
 1

MVSIS 2.0 Programmer’s Manual 

 Donald Chai, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Alan Mishchenko, Robert Brayton 

 Department of Electrical Engineering and Computer Sciences 
 University of California, Berkeley CA 94720 
 mvsis-devel@ic.eecs.berkeley.edu 
 
 

Abstract 

MVSIS is a logic synthesis system, which enhances 
traditional binary logic synthesis with capabilities related 
to multi-value logic. This manual introduces the 
programming environment of MVSIS 2.0 and compares it 
with those of SIS 1.3 and VIS 1.4. The new data structures 
are described and the motivation behind them is explained. 
The goal is to help the reader with the general 
understanding of logic synthesis and the working 
knowledge of C programming get started writing his or her 
own application code, which manipulates binary or MV 
networks in MVSIS.  

1 Introduction 

MVSIS [5] is a logic synthesis system, which supports 
the data structures and procedures needed for technology-
independent binary and multi-valued (MV) logic synthesis. 
The current implementation, MVSIS 2.0, features a 
completely new source code with only a few packages 
borrowed from SIS [7] and VIS [9]. However, as a 
programming environment, MVSIS is designed to have the 
feel of SIS and the look of VIS. The following points 
summarize the new features: 
• Several modifications are made to the network/node 

data structures; in particular, the pin data structure is 
introduced. 

• BDD/MDD functionality representation of the nodes 
pioneered in BDS [10] is supported along with the 
traditional SOP representation used in SIS. 

• A new technique for storing the local functions 
(relations) of the nodes is used; as a result, all the 
node fanin variables are mapped into the same range 
of encoding BDD variables. 

• New data structures are developed to represent and 
manipulate the general case of non-deterministic 

(ND) multi-valued (MV) relations describing the 
functionality of the nodes. 

• Classical logic synthesis operations (factor, 
eliminate, fast_extract etc) are revised and re-
implemented using the recent advances in processing 
of the binary data and the generality of multi-valued 
logic. 

This manual assumes that the reader is familiar with the 
terminology of Boolean algebra, Boolean networks, logic 
synthesis, and decision diagrams. Familiarity with SIS or 
VIS programming environments would be helpful but it is 
not necessary. 

In the sequel, whenever a reference is made to an MV 
object (network, node, SOP, relation etc), it is assumed that 
the same statement is also true for a binary object of the 
same type, unless it is explicitly stated that it does not work 
in the binary case. 

The rest of the manual describes components of the 
MVSIS programming environment. Section 2 outlines the 
basic data structures. Section 3 presents the data structures 
to represent the node functionality in more detail. Sections 
4-6 describe windowing, structural hashing, and the 
flexibility manager, respectively. The manual is concluded 
by Section 7 followed by a list of references. 

 

2 Basic Data Structures 

2.1 MVSIS Framework  (Mv_Frame_t) 
The MVSIS framework is a data structure containing 

general information about the current run of MVSIS. 
In particular, it stores the tables of command, aliases, and 
flags, the stack of backup networks, the pointers to the 
streams (output, error, and history), and other variables. 
Most of these variables are declared as global in SIS/VIS. 
MVSIS, on the contrary, does not have global variables, 
except a few statistical variables, such as those used by the 
CUDD package.  
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2.2 Network/Node (Ntk_Network_t/Ntk_Node_t) 
The network/node data structures are similar to those of 

SIS/VIS. In this section, we describe the most important 
differences. 

General Information. The network is composed of 
internal nodes, which have logic associated with them and 
two types of placeholder nodes: (1) combinational inputs 
(CIs), which include the primary inputs of the network and 
the latch outputs, and (2) combinational outputs (COs), 
which include the primary outputs and the latch inputs. 

The latches are represented a sets of additional CI/CO 
pairs. If the input/output of a latch is also used as a primary 
output/input of the network, only one CO/CI is created and 
labeled accordingly. 

Only single-output nodes are currently used. In this, 
MVSIS is similar to SIS and is different from VIS, which 
can read and represent multi-output nodes. 

Pin Data Structure (Ntk_Pin_t). A pin stores 
information about one fanin or one fanout of a node. In 
each node, the fanin pins and the fanout pins form two 
double-linked linked lists. The MVSIS environment is 
geared towards logic synthesis when frequent changes to 
the network are performed. These changes make it 
necessary to add and remove nodes and node pins often. 
Linked lists are convenient for this purpose.  

The concept of a net, as a wire connecting the output of a 
node with the inputs of the fanout nodes, is currently not 
explicitly represented in MVSIS. In the future releases, the 
net data structure (Ntk_Net_t) may be introduced, by 
associating it with the node and including in it the linked 
list of the fanout pins containing pointers to the fanouts. 

Network Traversals. Most of the logic synthesis 
applications perform numerous traversals of the network 
structure. In SIS/VIS, such traversals are performed with 
the help of hash-tables and arrays. For example, when the 
nodes are collected in the DFS order in SIS, the hash-table 
is used to remember the visited nodes, while the array is 
used to collect the nodes in the DFS order. 

The following two features of MVSIS make hash-tables 
and arrays unnecessary in most of the network traversals 
performed by typical logic synthesis applications. 

Traversal ID (Ntk_Node_t: int TravId). The traversal ID 
is a unique integer associated with each traversal of the 
network. Before a new traversal, the current traversal ID of 
the network is incremented. Once the node is visited, its 
traversal ID is set equal to the current traversal ID of the 
network. During the traversal when a node is visited, its 
traversal ID is compared with that of the network. If they 
are different, the node is visited for the first time. If they 
are the same, the node was visited earlier in the same 
traversal.  

Specialized Linked List of Nodes. When there is a need 
to collect the nodes during a network traversal, the nodes 

are added to the specialized linked list, associated with the 
network. In this case, before performing the traversal, the 
specialized linked list of the network is cleared. Because 
each network owns only one such linked list, caution 
should be taken to make sure that the contents of the list are 
not modified by other procedures. To this end, it is 
recommended that the nodes collected into the list are used 
immediately (for example, by iterate through them) or 
saved into an array in the application code for future 
reference. 

There are two iterators through the specialized linked list. 
One of them can only be used to access the nodes. Another 
one, called safe iterator, can be used to iterate and delete a 
node while iterating through it. 

As an illustration of these ideas, refer to the code of 
procedure Ntk_NetworkDfs, found in src/base/ntk/ntkDfs.c. 

Memory Management. In the current implementation, 
each network owns several memory managers, which are 
used to allocate/recycle pieces of memory of a fixed size, 
such as memory entries for individual nodes and pins, or 
pieces of memory of a flexible size, such as node names. 
These memory managers allocate memory using large 
chunks, which are then split into smaller pieces. The 
managers support constant-time allocate/free operations for 
the objects used inside MVSIS, but cannot return memory 
to the operating system as long as the network exists. 

 

3 Functionality Data Structures 

This section describes the main data structures, which are 
used to represent the node functionality. 

3.1 Variable Maps (Vm_VarMap_t/Vmx_VarMap_t) 
Two types of variable maps are used to represent the 

binary/MV input/output space of the node. 
MV Variable Map (Vm_VarMap_t). The MV variable 

map represent the information about the number of values 
of each input/output variable of a node. The APIs to this 
data structure return such information as the number of 
values of individual variables or the total number of values 
of all input and outputs variables. To manipulate cubes 
represented in positional notation, there is another API, 
giving access to the first value of each variable in the 
contiguous array of values of all variables. 

Encoded MV Variable Map (Vmx_VarMap_t). An 
encoded variable map is defined as an extension of the MV 
variable map. It contains additional information about the 
encoding of MV variables using binary variables. This 
encoding is used to map the MDD representation of the 
nodes into the binary variables of the BDD package [8].  

The extended variable map also stores the permutation of 
binary encoding variables (pVmx->pOrder) along with the 
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mapping of the MV variables into the binary variables 
(pVmx->pBitsFirst) and the number of binary variables 
needed to encode each MV variable (pVmx->pBits). 
Because of this permutation array, MV relations can be 
represented using BDDs, each of which has its own 
variable ordering stored in the extended map. 

Both types of variable maps are cached in the hash tables 
internal to the variable map managers. As a result of 
caching, the variable maps of the nodes are shared rather 
than duplicated, which can noticeably reduce the memory 
consumption for large networks.  

The variable map packages (src/mv/vm and src/mv/mvx) 
feature numerous APIs, to create new variable maps after 
the current one has been changed, for example, as a result 
of expanding the fanin space or dynamically reordering the 
variables in the underlying BDD.  

3.2 Cubes and Covers (Mvc_Cover_t/Mvc_Cube_t) 
The data structure to represent MV cubes and covers has 

been designed to provide convenience to the programmer, 
fast bitwise operations, and efficient memory management.  

The differences compared to the well-known Espresso-
MV [6] pset_family data structure are the following:  

Combining Cubes into Covers. Linked lists rather than 
arrays are used to connect the cubes belonging to one 
cover. Linking cubes gives additional flexibility in those 
SOP operations, where cubes are manipulated individually. 
For example, some cubes may be removed from one cover 
and placed into another cover. This type of manipulation 
often takes place in factoring, co-factoring, tautology 
check, etc.  

Bitwise Operations. The macros to perform bitwise 
operations are similar to those of Espresso. Additionally, 
these macros account for the special case, when the cubes 
in positional notation can be represented using one or two 
machine words. Cubes used in most of the logic synthesis 
applications fall into these two categories, because the 
input space of a node rarely includes more than 32 (or 64) 
values. On most computers, these macros are faster than the 
general type of macros used in Espresso. 

Memory Management is used for all cubes and covers 
generated in the SOP-based computations for all networks. 

3.3 MV SOPs (Cvr_Cover_t) 
One way of representing the functionality of an MV node 

(a node with MV inputs and MV output) is to represent the 
values of the output variable (called i-sets) as functions of 
the input variables. In such a representation, each i-set is an 
MV-input binary-output function represented by its SOP. 
The array of SOPs, one for each i-set, constitutes the MV 
SOP representation of the node. 

Typically, a node has the default value, which the node 
outputs when all other values are not produced. (In the 
binary case, the on-set is typically represented explicitly, 

while the offset is assumed to be the default value.) In the 
current MVSIS implementation, the default value is marked 
by the NULL pointer in the array of i-sets in the MV SOP 
representation.  

The special set of APIs of the MV SOP package 
(src/mv/cvr) allows us to call Espresso-MV for each i-set of 
the MV SOP. To this end, the current MVSIS cover/cube 
data structures are mapped into the corresponding Espresso 
structures, which are then given to Espresso. The result is 
transformed back into the MVSIS data structures. The 
runtime overhead for this transformation is in most cases 
negligible compared to the runtime of Espresso itself. 

3.4 MV Relations (Mvr_Relation_t) 
MV relations are the second major representation of the 

node functionality in the current implementation of 
MVSIS. Unlike the MVSOP representation, which 
represents the SOP of each i-set independently from that of 
other i-sets, an MV relation combines all i-sets into one 
data structure, by treating the input and output variables 
uniformly.  

In the resulting representation, all the MV variables are 
ordered: first inputs, then outputs. Each MV variable is 
encoded using the smallest number of binary variables. The 
codes are derived in such a way as to evenly distribute the 
code minterms among the codes, which tends to reduce the 
BDD size. When all the variables are encoded, an MV 
relation is represented as a single BDD.  

Sharing BDD Variable Spaces of Local MV Relations. 
The following convention regarding the use of BDD 
variables should be honored when programming with local 
MV relations. When the MV relation is minimum-base 
(when it does not include MV variables that do not 
contribute nodes to the MDD), it is always mapped into the 
topmost variables of the BDD manager.  

This convention allows us to map all MV relations into 
the same, relatively small range of BDD variables. In this, 
MVSIS is different from VIS, which uses unique BDD 
variables to represent each MV variable. The advantage of 
the MVSIS representation is that substantially fewer 
variables are needed, especially for large networks. Using 
the same BDD variables for all relations increases the hit-
rate in the computed table of the BDD package. The only 
disadvantage is that individual BDDs have to be remapped 
before they are composed. The overhead for remapping is 
almost always negligible, and therefore the advantages of 
the new representation by far outweigh the disadvantages. 

BDD Variable Reordering. The individual BDD 
variables, which encode an MV relation, can be 
dynamically reordered to reduce the representation size. 
During reordering, the binary variables encoding the same 
MV variable are not kept contiguous; they can move 
independently up and down the order.  
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Dynamic reordering is performed using a specialized 
reordering engine REO (src/bdd/reo), compatible with the 
CUDD BDD manager. As a result, different relations can 
have different variable orders, yet they are stored in the 
same BDD manager, which is never reordered. The 
variable permutations specifying individual variable orders 
are represented in the extended variable map data structure, 
which is part of the MV relation data structure. 

Other APIs. Numerous APIs to the MV relation package 
(src/mv/mvr) can perform such operations as checking 
whether the given relation is non-deterministic, well-
defined etc, as well as computing cofactors, quantifying, 
and deriving new MV relations from the given one. 
Another class of APIs performs translation from the SOP 
into the MV relation representation and back. Fast 
generation of SOPs from BDD/MDD is based on [3]. 

BDD Package. The only currently supported BDD 
package is CUDD [8]. The motivation for this is that 
CUDD combines an overall good performance with 
efficient manipulation for Zero-suppressed Decision 
Diagrams, which are extensively used in MVSIS to convert 
BDD/MDD representation into the SOP representation. 

4 Windowing (Wn_Window_t) 

Windowing is a way of clustering nodes belonging to the 
same network. A non-trivial window includes a set of 
internal nodes of the network. In particular, it can be a 
single internal node or all internal nodes of the network. 

Windows can be nested. In this case, it is possible to 
compute a container window around another window, 
called the core. The container window can be described by 
giving two parameters, which specify the number of levels 
of limited TFI and TFO, which should be included into it, 
starting from the nodes of the core.  

The window with the given parameters is constructed by 
including into it the internal nodes of the current network, 
which fall into at least one of the following four categories: 
(1) the nodes of the window core; (2) the nodes in the TFI 
of the core, such that all the path from the core to them is 
less than the given parameter; (3) the nodes in the TFO of 
the core, such that all the path from the core to them is less 
than the given parameter; (4) all the nodes that are in the 
TFO of nodes (2) and in the TFI of nodes (3). 

The windowing package (src/graph/wn) has a dedicated 
data structure to represent a window. This data structure 
includes the array of window roots (the window nodes that 
have at least one fanout outside of the window) and the 
array of window leaves (the nodes outside the window that 
fanin into at least one node in the window). The internal 
nodes of the window can be manipulated (collected, 
ordered, etc) using the APIs of the windowing package.  

5 Structural Hashing(Sh_Network_t/Sh_Node_t) 

An AND/INV graph is a non-canonical data structure 
used to represent Boolean functions. AND/INV graphs are 
similar to BDDs in that the functions are represented by the 
roots of a shared DAG with nodes being two-input AND-
gates with optional inverters at the inputs and outputs. The 
leaves of the graph are the constant 1 node and the nodes 
representing the elementary variables. 

The AND/INV graphs can be efficiently structurally 
hashed [2]. In fact, the structural hashing algorithm is built 
into the construction of the AND/INV graphs similar to the 
unique table lookup used in the construction of BDDs. 

The current implementation of MVSIS allows for the 
generation and use of the AND/INV graphs that are 
functionally equivalent to the current network, or a window 
in the network. The uniformity and compactness of 
AND/INV graphs lead to an efficient implementation of 
such algorithms as symbolic simulation and circuit-based 
SAT [2].  

The APIs of the structural hashing package (src/graph/sh) 
can construct and manipulate AND/INV graphs, similar to 
how BDDs are constructed and manipulated by calling the 
APIs of the BDD package. 

6 Flexibility Manager (Fm{sw}_Manager_t) 

The role of the flexibility manager is to compute the 
complete flexibility of a node or a group of nodes, taking 
into account their context in the network [4]. When the 
flexibility for a node is computed by a call to the flexibility 
manager, it should be used to optimize the node, before the 
next call to the flexibility manager. 

The corresponding package (src/opt/fm) provides the 
APIs to start and free the flexibility manager, and to 
compute the flexibility for the nodes. The implementation 
supports two modifications of the flexibility manager, 
which differ in the scope of the surrounding areas of the 
network considered for deriving the flexibility. 

Network Scope (Fms_Manager_t). When this version of 
the flexibility manager is applied to the network, it first 
constructs the global BDDs for all the COs of the network 
and stores them away. This computation constitutes the 
preprocessing step. Next, the manager is called for 
individual nodes, in the order determined by the 
application. In each call, it uses the pre-computed global 
BDDs to derive the flexibility. In the end, the global BDDs 
are dereferenced and the manager is freed. Obviously, this 
manager can only be applied to the networks, for which 
constructing the global BDDs can be performed within the 
reasonable time and memory limits.  

Window Scope (Fmw_Manager_t). This version of the 
flexibility manager does not pre-compute the BDDs of the 
COs of the network, and therefore is independent of the 
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network size. When applied to a node, it first constructs a 
window around this node. Next, the global BDDs of the 
roots of the window are computed in terms of the leaves. 
These BDDs are used to derive the flexibility of the node. 
In the end of the call, both the global BDDs and the 
window are freed, while the resulting flexibility is returned 
to the user. In this flow, nothing is stored in the manager 
between the calls to the flexibility computation for 
individual nodes. 

Both versions of the manager take advantage of the 
interleaved static variable BDD ordering. However, only 
the first version can currently perform the dynamic variable 
ordering. 

7 Conclusions  

In this paper, we briefly described the main data 
structures of the MVSIS environment.  

Three other reference sources are available:  
• MVSIS User’s Manual [1] gives a high-level 

overview of MVSIS, describes the use of MVSIS 
command shell, and gives the summary of common 
logic synthesis commands. 

• The source code [5] can, in many cases, be used as a 
reference material, due to the presence of the written 
notes preceding every procedure and comments 
included in the code. 

• For compilation instructions, refer to readme file in 
the root directory of the project. 
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