
 1

MVSIS 2.0 Programmer’s Manual

 Donald Chai, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Alan Mishchenko, Robert Brayton

 Department of Electrical Engineering and Computer Sciences
 University of California, Berkeley CA 94720
 mvsis-devel@ic.eecs.berkeley.edu

Abstract

MVSIS is a logic synthesis system, which enhances
traditional binary logic synthesis with capabilities related
to multi-value logic. This manual introduces the
programming environment of MVSIS 2.0 and compares it
with those of SIS 1.3 and VIS 1.4. The new data structures
are described and the motivation behind them is explained.
The goal is to help the reader with the general
understanding of logic synthesis and the working
knowledge of C programming get started writing his or her
own application code, which manipulates binary or MV
networks in MVSIS.

1 Introduction

MVSIS [5] is a logic synthesis system, which supports
the data structures and procedures needed for technology-
independent binary and multi-valued (MV) logic synthesis.
The current implementation, MVSIS 2.0, features a
completely new source code with only a few packages
borrowed from SIS [7] and VIS [9]. However, as a
programming environment, MVSIS is designed to have the
feel of SIS and the look of VIS. The following points
summarize the new features:
• Several modifications are made to the network/node

data structures; in particular, the pin data structure is
introduced.

• BDD/MDD functionality representation of the nodes
pioneered in BDS [10] is supported along with the
traditional SOP representation used in SIS.

• A new technique for storing the local functions
(relations) of the nodes is used; as a result, all the
node fanin variables are mapped into the same range
of encoding BDD variables.

• New data structures are developed to represent and
manipulate the general case of non-deterministic

(ND) multi-valued (MV) relations describing the
functionality of the nodes.

• Classical logic synthesis operations (factor,
eliminate, fast_extract etc) are revised and re-
implemented using the recent advances in processing
of the binary data and the generality of multi-valued
logic.

This manual assumes that the reader is familiar with the
terminology of Boolean algebra, Boolean networks, logic
synthesis, and decision diagrams. Familiarity with SIS or
VIS programming environments would be helpful but it is
not necessary.

In the sequel, whenever a reference is made to an MV
object (network, node, SOP, relation etc), it is assumed that
the same statement is also true for a binary object of the
same type, unless it is explicitly stated that it does not work
in the binary case.

The rest of the manual describes components of the
MVSIS programming environment. Section 2 outlines the
basic data structures. Section 3 presents the data structures
to represent the node functionality in more detail. Sections
4-6 describe windowing, structural hashing, and the
flexibility manager, respectively. The manual is concluded
by Section 7 followed by a list of references.

2 Basic Data Structures

2.1 MVSIS Framework (Mv_Frame_t)
The MVSIS framework is a data structure containing

general information about the current run of MVSIS.
In particular, it stores the tables of command, aliases, and
flags, the stack of backup networks, the pointers to the
streams (output, error, and history), and other variables.
Most of these variables are declared as global in SIS/VIS.
MVSIS, on the contrary, does not have global variables,
except a few statistical variables, such as those used by the
CUDD package.

 2

2.2 Network/Node (Ntk_Network_t/Ntk_Node_t)
The network/node data structures are similar to those of

SIS/VIS. In this section, we describe the most important
differences.

General Information. The network is composed of
internal nodes, which have logic associated with them and
two types of placeholder nodes: (1) combinational inputs
(CIs), which include the primary inputs of the network and
the latch outputs, and (2) combinational outputs (COs),
which include the primary outputs and the latch inputs.

The latches are represented a sets of additional CI/CO
pairs. If the input/output of a latch is also used as a primary
output/input of the network, only one CO/CI is created and
labeled accordingly.

Only single-output nodes are currently used. In this,
MVSIS is similar to SIS and is different from VIS, which
can read and represent multi-output nodes.

Pin Data Structure (Ntk_Pin_t). A pin stores
information about one fanin or one fanout of a node. In
each node, the fanin pins and the fanout pins form two
double-linked linked lists. The MVSIS environment is
geared towards logic synthesis when frequent changes to
the network are performed. These changes make it
necessary to add and remove nodes and node pins often.
Linked lists are convenient for this purpose.

The concept of a net, as a wire connecting the output of a
node with the inputs of the fanout nodes, is currently not
explicitly represented in MVSIS. In the future releases, the
net data structure (Ntk_Net_t) may be introduced, by
associating it with the node and including in it the linked
list of the fanout pins containing pointers to the fanouts.

Network Traversals. Most of the logic synthesis
applications perform numerous traversals of the network
structure. In SIS/VIS, such traversals are performed with
the help of hash-tables and arrays. For example, when the
nodes are collected in the DFS order in SIS, the hash-table
is used to remember the visited nodes, while the array is
used to collect the nodes in the DFS order.

The following two features of MVSIS make hash-tables
and arrays unnecessary in most of the network traversals
performed by typical logic synthesis applications.

Traversal ID (Ntk_Node_t: int TravId). The traversal ID
is a unique integer associated with each traversal of the
network. Before a new traversal, the current traversal ID of
the network is incremented. Once the node is visited, its
traversal ID is set equal to the current traversal ID of the
network. During the traversal when a node is visited, its
traversal ID is compared with that of the network. If they
are different, the node is visited for the first time. If they
are the same, the node was visited earlier in the same
traversal.

Specialized Linked List of Nodes. When there is a need
to collect the nodes during a network traversal, the nodes

are added to the specialized linked list, associated with the
network. In this case, before performing the traversal, the
specialized linked list of the network is cleared. Because
each network owns only one such linked list, caution
should be taken to make sure that the contents of the list are
not modified by other procedures. To this end, it is
recommended that the nodes collected into the list are used
immediately (for example, by iterate through them) or
saved into an array in the application code for future
reference.

There are two iterators through the specialized linked list.
One of them can only be used to access the nodes. Another
one, called safe iterator, can be used to iterate and delete a
node while iterating through it.

As an illustration of these ideas, refer to the code of
procedure Ntk_NetworkDfs, found in src/base/ntk/ntkDfs.c.

Memory Management. In the current implementation,
each network owns several memory managers, which are
used to allocate/recycle pieces of memory of a fixed size,
such as memory entries for individual nodes and pins, or
pieces of memory of a flexible size, such as node names.
These memory managers allocate memory using large
chunks, which are then split into smaller pieces. The
managers support constant-time allocate/free operations for
the objects used inside MVSIS, but cannot return memory
to the operating system as long as the network exists.

3 Functionality Data Structures

This section describes the main data structures, which are
used to represent the node functionality.

3.1 Variable Maps (Vm_VarMap_t/Vmx_VarMap_t)
Two types of variable maps are used to represent the

binary/MV input/output space of the node.
MV Variable Map (Vm_VarMap_t). The MV variable

map represent the information about the number of values
of each input/output variable of a node. The APIs to this
data structure return such information as the number of
values of individual variables or the total number of values
of all input and outputs variables. To manipulate cubes
represented in positional notation, there is another API,
giving access to the first value of each variable in the
contiguous array of values of all variables.

Encoded MV Variable Map (Vmx_VarMap_t). An
encoded variable map is defined as an extension of the MV
variable map. It contains additional information about the
encoding of MV variables using binary variables. This
encoding is used to map the MDD representation of the
nodes into the binary variables of the BDD package [8].

The extended variable map also stores the permutation of
binary encoding variables (pVmx->pOrder) along with the

 3

mapping of the MV variables into the binary variables
(pVmx->pBitsFirst) and the number of binary variables
needed to encode each MV variable (pVmx->pBits).
Because of this permutation array, MV relations can be
represented using BDDs, each of which has its own
variable ordering stored in the extended map.

Both types of variable maps are cached in the hash tables
internal to the variable map managers. As a result of
caching, the variable maps of the nodes are shared rather
than duplicated, which can noticeably reduce the memory
consumption for large networks.

The variable map packages (src/mv/vm and src/mv/mvx)
feature numerous APIs, to create new variable maps after
the current one has been changed, for example, as a result
of expanding the fanin space or dynamically reordering the
variables in the underlying BDD.

3.2 Cubes and Covers (Mvc_Cover_t/Mvc_Cube_t)
The data structure to represent MV cubes and covers has

been designed to provide convenience to the programmer,
fast bitwise operations, and efficient memory management.

The differences compared to the well-known Espresso-
MV [6] pset_family data structure are the following:

Combining Cubes into Covers. Linked lists rather than
arrays are used to connect the cubes belonging to one
cover. Linking cubes gives additional flexibility in those
SOP operations, where cubes are manipulated individually.
For example, some cubes may be removed from one cover
and placed into another cover. This type of manipulation
often takes place in factoring, co-factoring, tautology
check, etc.

Bitwise Operations. The macros to perform bitwise
operations are similar to those of Espresso. Additionally,
these macros account for the special case, when the cubes
in positional notation can be represented using one or two
machine words. Cubes used in most of the logic synthesis
applications fall into these two categories, because the
input space of a node rarely includes more than 32 (or 64)
values. On most computers, these macros are faster than the
general type of macros used in Espresso.

Memory Management is used for all cubes and covers
generated in the SOP-based computations for all networks.

3.3 MV SOPs (Cvr_Cover_t)
One way of representing the functionality of an MV node

(a node with MV inputs and MV output) is to represent the
values of the output variable (called i-sets) as functions of
the input variables. In such a representation, each i-set is an
MV-input binary-output function represented by its SOP.
The array of SOPs, one for each i-set, constitutes the MV
SOP representation of the node.

Typically, a node has the default value, which the node
outputs when all other values are not produced. (In the
binary case, the on-set is typically represented explicitly,

while the offset is assumed to be the default value.) In the
current MVSIS implementation, the default value is marked
by the NULL pointer in the array of i-sets in the MV SOP
representation.

The special set of APIs of the MV SOP package
(src/mv/cvr) allows us to call Espresso-MV for each i-set of
the MV SOP. To this end, the current MVSIS cover/cube
data structures are mapped into the corresponding Espresso
structures, which are then given to Espresso. The result is
transformed back into the MVSIS data structures. The
runtime overhead for this transformation is in most cases
negligible compared to the runtime of Espresso itself.

3.4 MV Relations (Mvr_Relation_t)
MV relations are the second major representation of the

node functionality in the current implementation of
MVSIS. Unlike the MVSOP representation, which
represents the SOP of each i-set independently from that of
other i-sets, an MV relation combines all i-sets into one
data structure, by treating the input and output variables
uniformly.

In the resulting representation, all the MV variables are
ordered: first inputs, then outputs. Each MV variable is
encoded using the smallest number of binary variables. The
codes are derived in such a way as to evenly distribute the
code minterms among the codes, which tends to reduce the
BDD size. When all the variables are encoded, an MV
relation is represented as a single BDD.

Sharing BDD Variable Spaces of Local MV Relations.
The following convention regarding the use of BDD
variables should be honored when programming with local
MV relations. When the MV relation is minimum-base
(when it does not include MV variables that do not
contribute nodes to the MDD), it is always mapped into the
topmost variables of the BDD manager.

This convention allows us to map all MV relations into
the same, relatively small range of BDD variables. In this,
MVSIS is different from VIS, which uses unique BDD
variables to represent each MV variable. The advantage of
the MVSIS representation is that substantially fewer
variables are needed, especially for large networks. Using
the same BDD variables for all relations increases the hit-
rate in the computed table of the BDD package. The only
disadvantage is that individual BDDs have to be remapped
before they are composed. The overhead for remapping is
almost always negligible, and therefore the advantages of
the new representation by far outweigh the disadvantages.

BDD Variable Reordering. The individual BDD
variables, which encode an MV relation, can be
dynamically reordered to reduce the representation size.
During reordering, the binary variables encoding the same
MV variable are not kept contiguous; they can move
independently up and down the order.

 4

Dynamic reordering is performed using a specialized
reordering engine REO (src/bdd/reo), compatible with the
CUDD BDD manager. As a result, different relations can
have different variable orders, yet they are stored in the
same BDD manager, which is never reordered. The
variable permutations specifying individual variable orders
are represented in the extended variable map data structure,
which is part of the MV relation data structure.

Other APIs. Numerous APIs to the MV relation package
(src/mv/mvr) can perform such operations as checking
whether the given relation is non-deterministic, well-
defined etc, as well as computing cofactors, quantifying,
and deriving new MV relations from the given one.
Another class of APIs performs translation from the SOP
into the MV relation representation and back. Fast
generation of SOPs from BDD/MDD is based on [3].

BDD Package. The only currently supported BDD
package is CUDD [8]. The motivation for this is that
CUDD combines an overall good performance with
efficient manipulation for Zero-suppressed Decision
Diagrams, which are extensively used in MVSIS to convert
BDD/MDD representation into the SOP representation.

4 Windowing (Wn_Window_t)

Windowing is a way of clustering nodes belonging to the
same network. A non-trivial window includes a set of
internal nodes of the network. In particular, it can be a
single internal node or all internal nodes of the network.

Windows can be nested. In this case, it is possible to
compute a container window around another window,
called the core. The container window can be described by
giving two parameters, which specify the number of levels
of limited TFI and TFO, which should be included into it,
starting from the nodes of the core.

The window with the given parameters is constructed by
including into it the internal nodes of the current network,
which fall into at least one of the following four categories:
(1) the nodes of the window core; (2) the nodes in the TFI
of the core, such that all the path from the core to them is
less than the given parameter; (3) the nodes in the TFO of
the core, such that all the path from the core to them is less
than the given parameter; (4) all the nodes that are in the
TFO of nodes (2) and in the TFI of nodes (3).

The windowing package (src/graph/wn) has a dedicated
data structure to represent a window. This data structure
includes the array of window roots (the window nodes that
have at least one fanout outside of the window) and the
array of window leaves (the nodes outside the window that
fanin into at least one node in the window). The internal
nodes of the window can be manipulated (collected,
ordered, etc) using the APIs of the windowing package.

5 Structural Hashing(Sh_Network_t/Sh_Node_t)

An AND/INV graph is a non-canonical data structure
used to represent Boolean functions. AND/INV graphs are
similar to BDDs in that the functions are represented by the
roots of a shared DAG with nodes being two-input AND-
gates with optional inverters at the inputs and outputs. The
leaves of the graph are the constant 1 node and the nodes
representing the elementary variables.

The AND/INV graphs can be efficiently structurally
hashed [2]. In fact, the structural hashing algorithm is built
into the construction of the AND/INV graphs similar to the
unique table lookup used in the construction of BDDs.

The current implementation of MVSIS allows for the
generation and use of the AND/INV graphs that are
functionally equivalent to the current network, or a window
in the network. The uniformity and compactness of
AND/INV graphs lead to an efficient implementation of
such algorithms as symbolic simulation and circuit-based
SAT [2].

The APIs of the structural hashing package (src/graph/sh)
can construct and manipulate AND/INV graphs, similar to
how BDDs are constructed and manipulated by calling the
APIs of the BDD package.

6 Flexibility Manager (Fm{sw}_Manager_t)

The role of the flexibility manager is to compute the
complete flexibility of a node or a group of nodes, taking
into account their context in the network [4]. When the
flexibility for a node is computed by a call to the flexibility
manager, it should be used to optimize the node, before the
next call to the flexibility manager.

The corresponding package (src/opt/fm) provides the
APIs to start and free the flexibility manager, and to
compute the flexibility for the nodes. The implementation
supports two modifications of the flexibility manager,
which differ in the scope of the surrounding areas of the
network considered for deriving the flexibility.

Network Scope (Fms_Manager_t). When this version of
the flexibility manager is applied to the network, it first
constructs the global BDDs for all the COs of the network
and stores them away. This computation constitutes the
preprocessing step. Next, the manager is called for
individual nodes, in the order determined by the
application. In each call, it uses the pre-computed global
BDDs to derive the flexibility. In the end, the global BDDs
are dereferenced and the manager is freed. Obviously, this
manager can only be applied to the networks, for which
constructing the global BDDs can be performed within the
reasonable time and memory limits.

Window Scope (Fmw_Manager_t). This version of the
flexibility manager does not pre-compute the BDDs of the
COs of the network, and therefore is independent of the

 5

network size. When applied to a node, it first constructs a
window around this node. Next, the global BDDs of the
roots of the window are computed in terms of the leaves.
These BDDs are used to derive the flexibility of the node.
In the end of the call, both the global BDDs and the
window are freed, while the resulting flexibility is returned
to the user. In this flow, nothing is stored in the manager
between the calls to the flexibility computation for
individual nodes.

Both versions of the manager take advantage of the
interleaved static variable BDD ordering. However, only
the first version can currently perform the dynamic variable
ordering.

7 Conclusions

In this paper, we briefly described the main data
structures of the MVSIS environment.

Three other reference sources are available:
• MVSIS User’s Manual [1] gives a high-level

overview of MVSIS, describes the use of MVSIS
command shell, and gives the summary of common
logic synthesis commands.

• The source code [5] can, in many cases, be used as a
reference material, due to the presence of the written
notes preceding every procedure and comments
included in the code.

• For compilation instructions, refer to readme file in
the root directory of the project.

References

[1] D. Chai, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, R.
Brayton. MVSIS 2.0 Programmer’s Manual, UC Berkeley,
May 2003.

[2] A. Kuehlmann, V. Paruthi, F. Krohm, M. K. Ganai, Robust
Boolean reasoning for equivalence checking and functional
property verification, Trans. CAD, Vol. 21, No. 12,
December 2002, pp. 1377-1394.

[3] S. Minato, “Fast generation of irredundant sum-of-products
forms from binary decision diagrams. Proc. SASIMI'92, pp.
64-73.

[4] A. Mishchenko and R. K. Brayton, “Simplification of non-
deterministic multi-valued networks”, Proc. ICCAD‘02,
pp. 557-562.

[5] MVSIS Project Webpage: http://www-
cad.eecs.berkeley.edu/Respep/Research/mvsis/

[6] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-
valued minimization for PLA optimization”, IEEE Trans.
CAD, Vol. 6(5), pp. 727-750, Sep. 1987.

[7] E. Sentovich, et al, “SIS: A system for sequential circuit
synthesis”, Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of
EECS, Univ. of California, Berkeley, 1992.

[8] F. Somenzi, BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[9] The VIS Group. VIS: Verification Interacting with Synthesis,
1995. http://www-
cad.eecs.berkeley.edu/Respep/Research/vis

[10] C. Yang and M. Ciesielski. BDS 1.2: BDD-based logic
synthesis system: http://www.ecs.umass.edu/ece/labs/
vlsicad/bds/bds.html.

