynchRequest s r ;

37 c u r r e n t p r i o r i t y = f indMaxPrior i ty (werepending) ;
for (i n t i = 0 ; i < werepending . s i z e () ; i ++) {

39 s r = (SynchRequest) werepending . get (i) ;
subround = s r . getClock () ;

41 i f ((subround > 0) &&

35

3. DEVELOPING PLATFORMS FOR FUNCTIONAL DESCRIPTION

(s r . getP () == c u r r e n t p r i o r i t y)) {
43 inround = t rue ;

s r . se tClock (subround − 1) ;
45 doevents . add ((Object) s r . c lone ()) ;

} e lse {
47 notdoevents . add ((Object) s r . c lone ()) ;

} ;
49 } ;

}
51 . . .

public update void postcond () {
53 i n t i ;

i n t id ;
55 SynchRequest s r ;

event e ;
57 for (i = 0 ; i < doevents . s i z e () ; i ++) {

s r = (SynchRequest) doevents . get (i) ;
59 e = s r . getEvent () ;

synchprocesses [s r . get Id ()] . setMustDo (e) ;
61 id = s r . get Id () ;

} ;
63 for (i = 0 ; i < notdoevents . s i z e () ; i ++) {

s r = (SynchRequest) notdoevents . get (i) ;
65 e = s r . getEvent () ;

synchprocesses [s r . get Id ()] . setMustNotDo (e) ;
67 } ;

doevents . c l e a r () ;
69 notdoevents . c l e a r () ;

pending . c l e a r () ;
71 }

73 public eval boolean s t a b l e () {
return true ;

75 }
}

If the resolve() method is called then the quantity manager checks
whether we are in the middle of a round or if a new round should start
(line 14).

If we are in a round, then the fairScheduling algorithm is called.

36

Muti-rate Synchronous model of computation

This algorithm first computes the maximum priority among all processes
with pending requests. Then collects all processes with this priority in a
queue. These processes are the one that have to be executed while all the
others have to wait. Finally, the postcond method sends commands to
the processes that force them to execute the NOPevent (corresponding
to the setMustNotDo command) or the event that they have requested
(corresponding to the setMustDo command)

If we are not in a round, then we first wait until all processes have
made a request, then we save all requests in an internal array (function
toWerePending) and then we call the scheduling algorithm.

The rest of the components of this platform are similar to what we
have shown for the YAPI platform.

37

Chapter Four

Developing platforms for
architectural description

There is no significant difference between function and architecture plat-
forms. A platform is a set of library components and a set of rules that
define their legal compositions. In the case of architecture, it is impor-
tant to have a way of associating costs and performances to each compo-
nent and a way of estimating costs and performances of a composition
of components. This is very important in order to be able to explore the
implementation space and compare solutions to decide which one is the
best.

There is though a radical difference between a functional description
and an architectural description. Once the denotational description of a
function has been mapped onto a platform representing a model of com-
putation, the resulting interconnection of components only implements
the original specification. In the case of architecture, an interconnection
of library components results in a structure that can implement a set of
functions. For instance, a single processor architecture can be used to im-
plement an MPEG decoder or a finite impulse response filter depending
on the software that is poured into the program memory.

A platform provider should expose all possible functions that an ar-
chitecture can support and let the system developer chooses one by de-
termining the architecture behavior in the mapping phase.

39

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

4.1 Architecture platforms use-case

We have to consider two different views: platform developers that as-
semble a platform starting from a set of preexisting library components
and platform users that use a platform, configure it and map a set of ap-
plications on it. Looking at figure A.1, platform developers would like to
define the red point in the platform space starting from the set of IPs that
are available in the library. Platform users, instead, want to have control
over the total power that the platform can offer which is represented by
the light red triangle in the common semantic domain.

Platform developers view. Platform developers have two main con-
cerns:

• they want to define a point in the platform space with certain char-
acteristics (that are usually requested by platform creators) like num-
ber of operations per seconds, number of processors, energy per
operation etc.

• they needs a way of exposing all implementable functions to the
platform users. In fact, they need a way of defining the pink trian-
gle and make it available for mapping a function onto the architec-
ture.

Each component in the library should be characterized with parame-
ters that configure its properties. Parameters like bus arbitration policy,
instruction set architecture or packet length for a serialization block are
examples of configuration options.

Each component should hide its implementation details and only ex-
pose its interfaces that declare the services that the component imple-
ments and requires. A bus, for instance, exposes the master interface and
has ports whose type is a slave interface. Interfaces constraint the way in
which components can be connected. A platform developer would con-
nect components together being aware of the valid compositions that can
be statically checked by the Metropolis compiler.

Each component is also characterized by costs and performances. These
quantities are modeled using quantity managers. When multiple compo-
nents are connected together quantities could become dependent from
each other. Physical time, for instance, is a global quantity that should
be the same for all components. Even for quantities that are not global, a

40

Architecture platforms use-case

dependence could arise from the composition. Consider a real time op-
erating system and a bus arbiter. When a task mapped on a CPU reads
a variable from the memory, the CPU has to ask permission to the bus
arbiter. If the bus is busy in another transfer, the opinion of whether the
task should continue its execution or not is different for the two sched-
ulers. A coordination mechanism is then needed in presence of multiple
quantity managers.

Coordination among quantity managers could become very cumber-
some for platform developers. Ideally, they want the coordination to be
totally transparent. A standard coordination algorithm should be pro-
vided to the platform developer with very few parameters to act on. For
instance, each quantity manager could have a configuration parameter
indicating its priority with respect to the other managers. When a plat-
form is built, platform developers could set priorities in order to make
the decision of a quantity manager dominate the one of a lower priority
manager. In our example, the bus arbiter would have a higher priority
than the real time operating system.

Platform users view. Platform users start with a functional descrip-
tion that is then mapped onto several architectures. Each mapping ex-
plores the cost/performance trade-off of the particular architecture un-
der consideration. The goal of this design step is to select the best map-
ping, or better, the best implementation of the original function at a lower
level of abstraction.

A platform user operates in the common semantic domain. The archi-
tecture is presented as a set of services and all their valid compositions.
The function is described using the same king of services. The mapping
is then the solution of a covering problem.

Two are the features that platform users require:

• a way of modifying the characteristics of an architecture. This re-
quires that a platform expose a set of parameters through which it
is possible to configure its elements. A platform developer has to
export the important parameters, characterizing each architecture
component, to the level of the platform users.

• A way of “intersecting” the function with the architecture in the
common semantic domain. This step can be viewed as a determi-
nation of the architecture non-determinism and will be clarified in

41

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

Figure 4.1: A model of a bus

chapter 5. Intuitively, it is a way of assigning pieces of functions to
architectural resources that can implement them.

4.2 Architecture platforms development

Platform developers could miss components that they need to built a
platform. In this section we provide guidelines for doing two things:
providing components and providing an interconnection of components
that can implement several functions.

A component offers services that can be used at a cost. A very ab-
stract view of a component is then a medium that exposes some inter-
faces. Later on a medium can be refined into a netlist if a more detailed
description is needed.

Figure 4.1 shows an example of a bus component. The elements to
define are:

• the master interface which declares the services that a master can
use. In this example there is one service for writing to a specific
target and a symmetric service for reading.

• the set of parameters to configure the bus. In this example they are
the number of connected masters, the number of connected slaves
and the priority of each master.

42

Architecture platforms development

• A quantity manager that schedules accesses to the bus. This com-
ponent represents the bus arbiter and decides the ordering of bus
accesses among all requests coming form the masters.

• A global time quantity manager. This component is already pro-
vided by the Metropolis framework. It is a global quantity and it is
in the picture only to show that there is a connection between the
bus and the time manager. By using the global time, it is possible to
model performances in terms of time required for each operation.

• Statemedia for bus to quantity managers communication. This com-
ponent implements the communication protocol between the re-
source and the algorithm that handles it. At sufficiently high level
of abstraction, this component implements the identity function
passing requests from one component to the other. At lower level
of abstraction, the communication protocol could be more compli-
cated and the statemedia should be refined to implement it.

The left hand side of the diagram will be part of a scheduled netlist while
the right hand side will be instantiated in the scheduling netlist. The
developer should be relieved from the burden of instantiating compo-
nents, quantity mangers and statemedia and connecting them together.
For each component, a function should be provided with the following
signature:

Listing 4.1: API for instantiating architectural components
public myBus addmyBus (n e t l i s t theScheduledNet l i s t ,

2 n e t l i s t t h e S c h e d u l i n g N e t l i s t ,
ArrayList parameters ,

4 i n t p r i o r i t y)

The function will create instances of all components and set their pa-
rameters. Then, it will add components to the proper netlist and make
connections. The last parameter is needed in the case of multiple quan-
tity managers interacting with each other. The priority parameter will
be used in the resolution phase to decide which manager has precedence
over the others (the priority parameter only could be not enough).

Each component can be described following this basic structure and
then refined into a more detailed entity. Refinement could require mov-
ing part of the scheduling algorithm from the quantity managers to the
scheduled netlist.

43

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

Figure 4.2: Block diagram of a double processor architecture

Consider now a library of components. As platform developers, we
want to interconnect them to provide an architecture that can support
a variety of applications. We will not deal with the characterization of
an architecture as a stand-alone object regardless of the function that is
mapped onto it. We rather speculate on how elements of an architecture
are connected together, how their parameters are exported and how its
potentials are exposed to the platform user.

We chose to provide a double processor architecture. The structure is
clear and is shown in figure 4.2.

The architecture exposes an interface that is the real time operating
system view of the underlying platform. We select a multi-processor
real time operating system, two processors, a communication system,
and two memories. We have not specified what kind of components
we want to use nor what are the event traces that can be generated by
this interconnection of components. Actually, in this abstract architecture
there are no processes and hence no events can be generated, or better in
the tagged signal model terminology, the only possible execution is the
empty behavior.

44

Architecture platforms development

Before discussing how events are generated and exposed, we describe
how components are interconnected and how parameters are exported.

Listing 4.2: Example of architectural netlist
public n e t l i s t doubleProc {

2 public doubleProc (S t r i n g n ,
S t r i n g comm ,

4 S t r i n g r tossched ,
double t i m e s l i c e ,

6 double c lk1 , double c lk2) {

8 / / I n s t a n c e o f components
N e t l i s t dpscheduled = new N e t l i s t (n + ” scheduled ”) ;

10 S c h d u l i n g N e t l i s t dpscheduling =
new S c h e d u l i n g N e t l i s t (n + ” scheduling ” , t rue) ;

12

MPRTOS myrtos =
14 new MPRTOS(n , dpscheduled , dpscheduling ,

r tossched , t i m e s l i c e) ;
16 MProc mp1 = MProc (n , dpscheduled , dpscheduling ,

c lk1) ;
18 MProc mp2 = MProc (n , dpscheduled , dpscheduling ,

c lk2) ;
20 i f (comm == ” xbar ”) {

XBar cmm = new XBar (n) ;
22 } e lse {

FCFSBus cmm = new FCFSBus (n) ;
24 }

. . . .
26 connect (myrtos , p1 , mp1) ;

. . .
28 }
}

The netlist shown in listing 4.2 is an example of how the architecture
is described. The important thing to notice is that the netlist represents
a family of architectures that are not only different because of the pa-
rameters of each component but also because users can decide which
communication architecture they wants to use. The architecture will still
be double-processor-double-memory but it is possible to select a differ-

45

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

Figure 4.3: Connection of tasks to the architecture

ent way of communicating between the two masters and the two slaves.
Parameters are simply exported from the components to the top netlist
constructor.

Until now, an architecture appears as an interface that offers services.
In our example, the multi-processor real time operating system offers
services like request from a task to use the CPU, sleep, request of owner-
ship of a semaphore etc. We now want to represent all possible functions
that and architecture can implement that corresponds to giving a descrip-
tion of all legal sequences of those services. We use non-deterministic
requests of the services by a set of tasks. We might want to limit not only
the number of tasks that can be mapped on the real time operating sys-
tem but also the way in which the services are called and the parameters
that are passed to the services. For instance, we cannot read a memory
location that is out of the memory space or we cannot execute a bus read
if we do not ask the ownership of the CPU before.

Figure 4.3 shows how processes are connected to the architecture model.
Before giving a pseudo code for the thread of a process, we observe that

46

The single-processor-single-memory architecture

all quantity managers have to be connected to the process in order to
schedule them.

A thread of a process Ti looks like listing 4.3:

Listing 4.3: Thread of an architecture task
1 void thread () {

while (t rue) {
3 await{

(t rue ; ;) {
5 cpuRequest (nondeterminism (i n t)) ;

} / / Number o f c y c l e s
7 (t rue ; ;) {

dataRead (nondeterminism (i n t) ,
9 nondeterminism (i n t)) ;

} / / Address , number o f b y t e s
11 (t rue ; ;){

dataRead (nondeterminism (i n t) ,
13 nondeterminism (i n t)) ;

}
15 . . .

}
17 }
}

The thread() function is an infinite loop with only one await state-
ment belonging to it. The await statement has parallel critical sections
(lines 5,8,12) all enabled at the same time. It semantically says that,
at each time the while loop is executed, one of the critical section is
non-deterministically selected. The parameters of each service are non-
deterministic values even if bounds should be given in order to satisfy
constraints like memory limitations.

4.3 The single-processor-single-memory
architecture

In this section, we will create a single processor architecture. We start
from the interfaces and then we describe the implementation.

Let us start from the description of a bus. It defines the interfaces to
use it. Each bus has its own set of interfaces. The AMBA [1] bus for

47

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

instance defines the signals that a master and a slave interfaces have to
have. Those are very low-level characterization of the interconnection
and here we want to focus more on the services that are provided/re-
quested by/from a bus. For instance, the Open Core Protocol (OCP) [11]
defines different kind of transactions that can be requested by a master
and also defines the set of services that a slave has to provide.

We want to provide very basic services to transfer n bytes to a target
slave T (listing 4.4).

Listing 4.4: Bus interfaces
public i n t e r f a c e M a s t e r I n t e r f a c e extends Port {

2 eval void read (i n t t a r g e t , i n t addr ,
i n t n , i n t p) ;

4 update void write (i n t t a r g e t , i n t addr ,
i n t n , i n t p) ;

6 }

8 public i n t e r f a c e S l a v e I n t e r f a c e extends Port {
eval void read (i n t t a r g e t , i n t addr , i n t n) ;

10 update void write (i n t t a r g e t , i n t addr , i n t n) ;
}

Parameters of this functions are:

• target: the target slave;

• addr: the address on the target memory space;

• n: the number of bytes to transfer;

• p: the priority assigned to the master.

Note that we are not concerned with the actual transfer of data even if
adding this information is easy. The parameters are needed only to es-
timate the time required for transferring the n bytes. A bus needs two
quantity managers: the global time manager that annotates time for the
begin and end events of a transaction, and a quantity manager that de-
cides the bus owner (the bus arbiter). When a write or read transaction
is requested by a master, a request is issued to the bus arbiter that checks
whether the bus is available. If multiple requests are pending, the high-
est priority master will get the bus ownership. Listing 4.5 gives an idea
of how the read service is implemented.

48

The single-processor-single-memory architecture

Listing 4.5: Implementation of the read service
1 public eval void read (i n t t a r g e t , i n t addr , i n t n , i n t p) {

event e , r ;
3 br1{@;

{$
5 beg{

e = beg (get thread () , t h i s . b r i) ;
7 s r c . setSchedReqClass (e , REQUEST) ;

portSM . request (e , s r c) ;
9 }

11 $}@} ;

13 {
p o r t S l a v e s [t a r g e t] . busSlaveRead (t a r g e t , addr , n) ;

15 }
br2{@;

17 {$
end{

19 r = end (get thread () , t h i s . br2) ;
s r c . setSchedReqClass (r , e , RELEASE) ;

21 portSM . request (r , s r c) ;
}

23 $}@} ;
}

The service uses two labels: br1 marks the initial request of the bus while
br2 marks the release of the bus indicating that the transfer has been
succesfully done. With reference to figure 4.1, when a master calls a read
service on a bus, a requrest is issued at the begin event of label br1 .
_portSM is a port to the statemedium S1 that passes the request to the
bus arbiter. The arbiter decides if the request can be satified in which
case the process that issued the request continues with its execution reads
on the target slave. When the read finishes, a request to release the bus
is issued to the arbiter that selects a new owner of the bus (if there are
pending requests).

The bus arbiter can also ask the global time manager to account for
arbitration overhead in which case the begin event of the read operation
on the target slave can begin only if the amount of time needed for ar-
bitration has elapsed. Also, the slave read can take a certain amount of

49

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

time meaning that the end event of the read function can be executed
only if such amount of time has elapsed. This algorithm is implemented
in the global time quantity manager.

A master could be for instance a CPU. In order for the CPU to be
connected to the bus, it must have a port of type MasterInterface .
A real time operating system is connected on top of the CPU to share
the resources among multiple tasks. Instead of going into the details of
the CPU code, whose implementation in MMM can be intuitively under-
stood looking at the bus implementation, we want to give an idea of how
multiple quantity managers coordinate to guide the architecture execu-
tion.

As in the case of the bus and bus arbiter, the real time operating sys-
tem has a scheduler that is implemented as quantity manager. The ques-
tion is: how do we coordinate them in order to make the right decision?
Each scheduler implements three functions: resolve() , postcond()
and stable . The resolve() function looks at the pending requests
and based on its scheduling algorithm annotates tags to events. It also
decides if an event can be executed or not. The postcond() function
is used to let each quantity manager know about decisions of the others.
The stable() function returns a boolean value that should be true only
if the schedulers decisions has not changed since last iteration.

The three functions are implemented by the user. The quantity man-
agers are instantiated in a scheduling netlist that is a regular netlist with
a resolve method that has to be implemented by the user. The resolve
method is called whenever a scheduling decision is needed (for a de-
tailed explanation of this method please refer to [2]). The scheduling
netlist resolve method can recursively call the quantity managers resolve
methods until all of them are stable (a conditions that can be checked by
calling the stable function on each quantity manger). Finally, it calls the
postcond() method of each quantity manager.

In our case, we could call the bus resolve method first and then the
real time operating system scheduler, thus giving the bus arbiter a higher
priority. The real time operating system will execute his scheduling algo-
rithm considering only the pending requests that can be executed, with-
out considering tasks that have requested the bus and have to wait until
it is available.

After all components have been connected together, the real time op-
erating system exposes the following set of services:

50

The single-processor-single-memory architecture

Listing 4.6: Services exposed by the operating system
public i n t e r f a c e SwTaskService extends Port {

2 eval void request (i n t n) ;
eval void read (i n t t a r g e t , i n t addr , i n t n) ;

4 update void write (i n t t a r g e t , i n t addr , i n t n) ;
eval void readProtec t (i n t t a r g e t , i n t addr , i n t n) ;

6 update void w r i t e P r o t e c t (i n t t a r g e t , i n t addr , i n t n) ;
eval void readLongProtect (i n t t a r g e t , i n t addr ,

8 i n t n , i n t [] data) ;
update void writeLongProtect (i n t t a r g e t , i n t addr ,

10 i n t n , i n t [] data) ;
}

The request method only asks the CPU for computation. Three read
and write services are provided. The protect version will first try to
acquire a semaphore and then accesses the memory location at address
addr on target target. The long version will transfer the actual data.

The last components that we need are the tasks that use the services
provided by the operating system. In our experiment, we want to pro-
vide services to transfer data and a service for carrying out computation.
The task will look like the following:

Listing 4.7: A non-deterministic software task
1 public process SwTask {

Nondet t a r g e t , addr , nTimes ;
3 / / C o n s t r u c t o r

port SwTaskService r t o s ;
5 public SwTask (S t r i n g n , i n t num sms , i n t num cpus) {

super (n) ;
7 r t o s = new SwTaskService [num cpus] ;

. . .
9 }

11 public void thread () {
while (t rue){

13 await{
(t rue ; ;) query space () ;

15 (t rue ; ;) guard query space () ;
(t rue ; ;) c la im space () ;

17 (t rue ; ;) r e l e a s e s p a c e () ;

51

4. DEVELOPING PLATFORMS FOR ARCHITECTURAL DESCRIPTION

19 (t rue ; ;) query data () ;
(t rue ; ;) guard query data () ;

21 (t rue ; ;) c la im data () ;
(t rue ; ;) r e l e a s e d a t a () ;

23 . . .
}

25 }
}

27

public void query space () {
29 r t o s [0] . readProtec t (t a r g e t . get () , addr . get () , 1) ;

}
31

public void r e l e a s e s p a c e () {
33 i n t [] tokens = new i n t [1] ;

35 r t o s [0] . readLongProtect (t a r g e t . get () ,
addr . get () , 1 , tokens) ;

37 tokens [0] = tokens [0] − nTimes . get () ;
r t o s [0] . request (1) ;

39 r t o s [0] . wri teLongProtect (t a r g e t . get () ,
addr . get () , 1 , tokens) ;

41 }
}

Part of the code has been omitted. Nondeterministic data structures have
been defined to contain the target slave, the address and the number of
bytes to transfer (respectively _target , _addr , _nTimes). These vari-
ables are non-deterministic quantities in the architecture model but they
will be assigned to particular values during the mapping phase.

This architecture provides services for transferring data from and to
the memory. They are the same set of services that characterize com-
munication in the Task Transactions level [4] platform described in sec-
tion 1.1.

For instance, the release_space (line 32) method will first read
the number of tokens in a FIFO. The number of tokens is a variable that
is stored in memory, so the action of reading it requires to access the
memory. Moreover the read has to be protected to avoid data corruption.
Then the number of tokens in the FIFO has to be updated. This operation

52

The single-processor-single-memory architecture

also requires an arithmetic instruction to be executed on the CPU. The
request function (line 38) takes into account this overhead. Finally the
new number of tokens are written back to memory (line 39).

53

Chapter Five

Mapping a function onto an
architecture

Traditionally, a mapping has been thought of as the assignment of pieces
of function to architectural resources. If the part of the function S is as-
signed to resource R it means that R can implement S but R might be
able to implement other functions as well. Assigning S to it is a way
of restricting the set of its behaviors. This chapter uses the more general
idea of mapping as intersection of function and architecture in a common
semantic domain.

Another important aspect of mapping is scheduling. Function and
architecture have two different concurrency models. The amount of con-
currency on the architecture side is usually determined by the number of
computational resources that are available (number of processors for in-
stance). A model of computation like KPN could have a different model
of concurrency. If processes do not communicate at all for instance, they
all run concurrently. Mapping then asks for the introduction of schedul-
ing of shared resources (real time operating systems, bus arbiter etc.). A
scheduler usually have parameters whose optimal value is assigned dur-
ing mapping.

55

5. MAPPING A FUNCTION ONTO AN ARCHITECTURE

5.1 Mapping functions onto architectures

The mapping phase has to objectives: implementing a function onto an
architecture using its services and selecting the “best” architecture for a
particular function (or, more generally, a set of functions belonging to the
same application domain). This last objective is usually called architecture
exploration or design space exploration.

A mapping can be done automatically (if a tool exists to do so) or
manually. A designer who is purposed to the mapping phase, starts with
a function on one side and a set of architectures on the other side. The
designer wants to find a “good” mapping. Words like “best” and “good”
are quoted because they are uninterpreted by now, but they implicitly
assume that mappings can be compared using a metric representing a
trade-off between performance and cost.

An important point that has to be considered is the level of abstrac-
tion at which the design exploration is carried out. Each level, in fact,
corresponds to a design decision, or a set of decisions, that have to be
made in order to reach the implementation level. The common seman-
tic domain should be defined in such a way that these decisions can be
made. In this section, we assume that such domain as been selected al-
ready which means that function and architecture are described in terms
of a common set of services. Note that this assumption is not required by
the Metropolis framework but it is suggested by the methodology that
we advocate.

Figure 5.1: Examples of function and architecture services requests/of-
fers

56

Mapping functions onto architectures

Figure 5.1 shows two mapping scenarios. The function F is described
as a set of traces where each trace is a sequence of services. The archi-
tecture A is pictorially represented as a set of resources offering services.
For instance, case A shows an architecture with two resources R1 and R2.
Each resource offers two services S1 and S2 but only one of them can be
in execution at a time.

For each service we shall distinguish between its begin and end event.
We shall denote with beg(Si) the begin event of Si and with end(Si) its end
event.

Using this simple notation, the function execution trace of case A can
be denoted with the sequence < beg(S1), end(S1), beg(S2), end(S2)... >.
The architecture execution is described by a trace of pairs of events, each
realtive to one resource. Two examples of its partial behaviors are the
following:

< (beg(S1), NOP), (end(S1), NOP), (NOP, beg(S2)), (NOP, end(S2))... >

< (beg(S2), beg(S2)), (end(S2), end(S2)), .. >

Even without a formal definition of common semantic domain and
intersection, the reader can easily recognize that while the first trace is
compatible with the function trace, the second is not because service S1 is
never executed. Moreover, the first trace corresponds to the assignment
of S1 to resource R1 and service S2 to resource R2.

Case B requires some more observations. Function F requires the
concurrent execution of service S1 and S2. If there are no constraints on
the begin and end events of these two services, then they can be mapped
both on resource R1 and executed in whichever order (S1 first and then
S2 for instance). This is possible if the events in the function are only
partially ordered. If we add the constraint that beg(S2) as to be executed
before end(S1) then the mapping is possible only if a preemptive schedul-
ing is available on R1.

If a mapping is not feasible, intersection of function and architecture
results in the empty execution.

57

5. MAPPING A FUNCTION ONTO AN ARCHITECTURE

5.2 Describing mappings using metamodel
synchronization constraints

A mapping can be specified by synchronizing the function execution
with the architecture execution. First, we have to define synchronization
of events. Two events e1 and e2 are synchronized if e1 ∈ v ⇐⇒ e2 ∈ v
where v is an event vector. The synchronization relation is transitive.

Synchronization among events can be enforced using constraints. Con-
sider for instance case A of figure 5.1. We want to map service Si on re-
source Ri. This result can be obtained by synchronizing the begin event
of Si in the function side, with the begin event of Si on resource Ri in the
architecture side. We also want to synchronize their end events.

Synchronization is obtained using linear temporal logic (LTL) formu-
las whose declaration is as follows:

Listing 5.1: A non-deterministic software task
l t l synch (e1 , e2 , . . . [: v1@ (e1 , i)==v2@ (e2 , i) , . . .])

This formula means that all the events involved in it are in the syn-
chronization relation. The second part is optional and is used to assign
values during mapping. In chapter 4 we have seen that values in the
architecture are non-deterministic. They become deterministic during
mapping, where an actual value is decided for them. For instance, the
memory address of a variable or the priority of a task is decided in the
mapping phase.

The LTL formulas are interpreted and synthesized by the simulator
that will try to schedule events in order to satisfy them.

There are two important things to highlight:

• a mapping does not require any change in the function or archi-
tecture code. This property is important because the design explo-
ration of complex systems could require the evaluation of many dif-
ferent mappings and we don’t want to change our models for each
new mapping. Using this methodology will just require to change
a set of constraints.

• The result of the mapping is again a function at a lower level of ab-
straction. The mapping will implement the function on the archi-
tecture which now has much less non-determinism since the con-

58

Describing mappings using metamodel synchronization constraints

straints have intersected the architecture’s set of behaviors with the
function’s set of behaviors.

• The events of the mapped function are annotated with the quan-
tities produced by the architecture model. Constraints that were
declared at the beginning of the design process, like power con-
sumption, and that could not be interpreted at the function level
(because power estimation was not available), now can be checked.
The implementation has, of course, to satisfy all constraints.

AppendixAppendix

59

Appendix A

Platform-Based Design example

The platform-based design methodology is a recursive paradigm where
the action of mapping a function onto an architecture generates a new
function described at a lower level of abstraction and therefore more de-
tailed than the original one.

A design process should start with a denotational description of the
function that we want to implement, plus a set of constraints that the
implementation has to satisfy. Filtering a signal x(t), for instance, can
be denotationally described as x(t)⊗ h(t), namely the convolution of the
signal with the filter impulse response h(t). Design constraints are usu-
ally specified as propositional formulas over the system quantities. In the
case of filtering, for example, we can specify a lower bound on the off-
band signal attenuation. Constraints specified at this level of abstraction
are propagated down to all subsequent levels, until the implementation
level is reached.

While constraints are propagated in a top-down fashion, performances
are abstracted in a bottom-up manner. Performance abstraction is the
process of hiding details that are not relevant for the level of abstrac-
tion under consideration. In fact, each level of abstraction focuses on a
particular design choice on which only few quantities have impact. Ab-
straction of quantities that are not relevant is essential for speeding up
the design space exploration.

In this section we focus on one step of the design flow characterized
by a function, an architecture and the mapping of the former onto the lat-
ter. We use a simplified logic synthesis flow as a representative example.

Figure A.1 shows the design process. The function is described in

61

A. PLATFORM-BASED DESIGN EXAMPLE

Figure A.1: Platform based representation of a simplified logic synthesis
flow

the register transfer level (RTL) domain. In this domain a function is
described as interconnection of combinational logic blocks communicat-
ing through registers. Furthermore, each combinational block takes zero
time to compute its logic function.

The platform is composed of all possible logic functions that can be
implemented on a chip using standard cells technology. The library of
components, from which the platform is built up, contains pre-characterized
logic functions that are usually custom designed to achieve extremely
high performances. Each library element is characterized by the its logic
function, performance and cost. An OR logic gate, for instance has a truth
table, gate delay and power consumption associated with it.

A common semantic domain for the RTL functional description and
the standard cell platform is the domain of all circuits built out of 2-
inputs NAND gates. In fact, every logic function can be expressed only
using NAND gates. Mapping an RTL function onto the standard cell
platform can be done in the following way. First, we analyze the RTL
description and, for each combinational block, we express its function
using 2-inputs NAND gates. Secondly, we express each library cell logic
function using the same elementary gate. Finally, the problem reduces
to a minimum cost covering of the original function with the library ele-
ments with a given cost function (e.g. power or minimum slack).

62

The covering problem is an optimization problem subject to the con-
straints coming from the original specification. Typical constraints that
are associated with the functional specification are clock speed, inputs
arrival time and output required time. After the covering algorithm has
finished, those constraints must be checked (using timing analysis). If
they are not met, the designer has two choices: going back and modify-
ing the RTL description by using a different block partitioning, or moving
the covering algorithm out of the local minima.

The resulting netlist is an interconnection of standard cells which is
indeed a new function F ′. This function represents a refinement of the
original one which was described at a much higer level of abstraction. F ′

is the new specification for the next design step whose platform library is
composed of transistors and wires. Original constraints are propagated
further down and must be satisfied by the transistor level implementa-
tion.

The simple design process described above turns out to be very gen-
eral. Once a common semantic domain has been defined so that both the
function and the platform elements can be expressed using a common
mathematical formalism, design exploration reduces to a covering prob-
lem. The covering algorithm has to minimize a cost function which is the
sum of the costs of each platform component that has been used during
the covering. The whole optimization problem is subject to the original
constraints.

63

Appendix B

Tagged Signal Model Definitions

The tagged signal model is a denotational framework to compare models
of computation. In this framework an event e is an element of the cross
product V × T where V is a set of values and T is a set of tags. An order
relation defined on T induces and ordering of events. A signal s is a set
of events and can be viewed as subset of V × T . It is useful to define a
set of signal s and also the set SN of all sets of N signals. A behavior of
a process is an element of the set SN and a process P is a subset of SN .
s ∈ SN satisfies a process if s ∈ P and it is called a behavior of the process
P .

65

Bibliography

[1] ARM. http://www.arm.com/products/solutions/ambahomepage.html.

[2] Felice Balarin and Yosinori Watanabe. Metamodel language.

[3] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno,
Claudio Passerone, and Alberto Sangiovanni-Vincentelli. Metropo-
lis: An integrated electronic system design environment. IEEE Com-
puter, Apr 2003.

[4] J-Y. Brunel, E.A. de Kock, W.M. Kruijtzer, H.J.H.N. Kenter, and
W.J.M. Smits. Communication refinement in video systems on chip.
7th International Workshop on Hardware/Software Co-Design, May 1999.

[5] W. J. M. Smits P. van der Wolf J.-Y. Brunel W. M. Kruijtzer P. Lieverse
K. A. Vissers E. A. de Kock, G. Essink. Yapi: Application modeling
for signal processing systems. Proceedings of the Design Automation
Conference, June 2000.

[6] Jacl. http://www.tcl.tk/software/java/java.html.

[7] Gilles Kahn. The semantics of a simple language for parallel pro-
gramming. Proceedings of IFIP Congress 74, August 1974.

[8] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. System level design: Orthogonolization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 19(12), December 2000.

[9] SystemC language. http://www.systemc.org.

67

BIBLIOGRAPHY

[10] E. Lee and A. Sangiovanni-Vincentelli. A denotational frame-
work for comparing models of computation. Technical Memorandum
UCB/ERL M97/11, November 1997.

[11] Open Cores Protocol. http://www.ocp.org.

[12] Alberto Sangiovanni Vincentelli. Defining platform-based design.
EEDesign of EETimes, February 2002.

68

	Contents
	Preface and Acknowledgements
	Introduction
	Platform-based design of Multimedia Systems
	Metropolis design environment
	Audience and Organization

	Basic notions on modeling
	Processes, Interfaces and Media
	Netlists
	Quantity managers
	Constraints

	Developing platforms for functional description
	Models of computations for describing functions
	Function platforms use-case
	Architecture of a model of computation
	YAPI: Y-Chart Application Programming Interface
	Muti-rate Synchronous model of computation

	Developing platforms for architectural description
	Architecture platforms use-case
	Architecture platforms development
	The single-processor-single-memory architecture

	Mapping a function onto an architecture
	Mapping functions onto architectures
	Describing mappings using metamodel synchronization constraints

	Platform-Based Design example
	Tagged Signal Model Definitions
	Bibliography

