Metropolis

Metropolis Project Team
University of California Berkeley
Cadence Berkeley Laboratories

metropolis




Metropolis Framework

Design of Design of Design of
Function Processes Communication Medig rchitecture Components

Metropolis Infrastructure
* Model of computation

* Design methodology

- Abstraction levels

- Refinement

* Base tools
- Design imports
- User interface
- Simulation

Metropolis Point Tools:
Analysis/Verification

Metropolis Point Tools:
Synthesis/Refinement




Metropolis: Model of Computation

e System function: a network of processes
— process: sequential function + ports

e Do not commit to particular communication semantics

— ports: interconnected by communication media

— communication media: define communication semantics
e.g. queues, shared memory, ..., generic, ...

e Do not commit to particular firing rules of processes

— aspecial construct to define interaction between processes and media




Communication

e Communication medium:
— state: snapshot of the medium
— interfaces: read, write, status-check, ...
— properties: # of writers, transaction, arbitration, ...

/ State: # of elements, type, values, \

FIFO queue Interfaces:

Y | | S reader{ read(), num() }
writer{ write(), num() }

\ Properties: 1 writer, 1 reader, ... /

* An interface may be supported by more than one media.
e Interface functions at different abstraction levels to support refinement.

e Language to define communication media
e Library of pre-defined media




Communication Media

interface reader { interface writer {
void read(data, rate); void write(data, rate);
int num(); // # of elements int num();

medium bfifo reader writer { // bounded FIFO
Int num; /[ # of elements
states

int depth; //the depth of the fifo

\

iInt num() {
return num;

}

void read(data, rate) { : :
> interface functions

}

void write(data, rate) {




Process

e Ports:

— Each port is specified with an interface it can access to.
All and only the functions of the interface can be used through the port.

Sequential program:

— Interaction with communication media
await(cond){ st1; st2; ... stk;}
“if cond is TRUE, then atomically execute {st1; ... stk;}.”
« Atomic operations
* Micro steps
Non determinism
Bounded loops
Parameters




Process

interface reader { interface writer {
void read(data, rate); void write(data, rate);
int num(); int num();

} }

process filter {
reader portl;
writer port2;

await(portl.num() > 7) {
portl.read(V, 8);

}

bounded loop(i, 0, 4, 1{ /I for(i=0; i<4,; i=i+1)
V[i] =V[7-i];

}




Process

interface reader { interface writer {
void read(data, rate); void write(data, rate);
int num(); int num();

} }

process filter {
reader portl, port3;
writer port2;

c =1;

await(portl.num() > 7 || port3.num() > 0) {
if(port3.num() > 0) portl.read(c, 1)
if(portl.num() >7) portl.read(V, 8);

}

bounded_loop(i, 0, 4, 1){
V[i] =c*V[T7-i];

}




Network of Processes

e Define the structure of a network
— Instantiate processes: set parameters
— Instantiate communication media: set parameters
— Specify connections

e Specify constraints on the network

— Scheduling constraints é@

A network may be hierarchical; a process may be a subnet of processes.




Network of Processes

application my_design {
process F = new filter();
medium Fifol = new bfifo(8, int); // bfifo(depth, type)
medium Fifo3 = new bfifo(1, int);

connect(F.portl, Fifol);
connect(F.port3, Fifo3);

process P = new producer();
process C = new controller();

filter




Metropolis Framework

Design of Design of Design of
Function Processes Communication Medig rchitecture Components

Metropolis Infrastructure
* Model of computation

* Design methodology

- Abstraction levels

- Refinement

* Base tools
- Design imports
- User interface
- Simulation

Metropolis Point Tools:
Analysis/Verification

Metropolis Point Tools:
Synthesis/Refinement




Design Methodology

Functional Decomposition

Behavior Adaptation

Communication Media Insertion
MoC Wrapping

Communication Refinement
Channel Adaptation

Mapping and Optimizations




Functional Decomposition

e Functional Decomposition

— at the highest abstraction
level, a system is a single
process

— itis refined into a set of
concurrent processes

e Process:

— relation between an input
domain and an output co-
domain

— only behavior, no
communication

— denotational specification




Functional Decomposition (ex.)

MPEG Decoder

| DISPLAY




Behavior Adaptation

e Behavior adapters =

— match different domains, so relation
that processes can behavior

adapter

understand each other
relation between two @
domains P2

relation

not part of original system
specification: needed
because of the particular
decomposition

needed independently of
how the communication is
performed




Behavior Adaptation (ex.)

VLD

blkvect

mot. vect

block

Mblock

block

mot. vect

MC

Mblock

Frame

| DISPLAY

| DISPLAY




Communication and MoC

e Communication medium @) P2

— each link needs a
communication medium

— does not affect or change J D y
the relation inside @

processes "

e MoC wrapper

— used to establish a firing
rule and a communication
semantics for each
Process

— only the Moc wrapper is
modified if a medium is
changed




Communication and Moc (ex.)

| DISPLAY

o]0 [} O -uc}- - [0 [oiseia]
| o 1

»(cm
\




Refinement

e Refinement

— any communication medium
can be refined into an
arbitrary netlist, as long as
the interface is not changed

e Channel adapters
— used to preserve properties

Lossless

of a given interface

— example:

lossless communication
realized with alossy medium

( retransmission + acknowledge)




an
x
D)
N
o
-
&)
=
&)
=
(-
&)
ad

VI
3
(@)
®
[
®
E
=
®
[
®
]
o
®
®
O
H
ﬁ




Mapping and Optimization

e Optimization
— map each element

(processes, adapters,
media) onto architecture

merge processes,
adapters and media into
a single process, when
applicable

provide an imperative
description for each
process




Mapping and Optimization (ex.)

' ﬁ_’ DISPLAY




Metropolis Framework

Design of Design of Design of
Function Blocks Communication Medig rchitecture Components

4

Metropolis Infrastructure
* Model of computation
* Design methodology
- Abstraction levels
- Refinement
* Base tools
- Design imports
- User interface
- Simulation

Metropolis: Analysis/Verification

* Static timing analysis of reactive systems
* Invariant analysis of sequential programs
* Refinement verification

* Three-valued simulation

* Delay estimation using object code

Metropolis: Synthesis/Refinement

* Compile-time scheduling of concurrency
« Communication-driven hardware synthesis
* Protocol interface generation




