CPU Modeling and Use for
Embedded Systems

. intgl.
Lecturer: Trevor Meyerowitz
EE249 Embedded Systems Design

Professor: Alberto Sangiovanni-Vincentelli
etropolis

October 215t 2004

QOutline

< Introduction

+ Motivation
« Computer Architecture in 10 Minutes Flat

@ Processor Modeling
@ Use of Processor Modeling in Embedded Systems

¢ Conclusions

What is "Computer Architecture”?

Application

Operating
System

| Instr. Set Proc. | I/O system\ Architecture

Datapath & Control

Digital Design

Circuit Design
l ayout

» Coordination of many /eve/s of abstraction
* Under a rapidly changing set of forces
- Design, Measurement, and Evaluation

1/22/02

cs252/Culler
Lec 1.3

The Instruction Set: a Critical Interface

¥
software /\/ \j\/\

T L AT NT 1T

||||||||||||||||||||||||
[T TTTTTTTTT] [T TTTTT]

[T LTI [T TTTTTTTTT]
[T LTI [T TTTTT]

e |[NStruction set e

hardware

cs252/Culler

1/22/02 Lec 1.4

Levels of Representation (61C Review)

High Level Language
Program

Compiler

Assembly Language
Program

Assembler

Machine Language

Program
e et |

Control Signal
Specification

o

(o]

1/22/02

temp = v[K];
v[K] = v[k+1];
v[k+1] = temp;

lw$15,0($2)
lw$16,4($2)
SW $16,0(%$2)
swW $15, 4(%$2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0OOOO 1001 1100 0110
1100 0110 1010 1111 0101 1000 0OOOO 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

cs252/Culler
Lec 1.5

Execution Cycle

A 4

Instruction
Fetch

A 4

Instruction
Decode

y

Operand
Fetch

A 4

Execute

\ 4

Result
Store

A 4

Next
Instruction

1/22/02

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

cs252/Culler
Lec 1.6

Fast, Pipelined Instruction Interpretation

[Next Instruction]

Instruction Address

A\ 4

Gnstruction Fetch]

Instruction Register

Decode &
Operand Fetch

Operand Reqgisters

[Execute]

Result Registers

A\ 4

[Store Results]

Registers or Mem

1/22/02

NI NI NI NI | NI
= |IFE JIF JIF |IF
D|ID|D|D{|D
E|IE|E]|E]|E
W W] W| W[W
Time]

cs252/Culler
Lec 1.7

5 Steps of MIPS Datapath

Figure 3.4, Page 134 , CA:AQA 2e

Instruction Instr. Decode Execute Memory Write
Fetch i Reg. Fetch : Addr. Calc i Access Back
Next PC > S
Next SEQ PC

RS1

RS2

WB Data

* Data s’ration&ry control

s - local decode for each instruction phase / pipeline stage

cs252/Culler

Lec 1.8

1/22/02

Relationship of Caching and Pipelining

Next SEQ PC

RS1

RS2

Imm

WB Data

cs252/Culler
Lec 1.9

A Modern Memory Hierarchy

- By taking advantage of the principle of locality:

- Present the user with as much memory as is available in the cheapest
technology.

- Provide access at the speed offered by the fastest technology.
- Requires servicing faults on the processor

Processor
Control Tertiary
/ Secondary Storage
Second Main Storage || pisk/Tape)
T o (Disk)
o '®) Level Memory
Datapath|< & T
pathi <= 8 O Cache (DRAM)
el |@ 2 (SRAM)
_\—
\
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
Size (bytes): 100s (10s ms) (10s sec)

Ks Ms Gs Ts

cs252/Culler

1/22/02 Lec 1.10

The Other 90% of Architecture

¢ Longer Pipelines
« The Prescott Pentium 4 CPU has a 31 stage pipeline

€ Wider Pipelines and Speculation
« Superscalar — Multi-issue
« Speculate with branch prediction
« Qut of Order Execution

@ Caches and Buffers
« Up to 3 levels of caches + specialized caches
« Memory Buffers and Reservation Stations

¢ Multiple Everything

« Multithreading
« Multiprocessor System On Chip

11

QOutline

< Introduction

@ Processor Modeling

« SimpleScalar
« Liberty Simulation Environment

+ Metropolis Processor Modeling

@ Use of Processor Modeling in Embedded Systems

¢ Conclusions

12

SimpleScalar Overview

& The Standard for Microarchitectural Simulation

+ First Released in 1996
+ Developed by Todd Austin and Doug Burger
« Multiple Levels of Models for Accuracy

« Written in low-level high-performance sequential C-code

@ Supports a Variety of Instruction Sets
+ Alpha, ARM, PowerPC, (x86)

@ Supports a Variety of Microarchitectural Features

13

The Zen of Simulator Design

Performance

Detail: minimizes risk

T
-

Detail Flexibility

Performance: speeds design cycle

Flexibility: maximizes design scope

* design goals will drive which aspects are optimized

 the SimpleScalar Tool Set
O optimizes performance and flexibility

0 1n addition, provides portability and varied detail

SimpleScalar Tutorial

Taken From: http://www.simplescalar.com

Page 9

14

Simulation Suite Overview

Sim-Cache/
Sim-Fast Sim-Safe Sim-Profile | [Sim-Cheetah/| [Sim-Outorder
Sim-BPred
- 420 lines - 350 lines - 900 lines - < 1000 lines - 3900 lines
- functional - functional - functional - functional - performance
- 4+ MIPS w/ checks - lotof stats - cache stats - Q00 1ssue
- pred stats - branch pred.
- mis-spec.
- ALUs
- cache
-TLB
- 200+ KIPS
< Performance
Detail 5>

SimpleScalar Tutorial

Page 13

Taken From: http://www.simplescalar.com 15

User
Programs
Prog/Sim

Interface

Functional
Core

Performance
Core

* most of performance core 1s optional
* most projects will enhance on the “simulator core”

Simulator S/W Architecture

SimpleScalar ISA POSIX System Calls
BPred Stats
Resource Dlite!
Cache Loader Regs Memory

SimpleScalar Tutorial

Page 24

16

Taken From: http://www.simplescalar.com

SIM-OUTORDER: H/'W Architecture

¥ |
N~ .| Register = :
Fetch —>Dispatch Scheduler | Exec Writeback
Memory
Scheduler —
¥ L4
I-Cache D-Cache
L) I-TLB (DL1) D-TLB
Y - T
I-Cache D-Cache
(IL2) (DL2)

\/

Virtual Memory

Y

Commut

* 1mplemented In sim-outorder.c and components

SimpleScalar Tutorial

Page 41

Taken From: http://www.simplescalar.com

17

Main Simulation Loop

for (;;) {
ruu_commit () ;
ruu_writeback () ;
lsq refresh() ;
ruu_issue() ;
ruu_dispatch() ;
ruu_ fetch() ;

main simulator loop 1s implemented 1n sim main()

walks pipeline from Commit to Fetch

0 backward pipeline traversal eliminates relaxation problems,
e.g., provides correct inter-stage latch synchronization

loop 1s exited via a 1ongjmp () 10 main() When

simulated program executes an exit () system call

SimpleScalar Tutorial

Taken From: http://www.simplescalar.com

Page 44
18

Machine Definition File (ss.def)
 asingle file describes all aspects of the architecture

0 used to generate decoders, dependency analyzers, functional
components, disassemblers, appendices, etc.

Q e.g., machine definition + ~30 line main = functional sim
0 generates fast and reliable codes with minimum effort
* 1nstruction definition example:

/ opcode

DEFINST (ADDI , 0x41, | inst flags
disassembly addi”, t,s, 17, /
template IntALU, F_ICOMP|F_IMM,
FU red’s DGPR (RT) , NA, DGPR (RS) ,NA, NA
reds /SET_GPR(RT, GPR (RS) +IMM)) \ o
output deps / input deps

semantics

SimpleScalar Tutorial

Page 79

Taken From: http://www.simplescalar.com

19

SimpleScalar Conclusions

¢ Solid Framework for Microarchitectural Research
« Used for ~33% of all Computer Architecture Papers
+ Good for examining new microarchitectural features

+ Fast and Reliabile

¢ But...
« Difficult to Retarget and Modify
+« Monolithic - hard to use with other tools...
+ Core Execution Semantics hard to modify
+ Purely Sequential MOC.

20

Liberty Simulation Environment

@ A Next-Generation Microarchitectural Environment
« From Prof. David August’s Princeton Research Group
« Compiler and Simulator Framework

« Advanced Language Features

@ Structural Specification

+ Extended Polymorphism

4 Custom Model of Computation
« Composability
+ Potential for Optimized Simulation

21

Liberty Simulation Environment

r

Simulator construction system for high reuse

Two-tiered specifications

= Leaf module templates in C
= Netlisting language for instantiation and customization

Three-signal standard communications contract with
overrides (control functions)

Data I

Taken From: http://liberty.cs.princeton.edu

Code Is generated

LSS — A Natural Specification Language
o
=] = Modularize the model like HW 7
. red A
E » Basic components g IRERE
2 » Concurrent computation ﬁj'g*g*;*g
E « Communication through ports — >
'O . } :
4 » Called structural modeling 12 12
W : I$ D$
1 = Cornerstone of LSS design
E
= » Compare to C/C++ approach :@‘?’f’@,
z e Function encapsulation + hardware ".,%%é
g block encapsulation ‘g ¢
= . . -
] Requires re-divide and re-conquer | Sequencer -u
= » |Leads to [Micro-35]

» Inaccuracies :@
(K » Long development times N y
I

Software Call Graph

The Liberty Research Group bt S, liberty-research.org
23

Taken From: http://liberty.cs.princeton.edu

Models of Computation

= System C uses Discrete Event (DE)

« LSE uses Heterogenous Synchronous Reactive (HSR)

= Edwards (1997)
= Unparsed code blocks (black boxes)
= Values begin unresolved and resolve monotonically

= Chaotic scheduling

°93

Taken From: http://liberty.cs.princeton.edu

Creating Static Schedules

r Edwards’ algorithm (1997)

= Construct a sighal dependency graph

= Break into strongly-connected components (SCC).
Schedule in topological order

= Parition each SCC into a head and tail

= Schedule tail recursively, then repeat head (any order)
and tail's schedule

r Coalesce

°93

Taken From: http://liberty.cs.princeton.edu

Reuse Penalty Revisited

Model Cycles/sec Speedup | Build time (s)
Custom SystemC Dol 22 - 49.1
Custom LSE 155111 2.88 15.4
Reusable LSE w/o 40649 0.76 33.9
optimization

Reusable LSE with 57046 1.06 34.4
optimization

 Reuse penalty mitigated in part

Reusable LSE model 6% faster than custom SystemC

Taken From: http://liberty.cs.princeton.edu

Component Flexibility
FPolymorphism

ltanium 2 Instruction Cache

WA
ol 2] |8 |3
o = O O
B] | 1:[: —* Q)
o R (] £
& W D Ig_
=
struect | byte[linesize] “
tag bits:int; = .
valid: boolean; I$ D$
}

» Many state and routing components
= Share identical functionality
» Store different data types

e Polymorphism allows components to adapt
s But, polymorphism forces over 101 type instantiations for the Itanium 2

" The Liberty Structural Specification Language

The Liberty Research Group bty A, lib erty-research.org
27

Taken From: http://liberty.cs.princeton.edu

Accelerate Modeling with Reuse

» Reuse components to amortize costs [Charest 02, Emer ‘02, Koegst ‘98]
* 80% of I2 model’'s 183 components from library of 22

= Similar level of reuse for other non-Itanium processor models
» |ow-overhead customizability critical for this reuse [radetzki 98]

Q

L]

1]

=

= I2

3 o | x BPF\Ed 0| | x
5 o |3 o 2 0| | @ g e
=) S| B[22 |8 |= BllZLl&el |
1] : Ja—ru—rﬁ—r{—rm U_'E_'{_'m
= 5 h L . o
‘G % =z Customizable
0 Flexible

E - Components

g ' |

= e

e

: 19 o]

[

0

LN

E 0 pls

j

Q

"=

|_

i

The Liberty Research Group bt /i, liberty-research.org

Taken From: http://liberty.cs.princeton.edu

Liberty Conclusions

@ This improves upon SimpleScalar in that...

+ Modular and Structural
« Domain Specific Language

« Simulator and Compiler Generation

¢ But...

« Large learning curve
¢ Arcane entry languages
¢ Complex communication protocol

+ Retargeting capabilities are unclear

+ Still a monolithic environment

29

Modeling Microprocessors in Metropolis

@ Focus on Microarchitectural Design Space Exploration In
the context of a System-Level Design framework
« Intuitive MOC and Simplified Modeling Methodology

« Connectivity to other tools
+ Retargetability

€ Outline

« Modeling using Kahn Process Networks
« ARM Processor Modeling

+ Instruction Set Retargeting

30

Modeling with YAPI + KPN

& Kahn Process Networks ¢ Our Work
+« Processes communicating via + Characteristics
unbounded FIFO’s ¢ Synchronous assumption
+ Blocking Reads / Unblocking ¢ Keeps FIFO lengths fixed
Writes ¢ Separation of function and
+ Fully deterministic timing
+ No notion of time + Microarchitectural Models
¢ YAP ¢ Single Process Model

¢ Out of Order Execution Model

+ Extension of KPN
tensio 0_ N ¢ 2 Process ARM Models
+ Non-deterministic select + XScale + Strongarm

Refinement to bounded FIFQO's ¢ Abstract Speculative OOE Model

L 4

31

Single Process YAPI Model*

*Add hazard detection and bubble

. . Parameterize the pipeline depth
insertion (stalls) pIp P

— ~

*Add a branch predictor

*Pass prediction and PC down
pipeline (new channels)

*Resolve branch when it commits

N

. Single Process Execution Order
1. Read operands
2. Execute
3. Write to register file

. Synchronous Assumption

* Collaboration With: Sam Williams

QOut-of-Order Architectures

€ Tomasulo style register renaming

¢ Highly Parameterizable
+ #ports, # integer units, depth, etc.

€ Broadcast nature handled with multiple copies of
each channel

¢ ReadWritelssue must maintain knowledge of
which instructions can be issued to which

functional units

i E/H.

All execution units are derived from the Station

class
N-way Super scalar processor was realized by

changing the depth of the instruction channel
(depth can be treated as width) from Fetch

33

* Collaboration With: Sam Williams

ARM Modeling Overview

Separate between Microarchitectural Performance

Model and Program Execution

We Only Need to Model
+ Operand and Condition Code Dependencies
+ Branch Results
+ Execution Latencies
+ Forwarding Latencies

Trace Contains

+ Every Instruction
¢ Program Counter
¢ Read + Write Operands (including cond. codes)
¢ Instruction Type

+ (Optional) Data Addresses Accessed
Advantages

+ Higher execution speed

+ Simplified, reusable microarchitectural modeling

Program Code

Cross

W

ARM ISS

Inst.

W

Microarch

Model

Exec

W
Performance

Characterization 34

Double Process Model

¢ Needed For:

¢

¢

Modeling Forwarding
Modeling Variable Instruction Latencies

€ Leverages FIFQO's for modeling delays

¢

¢

¢

¢

Preexecution Delay

¢ Fetch, Decode, etc.
Execution Delay

¢ Multiple Latencies, Forwarding

Synchronization

Stalls

¢ Issue Stalls
+ Branch Misprediction
+ ICache Misses

¢ Result Stalls
+ Operand Dependencies

Fetch
Process

Execute
Process

35

Double Process [t
While(true) {

_ stall = stall_in.read();
¢ Needed Fpr. _ check_mispredict(stall);
+ Modeling Forwarding IS (1stall) {
LU CIUCREHEMIRUEE net = fetch(inst num):
¢ Leverages FIFO's for mESE R0 21 E0))

+ Preexecution Delay branch_pred(inst);

¢ Fetch, Decode, etc. inst_out.write(inst); Eetch
+ Execution Delay T} elt

¢ Supports Multiple Latencies, Process

Forwarglag
SV entr: Preload_each_results_fifo();
While(true) {

read_results();
if (stall == 0) EXxecute

Readlnst = FetchedInst.read(); Process
stall = check_stall();
compute_memory();

DoStall.write(stall);
write_results();
cycle_count++;

36

Models with Memory

¢ Features

+ Cache Models
¢ Associative
¢ Perfect
¢ Statistical

+ Translation Lookaside Buffers
+ Data Cache Write Buffers
+ Shared Bus between Caches

¢ Close to Simplescalar Models ARM
+ 15% for XScale
+ 25% for Strongarm

< Still Missing
+ Instruction Buffer

Fetch
Process

Execute
Process

37

|ICache Usage

1. Instruction Fetch:
get next instruction from trace.
IssueStall = instruction.issue_stall

Fetch

1-$
Process

2. Instruction Cache Check:

- Query Instruction Cache

;- IssueStall += iCache.read(PC)
Execute D

P

Process 3. Issue Stalling:

Write Bubbles To Fetch Queue for
Issue Stall Cycles, then write
Instruction to Fetch Queue

38

DCache Usage

1. Load/Store Instruction:
foreach (inst.data_address)
dCache.checkHit(data_address);

Fetch

Process
. 2.L/S Disatch:

If (inCache(addresses))
dispatch to hitQueue;

- else Dispatch to missQueue;
Execute i

S
Proces: 3. L/S Commit:
e Upon Completion:

Update dCache state

39

An Abstract Speculative Model

@ Currently under development in collaboration
with Haibo Zeng and Qi Zhu {zenghb, zhugil@eecs berkeley.edu

€ Adding in Speculation + OOE as an afterthoughts
can be difficult

+ Why not begin with it and then constrain to a real

. -)
implementation’ Restrict to an actual

implementation by
adding constraints
to the model.

@ Assume Perfect Model (for a given fetch width)
+ Branch prediction
+ Perfect Memory and Register Files

+ Unlimited Execution Resources and Forwarding

@ Analyze Performance for Different Applications
+ Parallelism
+ Resource Usage
+ Etc.

40

ISA_ML Overview

4 Main Parts

+ AVisual Instruction Set Description Language
¢ Currently one describes the encoding of instructions
¢ Written using GME", a UML-based environment for constructing domain specific modeling environments

+ Generates a C++-based disassembler and trace-interface code for the given model ISA
description

€ Key Features:

+ Two high level models
¢ |ISA State: Reqister Files, Memories, Program Counter, etc.

) Instructions: Encodingiand operand fields of each instruction
+ Intuitive Visual Interface
+ Leverages Hierarchy + Compact Representation
+ Extensive Error Checking
+ Easy to Retarget to Output Other Formats (e.g. verilog, nML, etc)

Results MIPS Integer Subset | PowerPC Integer Subset ARM (approximate)
Base Instructions 10 12 6
Actual Instructions 55 80 26
Hours to Enter (appox.) 8 6 5
Header File (# lines) 1357 2134 759

To Appear in 2004 OOPSLA Workshop on Domain Specific Modeling,
October 24, 2004
Title: A Visual Language for Describing Instruction Sets and Generating Decoders

Authors: T. Meyerowitz, J. Sprinkle, A. Sangiovanni-Vincentell *GME website: http://www.isis.vanderbilt.edu/projects/gme/

41

. - |
State Elements #WordSize RegFile |
€ Address Bits l l '
Program Counter @ Source Register -

ISA ML State Elements

Bitfield *NumBits
Operands ¢Encoding INST MEM |TMM| |con|l REG

OSingIeEncoding Instruction Memory Ref Immediate Constant Register Ref

4 AnchorPoint u O\
Anchors E L‘f‘% >

Begin Anchor End Anchor Custom Anchor

Connection Specifies the N

ordering of bitfields Ordering Connection

ISA ML Instruction Elements 2

Sample Instructions: Base Instruction

t InstBegin

AllirBEaEse:

Ain 2
2INST:,
ArithmeticBase {ﬁ‘ REG REG {éﬂf‘ REG D}
Reg/Base Rm Rn Confi gﬁase Rd InstErﬁ
Instruction 0... 2.5 6...9 10..13 14..17 18..21 22..23 24.27 28..31

Add 11 0111 Rm Rn XXXX XXXX XX config Rd
Subtract 11 0001 Rm Rn XXXX XXXX 00 config Rd
MAC 11 0011 Rm Rn Rmac XXXX XX XXXX Rd 43

Sample Instructions: Other Instructions

I
1 MM n 3
IMM _ ﬂi—ﬂs I
| BeginConstants - .
BeginConstants ArthmeticBase Config ArithmeticBase Config
Addition Subtraction
~RTNST
n:
IMM| REG {}RJ;NSI?{}
BeginConstants Rmac ArithmeticBase
Multiply Accumulate
Instruction 0...1 2.5 6...9 10..13 14..17 18..21 22..23 24..27 28..31
Acrith Base 11 XXXX Rm Rn XXXX XXXX XX XXXX Rd
Addition 11 0111 Rm Rn XXXX XXXX XX config Rd
Subtractraction 11 0001 Rm Rn XXXX XXXX 00 config Rd
Multiply Accumulate 11 0011 Rm Rn Rmac XXXX XX XXXX Rd

Modeling Microprocessors in Metropolis: Conclusions

€ Improvements on Prior Approaches
+ More Abstract
+ More Retargetable and Modular
+ Methodology for Refinement and DSE

¢ But...
« Ongoing accuracy comparison with other tools
+ Performance needs to improve

« Currently requires an external ISS to drive it

45

QOutline

¢ Introduction
@ Processor Modeling

@ Use of Processor Modeling in Embedded Systems

+ Different Levels of Modeling
« Co-Simulation

+ Back-Annotation

¢ Conclusions

46

Accuracy vs Performance vs Cost

Accuracy

Hardware Emulation

Cycle accurate model

Cycle counting ISS

Dynamic estimation

Static spreadsheet

*$$$ = NRE + per model + per design

47

Traditional Cosimulation

Software Hardware
Programs Interfacing Descriptions
Microprocessor Simulator Hardware
Simulator Simulator
¢ Advantages ¢ Disadvantages
+ Allows prototyping without actual + Overhead for having 2+ simulators
hardware + Often requires custom
+ Consistency between HW and SW microprocessor models
models + Doesn't scale well for

multiprocessor systems

48

Co-Simulation in Metropolis

Application Mapping

Program Code, Sync Points,

and Data Arguments

Architecture

Application

Process Performance Information

Other
Application
Processes

uArch Model

Functional (I1SS)
Model

Timing
Model

Other
Architecture
Components

Backwards Annotation

¢ Back Annotation Requirements
+ User-specified level of granularity

« Flexibility for handling non-trivial interactions
¢ RTOS’s, Interrupts, Pipelining, Intra-process variation

« Natural + Flexible Syntax
+ Function with Metamodel and Native Code

© Our Proposed Solution

+ Two functions to annotate the model code
¢ CPU.BackAnnotate(begin_label, end_Ilabel, atomicity, (arguments))
¢ CPU.BB BackAnnotate(begin_label, end_label, atomicity, (arguments))

+ Handle complicated features at the system-level

50

Back Annotation: Overall Picture

Program Code, Sync Points,
and Data Arguments

Application
Process

Mappinn Prorece

Annotated
Mapping Process

uArch Model

ISS Model

Back Annotation: Example

Application Process Mapping Process

In_data = InPort.ReadInputs(); CPU.read(IN_DATA_SIZE);
CPU.execute(CPU.back_annotate(

Out_data = do_processing(In_data); do_processing.begin,
do_processing.end, true));

OutPort.WriteOutPuts() CPU.write(OUT_DATA_SIZE)

CPU.execute(

uArch Model
and
Back Annotator

Final Words

¢ Software is a key component in Embedded Systems
+ Fast and Accurate Modeling is Key

+ Time isn't the only factor to consider
¢ Power, Memory Usage, Communication Usage, etc.

¢ Traditional Microarchitectural Environments are Unsuitable
+ Monolithic designs
+ Retargeting and integration issues

¢ We're developing an integrated approach within Metropolis

¢ What we haven’t covered
+ Software Performance Estimation (Coming Soon...)
¢ Estimate based on application, computation, and communication
+ Architecture Description Languages
« Commercial Offerings
¢ Mentor Graphics - Seamless
¢ CoWare - ConvergenceSC + LISAtek

¢ VaST Systems
¢ Etal

53

	CPU Modeling and Use for Embedded Systems
	Outline
	What is “Computer Architecture”?
	The Instruction Set: a Critical Interface
	Levels of Representation (61C Review)
	Execution Cycle
	Fast, Pipelined Instruction Interpretation
	5 Steps of MIPS DatapathFigure 3.4, Page 134 , CA:AQA 2e
	Relationship of Caching and Pipelining
	A Modern Memory Hierarchy
	The Other 90% of Architecture
	Outline
	SimpleScalar Overview
	
	SimpleScalar Toolsuite
	
	
	
	
	SimpleScalar Conclusions
	Liberty Simulation Environment
	
	
	
	
	
	
	
	Liberty Conclusions
	Modeling Microprocessors in Metropolis
	Modeling with YAPI + KPN
	Single Process YAPI Model*
	Out-of-Order Architectures
	ARM Modeling Overview
	Double Process Model
	Double Process Model
	Models with Memory
	ICache Usage
	DCache Usage
	An Abstract Speculative Model
	ISA_ML Overview
	Sample Instructions: Base Instruction
	Sample Instructions: Other Instructions
	Modeling Microprocessors in Metropolis: Conclusions
	Outline
	Accuracy vs Performance vs Cost
	Traditional Cosimulation
	Co-Simulation in Metropolis
	Backwards Annotation
	Back Annotation: Overall Picture
	Back Annotation: Example
	Final Words

