
CPU Modeling and Use for CPU Modeling and Use for
Embedded SystemsEmbedded Systems

Lecturer: Trevor MeyerowitzLecturer: Trevor Meyerowitz
EE249 Embedded Systems DesignEE249 Embedded Systems Design
Professor: Professor: Alberto SangiovanniAlberto Sangiovanni--VincentelliVincentelli

October 21October 21stst, 2004, 2004
etropolis

2

OutlineOutline

IntroductionIntroduction
MotivationMotivation
Computer Architecture in 10 Minutes FlatComputer Architecture in 10 Minutes Flat

Processor ModelingProcessor Modeling

Use of Processor Modeling in Embedded SystemsUse of Processor Modeling in Embedded Systems

ConclusionsConclusions

CS252/Culler
Lec 1.31/22/02

What is “Computer Architecture”?

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

• Coordination of many levels of abstraction
• Under a rapidly changing set of forces
• Design, Measurement, and Evaluation

Datapath & Control

Layout

CS252/Culler
Lec 1.41/22/02

The Instruction Set: a Critical Interface

instruction set

software

hardware

CS252/Culler
Lec 1.51/22/02

Levels of Representation (61C Review)

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$15,0($2)
lw$16,4($2)
sw $16,0($2)
sw $15,4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

CS252/Culler
Lec 1.61/22/02

Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

CS252/Culler
Lec 1.71/22/02

Fast, Pipelined Instruction Interpretation

Instruction Register

Operand Registers

Instruction Address

Result Registers

Next Instruction

Instruction Fetch

Decode &
Operand Fetch

Execute

Store Results

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

Time

Registers or Mem

CS252/Culler
Lec 1.81/22/02

5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

CS252/Culler
Lec 1.91/22/02

Relationship of Caching and Pipelining

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

•

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

I-Cache

D
-C

ac
he

CS252/Culler
Lec 1.101/22/02

A Modern Memory Hierarchy
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the cheapest
technology.

– Provide access at the speed offered by the fastest technology.
• Requires servicing faults on the processor

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s
100s

Gs
Size (bytes):

Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
(10s sec)

Ts

11

The Other 90% of ArchitectureThe Other 90% of Architecture

Longer PipelinesLonger Pipelines
The Prescott Pentium 4 CPU has a 31 stage pipelineThe Prescott Pentium 4 CPU has a 31 stage pipeline

Wider Pipelines and SpeculationWider Pipelines and Speculation
Superscalar Superscalar –– MultiMulti--issueissue
Speculate with branch predictionSpeculate with branch prediction
Out of Order ExecutionOut of Order Execution

Caches and BuffersCaches and Buffers
Up to 3 levels of caches + specialized cachesUp to 3 levels of caches + specialized caches
Memory Buffers and Reservation StationsMemory Buffers and Reservation Stations

Multiple EverythingMultiple Everything
MultithreadingMultithreading
Multiprocessor System On ChipMultiprocessor System On Chip

12

OutlineOutline

IntroductionIntroduction

Processor ModelingProcessor Modeling
SimpleScalarSimpleScalar
Liberty Simulation EnvironmentLiberty Simulation Environment
Metropolis Processor ModelingMetropolis Processor Modeling

Use of Processor Modeling in Embedded SystemsUse of Processor Modeling in Embedded Systems

ConclusionsConclusions

13

SimpleScalarSimpleScalar OverviewOverview

The Standard for The Standard for MicroarchitecturalMicroarchitectural SimulationSimulation
First Released in 1996First Released in 1996
Developed by Todd Austin and Doug BurgerDeveloped by Todd Austin and Doug Burger
Multiple Levels of Models for AccuracyMultiple Levels of Models for Accuracy
Written in lowWritten in low--level highlevel high--performance sequential Cperformance sequential C--codecode

Supports a Variety of Instruction SetsSupports a Variety of Instruction Sets
Alpha, ARM, PowerPC, (x86)Alpha, ARM, PowerPC, (x86)

Supports a Variety of Supports a Variety of MicroarchitecturalMicroarchitectural FeaturesFeatures

14Taken From: http://www.simplescalar.com

15

SimpleScalarSimpleScalar ToolsuiteToolsuite

Taken From: http://www.simplescalar.com

16Taken From: http://www.simplescalar.com

17Taken From: http://www.simplescalar.com

18Taken From: http://www.simplescalar.com

19Taken From: http://www.simplescalar.com

20

SimpleScalarSimpleScalar ConclusionsConclusions

Solid Framework for Solid Framework for MicroarchitecturalMicroarchitectural ResearchResearch
Used for ~33% of all Computer Architecture PapersUsed for ~33% of all Computer Architecture Papers
Good for examining new Good for examining new microarchitecturalmicroarchitectural featuresfeatures
Fast and Fast and ReliabileReliabile

ButBut……
Difficult to Retarget and ModifyDifficult to Retarget and Modify
Monolithic Monolithic –– hard to use with other toolshard to use with other tools……
Core Execution Semantics hard to modifyCore Execution Semantics hard to modify
Purely Sequential MOC.Purely Sequential MOC.

21

Liberty Simulation EnvironmentLiberty Simulation Environment

A NextA Next--Generation Generation MicroarchitecturalMicroarchitectural EnvironmentEnvironment
From Prof. David AugustFrom Prof. David August’’s Princeton Research Groups Princeton Research Group
Compiler and Simulator FrameworkCompiler and Simulator Framework
Advanced Language FeaturesAdvanced Language Features

Structural SpecificationStructural Specification
Extended PolymorphismExtended Polymorphism

Custom Model of ComputationCustom Model of Computation
ComposabilityComposability
Potential for Optimized SimulationPotential for Optimized Simulation

22Taken From: http://liberty.cs.princeton.edu

23Taken From: http://liberty.cs.princeton.edu

24Taken From: http://liberty.cs.princeton.edu

25Taken From: http://liberty.cs.princeton.edu

26Taken From: http://liberty.cs.princeton.edu

27Taken From: http://liberty.cs.princeton.edu

28Taken From: http://liberty.cs.princeton.edu

29

Liberty ConclusionsLiberty Conclusions

This improves upon This improves upon SimpleScalarSimpleScalar in thatin that……
Modular and StructuralModular and Structural
Domain Specific LanguageDomain Specific Language
Simulator and Compiler GenerationSimulator and Compiler Generation

ButBut……
Large learning curve Large learning curve

Arcane entry languagesArcane entry languages
Complex communication protocolComplex communication protocol

Retargeting capabilities are unclearRetargeting capabilities are unclear
Still a monolithic environmentStill a monolithic environment

30

Modeling Microprocessors in MetropolisModeling Microprocessors in Metropolis

Focus on Focus on MicroarchitecturalMicroarchitectural Design Space Exploration in Design Space Exploration in
the context of a Systemthe context of a System--Level Design frameworkLevel Design framework

Intuitive MOC and Simplified Modeling MethodologyIntuitive MOC and Simplified Modeling Methodology
Connectivity to other toolsConnectivity to other tools
RetargetabilityRetargetability

OutlineOutline
Modeling using Kahn Process NetworksModeling using Kahn Process Networks
ARM Processor ModelingARM Processor Modeling
Instruction Set RetargetingInstruction Set Retargeting

31

Modeling with YAPI + KPNModeling with YAPI + KPN
Kahn Process NetworksKahn Process Networks

Processes communicating via Processes communicating via
unbounded unbounded FIFOFIFO’’ss
Blocking Reads / Unblocking Blocking Reads / Unblocking
WritesWrites
Fully deterministicFully deterministic
No notion of timeNo notion of time

YAPIYAPI
Extension of KPNExtension of KPN
NonNon--deterministic selectdeterministic select
Refinement to bounded Refinement to bounded FIFOFIFO’’ss

Our Work Our Work
CharacteristicsCharacteristics

Synchronous assumptionSynchronous assumption
Keeps FIFO lengths fixedKeeps FIFO lengths fixed
Separation of function and Separation of function and
timingtiming

MicroarchitecturalMicroarchitectural ModelsModels
Single Process ModelSingle Process Model
Out of Order Execution ModelOut of Order Execution Model
2 Process ARM Models2 Process ARM Models

XScale + Strongarm
Abstract Speculative OOE ModelAbstract Speculative OOE Model

32

FRXW

IC

DC

RF

Single Process YAPI Model*Single Process YAPI Model*

• Single Process Execution Order
1. Read operands
2. Execute
3. Write to register file

• Synchronous Assumption

•Parameterize the pipeline depth•Add hazard detection and bubble
insertion (stalls)

H
az

ar
d

•Add a branch predictor
•Pass prediction and PC down
pipeline (new channels)
•Resolve branch when it commits

B
ra

nc
h

Pr
ed

ic
t

* Collaboration With: Sam Williams

33

OutOut--ofof--Order ArchitecturesOrder Architectures
TomasuloTomasulo style register renamingstyle register renaming

Highly ParameterizableHighly Parameterizable
#ports, # integer units, depth, etc. #ports, # integer units, depth, etc.

Broadcast nature handled with multiple copies of Broadcast nature handled with multiple copies of
each channeleach channel

ReadWriteIssueReadWriteIssue must maintain knowledge of must maintain knowledge of
which instructions can be issued to which which instructions can be issued to which
functional unitsfunctional units

All execution units are derived from the Station All execution units are derived from the Station
classclass

Fetch

IC

RWI

RF

R
en

am
e

…

•• NN--way Super scalar processor was realized by way Super scalar processor was realized by
changing the depth of the instruction channel changing the depth of the instruction channel
(depth can be treated as width) from Fetch(depth can be treated as width) from Fetch

Arb

MU0
RS

DC

IU0
RS

IUn
RS

* Collaboration With: Sam Williams

34

ARM Modeling OverviewARM Modeling Overview

Separate between Separate between MicroarchitecturalMicroarchitectural Performance Performance
Model and Program ExecutionModel and Program Execution
We Only Need to ModelWe Only Need to Model

Operand and Condition Code DependenciesOperand and Condition Code Dependencies
Branch ResultsBranch Results
Execution LatenciesExecution Latencies
Forwarding LatenciesForwarding Latencies

Trace ContainsTrace Contains
Every InstructionEvery Instruction

Program CounterProgram Counter
Read + Write Operands (including Read + Write Operands (including condcond. codes). codes)
Instruction TypeInstruction Type

(Optional) Data Addresses Accessed(Optional) Data Addresses Accessed
AdvantagesAdvantages

Higher execution speedHigher execution speed
Simplified, reusable Simplified, reusable microarchitecturalmicroarchitectural modelingmodeling

ARM ISS

Microarch
Model

Program Code

Performance
Characterization

Cross
GCC

Inst.
Trace

Exec
Statistics

35

Double Process ModelDouble Process Model
Needed For:Needed For:

Modeling ForwardingModeling Forwarding
Modeling Variable Instruction LatenciesModeling Variable Instruction Latencies

Leverages Leverages FIFOFIFO’’ss for modeling delaysfor modeling delays
PreexecutionPreexecution Delay Delay

Fetch, Decode, etc.Fetch, Decode, etc.
Execution Delay Execution Delay

Multiple Latencies, ForwardingMultiple Latencies, Forwarding
SynchronizationSynchronization
StallsStalls

Issue StallsIssue Stalls
Branch Misprediction
ICache Misses

Result StallsResult Stalls
Operand Dependencies

Fetch
Process

Execute
Process

…

36

Double Process ModelDouble Process Model

Fetch
Process

Execute
Process

Needed For:Needed For:
Modeling ForwardingModeling Forwarding
Modeling Variable Instruction LatenciesModeling Variable Instruction Latencies

Leverages Leverages FIFOFIFO’’ss for modeling delaysfor modeling delays
PreexecutionPreexecution DelayDelay

Fetch, Decode, etc.Fetch, Decode, etc.
Execution DelayExecution Delay

Supports Multiple Latencies, Supports Multiple Latencies,
ForwardingForwarding

SynchronizationSynchronization

Preload_fifo();
While(true) {

stall = stall_in.read();
check_mispredict(stall);
if (!stall) {
inst = fetch(inst_num);
if (inst.type == branch)

branch_pred(inst);
inst_out.write(inst);

} }

Preload_each_results_fifo();
While(true) {
read_results();
if (stall == 0)

ReadInst = FetchedInst.read();
stall = check_stall();
compute_memory();
DoStall.write(stall);
write_results();
cycle_count++;

} }

37

Models with MemoryModels with Memory
FeaturesFeatures

Cache ModelsCache Models
AssociativeAssociative
PerfectPerfect
StatisticalStatistical

TranslationTranslation LookasideLookaside BuffersBuffers
Data Data CacheCache WriteWrite BuffersBuffers
SharedShared Bus Bus betweenbetween CachesCaches

CloseClose toto SimplescalarSimplescalar ModelsModels ARMARM
15% 15% forfor XScaleXScale
25% 25% forfor StrongarmStrongarm

StillStill MissingMissing
InstructionInstruction BufferBuffer

Fetch
Process

Execute
Process

…

I-$

D-$

38

ICacheICache UsageUsage

Fetch
Process

Execute
Process

…

I-$

D-$

1. Instruction Fetch:
get next instruction from trace.
IssueStall = instruction.issue_stall

2. Instruction Cache Check:
Query Instruction Cache
IssueStall += iCache.read(PC)

3. Issue Stalling:
Write Bubbles To Fetch Queue for
Issue Stall Cycles, then write
instruction to Fetch Queue

39

DCacheDCache UsageUsage

Fetch
Process

Execute
Process

…

I-$

D-$

1. Load/Store Instruction:
foreach (inst.data_address)

dCache.checkHit(data_address);

2. L/S Dispatch:
if (inCache(addresses))

dispatch to hitQueue;
else Dispatch to missQueue;

3. L/S Commit:
Upon Completion:

Update dCache state

40

Currently under development in collaboration Currently under development in collaboration
with Haibo Zeng and Qi Zhu with Haibo Zeng and Qi Zhu {{zenghbzenghb, , zhuqi}@eecs.berkeley.eduzhuqi}@eecs.berkeley.edu

Adding in Speculation + OOE as an afterthoughts Adding in Speculation + OOE as an afterthoughts
can be difficultcan be difficult

Why not begin with it and then constrain to a real Why not begin with it and then constrain to a real
implementation?implementation?

Assume Perfect Model (for a given fetch width)Assume Perfect Model (for a given fetch width)
Branch predictionBranch prediction
Perfect Memory and Register FilesPerfect Memory and Register Files
Unlimited Execution Resources and ForwardingUnlimited Execution Resources and Forwarding

Analyze Performance for Different ApplicationsAnalyze Performance for Different Applications
ParallelismParallelism
Resource UsageResource Usage
Etc.Etc.

Abstract
Exec Unit

Perfect Fetch
IC

Restrict to an actual
implementation by
adding constraints

to the model.Perfect RWI
RF

R
en

am
e

An Abstract Speculative ModelAn Abstract Speculative Model

41

ISA_ML OverviewISA_ML Overview
Main PartsMain Parts

A Visual Instruction Set Description LanguageA Visual Instruction Set Description Language
Currently one describes the encoding of instructionsCurrently one describes the encoding of instructions
Written using GMEWritten using GME**, a UML, a UML--based environment for constructing domain specific modeling envibased environment for constructing domain specific modeling environmentsronments

Generates a C++Generates a C++--based based disassemblerdisassembler and traceand trace--interface code for the given model ISA interface code for the given model ISA
description description

Key Features:Key Features:
Two high level modelsTwo high level models

ISA StateISA State: Register Files, Memories, Program Counter, etc.: Register Files, Memories, Program Counter, etc.
InstructionsInstructions: Encoding and operand fields of each instruction: Encoding and operand fields of each instruction

Intuitive Visual InterfaceIntuitive Visual Interface
Leverages Hierarchy + Compact RepresentationLeverages Hierarchy + Compact Representation
Extensive Error CheckingExtensive Error Checking
Easy to Retarget to Output Other Formats (e.g. Easy to Retarget to Output Other Formats (e.g. verilogverilog, , nMLnML, etc), etc)

*GME website: http://www.isis.vanderbilt.edu/projects/gme/

ResultsResults MIPS Integer Subset PowerPC Integer Subset ARM (approximate)

Base Instructions 10 12 6

Actual Instructions 55 80 26

Hours to Enter (appox.) 8 6 5

Header File (# lines) 1357 2134 759

To Appear in 2004 OOPSLA Workshop on Domain Specific Modeling,
October 24th, 2004
Title: A Visual Language for Describing Instruction Sets and Generating Decoders
Authors: T. Meyerowitz, J. Sprinkle, A. Sangiovanni-Vincentelli

42

BitfieldBitfield
OperandsOperands

NumBitsNumBits

EncodingEncoding

SingleEncodingSingleEncoding

AnchorsAnchors AnchorPointAnchorPoint

ConnectionConnection Specifies the Specifies the
ordering of ordering of bitfieldsbitfields

Begin Anchor End Anchor Custom Anchor

Instruction Memory Ref Immediate Constant Register Ref

Ordering Connection

ISA_ML Instruction Elements

State ElementsState Elements WordSizeWordSize

Address BitsAddress Bits

Program CounterProgram Counter Source RegisterSource Register

ISA_ML State Elements

43

Sample Instructions: Base InstructionSample Instructions: Base Instruction

RdRm RnReg-Base InstEndConfigBase

InstBegin

InstructionInstruction 00……11 2...52...5 66……99 10..1310..13 14..1714..17 18..2118..21 22..2322..23 24..2724..27 28..3128..31

Arith BaseArith Base 1111 xxxxxxxx RmRm RnRn xxxxxxxx xxxxxxxx xxxx xxxxxxxx RdRd

AddAdd 1111 01110111 RmRm RnRn xxxxxxxx xxxxxxxx xxxx configconfig RdRd

SubtractSubtract 1111 00010001 RmRm RnRn xxxxxxxx xxxxxxxx 0000 configconfig RdRd

MACMAC 1111 00110011 RmRm RnRn RmacRmac xxxxxxxx xxxx xxxxxxxx RdRd

Ins
Reg

Ins
Con

ArithmeticBase

44

Addition

Sample Instructions: Other InstructionsSample Instructions: Other Instructions

InstructionInstruction 00……11 2...52...5 66……99 10..1310..13 14..1714..17 18..2118..21 22..2322..23 24..2724..27 28..3128..31

Arith BaseArith Base 1111 xxxxxxxx RmRm RnRn xxxxxxxx xxxxxxxx xxxx xxxxxxxx RdRd

AdditionAddition 1111 01110111 RmRm RnRn xxxxxxxx xxxxxxxx xxxx configconfig RdRd

SubtractractionSubtractraction 1111 00010001 RmRm RnRn xxxxxxxx xxxxxxxx 0000 configconfig RdRd

Multiply AccumulateMultiply Accumulate 1111 00110011 RmRm RnRn RmacRmac xxxxxxxx xxxx xxxxxxxx RdRd

ConfigBeginConstants

Ins
Reg

Con
Ins

ArithmeticBase

Subtraction

Ins
Reg

Ins
Con

ArithmeticBase
BeginConstants

Config

Ins
Reg

Ins
Con

ArithmeticBaseBeginConstants Rmac

Multiply Accumulate

45

Modeling Microprocessors in Metropolis: ConclusionsModeling Microprocessors in Metropolis: Conclusions

Improvements on Prior ApproachesImprovements on Prior Approaches
More AbstractMore Abstract
More More RetargetableRetargetable and Modularand Modular
Methodology for Refinement and DSEMethodology for Refinement and DSE

ButBut……
Ongoing accuracy comparison with other toolsOngoing accuracy comparison with other tools
Performance needs to improvePerformance needs to improve
Currently requires an external ISS to drive itCurrently requires an external ISS to drive it

46

OutlineOutline

IntroductionIntroduction

Processor ModelingProcessor Modeling

Use of Processor Modeling in Embedded SystemsUse of Processor Modeling in Embedded Systems
Different Levels of ModelingDifferent Levels of Modeling
CoCo--SimulationSimulation
BackBack--AnnotationAnnotation

ConclusionsConclusions

47

Accuracy Accuracy vsvs Performance Performance vsvs CostCost

Hardware Emulation

Cycle accurate model

Cycle counting ISS

Static spreadsheet

Dynamic estimation

Accuracy Speed $$$*

+++ ---
--
+-

++ --
++ + -
+

-

++ ++

+++ +++
*$$$ = NRE + per model + per design

48

Traditional Traditional CosimulationCosimulation

AdvantagesAdvantages
Allows prototyping without actual Allows prototyping without actual
hardwarehardware
Consistency between HW and SW Consistency between HW and SW
modelsmodels

DisadvantagesDisadvantages
Overhead for having 2+ simulatorsOverhead for having 2+ simulators
Often requires custom Often requires custom
microprocessor modelsmicroprocessor models
DoesnDoesn’’t scale well for t scale well for
multiprocessor systemsmultiprocessor systems

Microprocessor
Simulator

Hardware
Simulator

Software
Programs

Hardware
DescriptionsInterfacing

Simulator

49

CoCo--Simulation in MetropolisSimulation in Metropolis

Functional (ISS)
Model

Timing
Model

uArch Model
Application

Process

Program Code, Sync Points,
and Data Arguments

Performance Information

Other
Application
Processes

Application Mapping Architecture

Other
Architecture
Components

50

Back Annotation RequirementsBack Annotation Requirements
UserUser--specified level of granularityspecified level of granularity
Flexibility for handling nonFlexibility for handling non--trivial interactionstrivial interactions

RTOSRTOS’’ss, Interrupts, Pipelining, Intra, Interrupts, Pipelining, Intra--process variationprocess variation
Natural + Flexible SyntaxNatural + Flexible Syntax
Function with Function with MetamodelMetamodel and Native Codeand Native Code

Our Proposed SolutionOur Proposed Solution
Two functions to annotate the model codeTwo functions to annotate the model code

CPU.CPU.BackAnnotateBackAnnotate(begin_label(begin_label, , end_labelend_label, atomicity, (arguments)), atomicity, (arguments))
CPU.CPU.BB_BackAnnotateBB_BackAnnotate(begin_label(begin_label, , end_labelend_label, atomicity, (arguments)), atomicity, (arguments))

Handle complicated features at the systemHandle complicated features at the system--levellevel

Backwards AnnotationBackwards Annotation

51

ISS Model

Timing
Model

uArch Model
Application

Process

Program Code, Sync Points,
and Data Arguments

Mapping Process

Sync

Back Annotation: Overall PictureBack Annotation: Overall Picture

Annotated
Mapping Process

Annotated
Mapping Process

52

Back Annotation: ExampleBack Annotation: Example

In_data = InPort.ReadInputs();

Out_data = do_processing(In_data);

OutPort.WriteOutPuts()

CPU.read(IN_DATA_SIZE);

CPU.execute(CPU.back_annotate(
do_processing.begin,
do_processing.end, true));

CPU.write(OUT_DATA_SIZE)

uArch Model
and

Back Annotator

CPU.execute(EXEC_TIME);

Application Process Mapping Process

CPU

53

Final WordsFinal Words
Software is a key component in Embedded SystemsSoftware is a key component in Embedded Systems

Fast and Accurate Modeling is KeyFast and Accurate Modeling is Key
Time isnTime isn’’t the only factor to considert the only factor to consider

Power, Memory Usage, Communication Usage, etc.Power, Memory Usage, Communication Usage, etc.

Traditional Traditional MicroarchitecturalMicroarchitectural Environments are UnsuitableEnvironments are Unsuitable
Monolithic designsMonolithic designs
Retargeting and integration issuesRetargeting and integration issues

WeWe’’re developing an integrated approach within Metropolisre developing an integrated approach within Metropolis

What we havenWhat we haven’’t coveredt covered
Software Performance Estimation (Coming SoonSoftware Performance Estimation (Coming Soon……))

Estimate based on application, computation, and communicationEstimate based on application, computation, and communication
Architecture Description LanguagesArchitecture Description Languages
Commercial OfferingsCommercial Offerings

Mentor Graphics Mentor Graphics -- SeamlessSeamless
CoWareCoWare -- ConvergenceSCConvergenceSC + + LISAtekLISAtek
VaSTVaST SystemsSystems
Et al.Et al.

	CPU Modeling and Use for Embedded Systems
	Outline
	What is “Computer Architecture”?
	The Instruction Set: a Critical Interface
	Levels of Representation (61C Review)
	Execution Cycle
	Fast, Pipelined Instruction Interpretation
	5 Steps of MIPS DatapathFigure 3.4, Page 134 , CA:AQA 2e
	Relationship of Caching and Pipelining
	A Modern Memory Hierarchy
	The Other 90% of Architecture
	Outline
	SimpleScalar Overview
	
	SimpleScalar Toolsuite
	
	
	
	
	SimpleScalar Conclusions
	Liberty Simulation Environment
	
	
	
	
	
	
	
	Liberty Conclusions
	Modeling Microprocessors in Metropolis
	Modeling with YAPI + KPN
	Single Process YAPI Model*
	Out-of-Order Architectures
	ARM Modeling Overview
	Double Process Model
	Double Process Model
	Models with Memory
	ICache Usage
	DCache Usage
	An Abstract Speculative Model
	ISA_ML Overview
	Sample Instructions: Base Instruction
	Sample Instructions: Other Instructions
	Modeling Microprocessors in Metropolis: Conclusions
	Outline
	Accuracy vs Performance vs Cost
	Traditional Cosimulation
	Co-Simulation in Metropolis
	Backwards Annotation
	Back Annotation: Overall Picture
	Back Annotation: Example
	Final Words

