
Metropolis YAPI Platform: User’s Manual

Alessandro Pinto
University of California at Berkeley
545P Cory Hall, Berkeley, CA 94720

apinto@eecs.berkeley.edu

September 14, 2004

Copyright c© 2001-2003 The Regents of the University of California.
All rights reserved.

1

Contents

1 Semantics 2

2 The Yapi Package 2
2.1 Yapi Channels . 3
2.2 Yapi Processes . 4

3 Example 6

1 Semantics

This package provides a library for modeling non-deterministic Kahn Process
Networks. This model has been developed by Philips and its formal seman-
tics is described in [1].

In this model, processes communicate through of one input, one output
unidirectional unbounded FIFOs. A process can have ports to read/write n
tokens form/to a channel. Writing is non-blocking while the reading blocks
the process until there are enough data to complete the read operation.

Non determinism is achieved by letting the process check the number of
tokens available on its input channels. A process can non-deterministically
choose a port among a set of ports where a read operation can eventually
complete.

2 The Yapi Package

The yapi package is implemented using templates. A model is then param-
eterized with respect to the type of data that it deals with.

In order to use the package, the user must import it explicitly with the
following import statement at the beginning of each mmm file:

import metamodel.plt.yapitemplate.*

This assumes that the METRO CLASSPATH variable is set to $METRO lib.
The package provides two basic components: yapiprocess to specify

computation and yapichannel that implements an unbounded FIFO.

2

2.1 Yapi Channels

The package provides the definition of the interface to communicate data.
A basic interface is defined to check the number of tokens in a FIFO:

public interface yapiinterface extends Port {
eval boolean checkfifo(int n,int dir);

}

The checkfifo function takes two parameters: n is a number of tokens and
dir is a direction associated with the port (0 for input and 1 for output).
If we are checking an input port, this function returns true if there are at
least n tokens in the FIFO. If we are checking an output port then it returns
true if there are at least n available spaces in the FIFO. Since FIFOs are
unbounded, this function always return true for output ports.

Two interfaces define the services that processes can use to exchange
data:

//input port interface
template(T)
public interface yapioutinterface extends yapiinterface {

update void write(T data);
update void write(T[] data,int n);
update void write(T[][] data, int n, int m);

}

//output port interface
template(T)
public interface yapiininterface extends yapiinterface {

update T read();
update void read(T[] data,int n);
update void read(T[][] data,int n,int m);

}

yapioutinterface is used as type for output ports. It defines services for
writing into a channel. Three services are provided: for writing matrices,
arrays and single tokens. yapiininterface is used as type for input ports
and defines services for reading from a channel.

Write is non-blocking since the fifo is unbounded. Unboundedness is
achieved by resizing the FIFO each time that a write would overflow the
current size.

yapichannel is a template medium that implements these interfaces:

template(T)
public medium yapichannel implements yapiininterface-<T>-,

yapioutinterface-<T>-,

3

rdi,wri,cki {
...
//Constructor
public yapichannel(String n,int isize){

super(n);
...

}
...

}

where isize is the FIFO initial size that has to be greater than zero.

2.2 Yapi Processes

The package provides the super-process yapiprocess. The user can extend
this process and write his/her own execute function to modify the behavior
of the process (see section ??).

A process has four predefined input ports inport0 − 3 and four prede-
fined output ports output0 − 3 that can be used when a non deterministic
selection is needed. The user can define his/her own ports in addition to
the predefined ports but select function is implemented on the predefined
ports only. The Metal-Model language doesn’t impose this limitation since
it supports array of ports.

Yapiprocess implements the select function whose signature is the
following:

int select(int nin0,int nin1,int nin2,int nin3,
int nout0, int nout1, int nout2,int out3);

Here nin<n> indicates the number of tokens required at the n-th prede-
fined input port and nout<n> indicates the number of places in the FIFO
required at the n-th predefined output port. The ports that are considered
in the select operation are only the ones that have a non negative number
of tokens/spaces in the argument list. The select function returns a number
that indicates which port was selected:

• 0-3 are the inputs ports inport[0-3]

• 4-7 are the output ports outport[0-3]

An input/output port is a candidate for selection if the number of to-
kens/spaces in the FIFO is greater or equal to the number of tokens/spaces
required.

yapiprocess is a template process whose definition is as follows:

4

template(T)
public process yapiprocess{

port yapiininterface-<T>- inport0;
port yapiininterface-<T>- inport1;
port yapiininterface-<T>- inport2;
port yapiininterface-<T>- inport3;

port yapioutinterface-<T>- outport0;
port yapioutinterface-<T>- outport1;
port yapioutinterface-<T>- outport2;
port yapioutinterface-<T>- outport3;

public yapiprocess(String n){
super(n);

}

public int select(int nin0,int nin1,int nin2,int nin3,
int nout0, int nout1, int nout2,int nout3){

await{
(inport0.checkfifo(nin0,0);;){

return 0;
}
(inport1.checkfifo(nin1,0);;){

return 1;
}
(inport2.checkfifo(nin2,0);;){

return 2;
}
(inport3.checkfifo(nin3,0);;){

return 3;
}
(outport0.checkfifo(nout0,1);;){

return 4;
}
(outport1.checkfifo(nout1,1);;){

return 5;
}
(outport2.checkfifo(nout2,1);;){

return 6;
}
(outport3.checkfifo(nout3,1);;){

return 7;
}

}
}

void thread() {
execute();

}

5

public void execute(){}
}

The user extends this process and overrides the execute method.

3 Example

This is a simple producer/consumer example that doesn’t use the select
function . The producer has only one output and generates random data.
The consumer reads a number of tokens and sum them up. The number of
tokens to sum is a parameter.

import metamodel.plt.yapitemplate.*;
process Producer extends yapiprocess-<yapiint>- {

port yapioutinterface-<yapiint>- outport;
Producer(String n , int numberofwrites){

super(n);
_numberofwrites = numberofwrites;

}
public void execute() {

while(_numberofwrites > 0){
yapiint a = new yapiint(nondeterminism(int));
outport.write(a);
_numberofwrites--;

}
}
int _numberofwrites;

}

The first line imports the yapitemplate package. The Producer process ex-
tends the yapiprocess. Since the base class is a template we have to specify
the type that in this case is a class that contains and integer (yapiint). The
process produces numberofwrites integers whose values are non deter-
ministic.

The top level netlist is described as follows:

import metamodel.plt.yapitemplate.*;
public netlist ProdCons {

public ProdCons(String n){
super(n);
Producer pr = new Producer("TheProducer" , 50);
Consumer cs = new Consumer("TheConsumer" , 50);
yapichannel-<yapiint>- ch = new yapichannel-<yapiint>-("TheChannel" , 10);
addcomponent(pr , this , "TheProducerInstance");
addcomponent(cs , this , "TheConsumerInstance");

6

addcomponent(ch , this , "TheChannelInstance");
connect(pr , outport , ch);
connect(cs , inport , ch);

}

Each component is instantiated and the added to the current netlist. Note
that the yapichannel are templates and their type has to be specified.

References

[1] W. J. M. Smits P. van der Wolf J.-Y. Brunel W. M. Kruijtzer P. Lieverse K.
A. Vissers E. A. de Kock, G. Essink. Yapi: Application modeling for sig-
nal processing systems. Proceedings of the Design Automation Conference,
June 2000.

7

	Semantics
	The Yapi Package
	Yapi Channels
	Yapi Processes

	Example

