
1

EE249Fall03

Finite State Machines

• Functional decomposition into states of operation

• Typical domains of application:

– control functions

– protocols (telecom, computers, ...)

• Different communication mechanisms:

– synchronous

(classical FSMs, Moore ‘64, Kurshan ‘90)

– asynchronous

(CCS, Milner ‘80; CSP, Hoare ‘85)

2

EE249Fall03

FSM Example

• Informal specification:

If the driver

turns on the key, and

does not fasten the seat belt within 5 seconds

then an alarm beeps

for 5 seconds, or

until the driver fastens the seat belt, or

until the driver turns off the key

3

EE249Fall03

FSM Example

KEY_ON => START_TIMER

END_TIMER_5 =>

ALARM_ON

KEY_OFF or

BELT _ON =>

END_TIMER_10 or

BELT_ON or

KEY_OFF => ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

WAIT

ALARM

OFF

4

EE249Fall03

FSM Definition

– FSM = (I, O, S, r, δ, λ)

– I = { KEY_ON, KEY_OFF, BELT_ON, END_TIMER_5,

END_TIMER_10 }

– O = { START_TIMER, ALARM_ON, ALARM_OFF }

– S = { OFF, WAIT, ALARM }

– r = OFF

 δ : 2I × S → S

e.g. δ({ KEY_OFF }, WAIT) = OFF

 λ : 2I × S → 2O

e.g. λ ({ KEY_ON }, OFF) = { START_TIMER }

Set of all subsets of I (implicit “and”)

All other inputs are implicitly absent

5

EE249Fall03

Non-deterministic FSMs

 δ and λ may be relations instead of functions:

 δ ⊆ 2I × S × S

e.g. δ({KEY_OFF, END_TIMER_5}, WAIT) = {{OFF}, {ALARM}}

 λ ⊆ 2I × S × 2O

• Non-determinism can be used to describe:

– an unspecified behavior

(incomplete specification)

– an unknown behavior

(environment modeling)

implicit “and” implicit “or”

6

EE249Fall03

• E.g. error checking first partially specified:

• Then completed as even parity:

NDFSM: incomplete specification

BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR

BIT or not BIT =>

...

SYNC =>

BIT =>

not BIT =>

not BIT => ERR

...

SYNC =>

not BIT =>

...not BIT =>

BIT =>

not BIT =>

BIT =>

BIT =>

BIT => ERR

0 1 7 8

p1 p7

d7d10 8

EE249Fall03

NDFSM: unknown behavior

• Modeling the environment

• Useful to:

– optimize (don’t care conditions)

– verify (exclude impossible cases)

• E.g. driver model:

• Can be refined

E.g. introduce timing constraints

(minimum reaction time 0.1 s)

s0

=> KEY_ON or

KEY_OFF or

BELT_ON

8

EE249Fall03

NDFSM: time range

• Special case of unspecified/unknown behavior, but so common

to deserve special treatment for efficiency

• E.g. delay between 6 and 10 s

0

1 2 3 4

5

6

78

9

START => SEC =>

SEC => END

SEC => SEC =>

SEC =>

SEC =>

SEC =>
SEC =>

SEC =>

START =>

SEC =>

END

SEC => END

SEC =>

END

EE249Fall03

NDFSMs and FSMs

• Formally FSMs and NDFSMs are equivalent

(Rabin-Scott construction, Rabin ‘59)

• In practice, NDFSMs are often more compact

(exponential blowup for determinization)

s1

s2 s3

s1

s2,s3

a
a

b

a

c a

s3
b

a

s2

c

ba

s1,s3
c

a

c

10

EE249Fall03

Finite State Machines

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

– synthesis (SW and HW)

– verification

• Disadvantages:

– Sometimes over-specify implementation

– (sequencing is fully specified)

– Number of states can be unmanageable

– Numerical computations cannot be specified compactly (need

Extended FSMs)

11

EE249Fall03

Modeling Concurrency

• Need to compose parts described by FSMs

• Describe the system using a number of FSMs and interconnect

them

• How do the interconnected FSMs talk to each other?

12

EE249Fall03

FSM Composition

• Bridle complexity via hierarchy: FSM product yields an FSM

• Fundamental hypothesis:

– all the FSMs change state together (synchronicity)

• System state = Cartesian product of component states

– (state explosion may be a problem...)

• E.g. seat belt control + timer

0

1 2 3 4

56789

START_TIMER =>

START_TIMER =>

SEC =>

SEC =>

END_10_SEC

SEC => SEC =>
SEC =>

END_5_SEC

SEC =>SEC =>SEC =>SEC =>

13

EE249Fall03

FSM Composition

OFF, 0 WAIT, 1

KEY_ON and START_TIMER =>

START_TIMER must be coherent

WAIT, 2

SEC and

not (KEY_OFF or BELT_ON) =>

OFF, 1

not SEC and

(KEY_OFF or BELT_ON) =>

OFF, 2

SEC and

(KEY_OFF or BELT_ON) =>

Belt

Control
Timer

14

EE249Fall03

FSM Composition

Given

M1 = (I1, O1, S1, r1, δ1, λ1) and

M2 = (I2, O2, S2, r2, δ2, λ2)

Find the composition

M = (I, O, S, r, δ, λ)

given a set of constraints of the form:

C = { (o, i1, … , in) : o is connected to i1, … , in }

15

EE249Fall03

FSM Composition

• Unconditional product M’ = (I’, O’, S’, r’, δ’, λ’)

– I’ = I1 U I2

– O’ = O1 U O2

– S’ = S1 x S2

– r’ = r1 x r2

 δ’ = { (A1, A2, s1, s2, t1, t2) : (A1, s1, t1) ε δ1 and

(A2, s2, t2) ε δ2 }

 λ’ = { (A1, A2, s1, s2, B1, B2) : (A1, s1, B1) ε λ1 and

(A2, s2, B2) ε λ2 }

• Note:

– A1 ⊆ I1, A2 ⊆ I2, B1 ⊆ O1, B2 ⊆ O2

– 2X U Y = 2X x 2Y

16

EE249Fall03

FSM Composition

• Constraint application

 λ = { (A1, A2, s1, s2, B1, B2) ε λ’ : for all (o, i1, … , in) ε C o ε B1

U B2 if and only if ij ε A1 U A2 for all j }

• The application of the constraint rules out the cases where the

connected input and output have different values

(present/absent).

17

EE249Fall03

I = I1 ∪ I2

O = O1 ∪ O2

S = S1 × S2

Assume that

o1 ∈O1, i3 ∈I2, o1 = i3 (communication)

δ and λ are such that, e.g., for each pair:

 δ1({ i1 }, s1) = t1, λ1({ i1 }, s1) = { o1 }

 δ2({ i2, i3 }, s2) = t2, λ2({ i2 , i3 }, s2) = { o2 }

we have:

 δ({ i1, i2, i3 }, (s1, s2)) = (t1, t2)

 λ({ i1, i2, i3 }, (s1, s2)) = { o1, o2 }

i.e. i3 is in input pattern iff o2 is in output pattern

FSM Composition

FSM1 FSM2

i1 i2

i3o1

o2

18

EE249Fall03

• Problem: what if there is a cycle?

– Moore machine: δ depends on input and state, λ only on state

� composition is always well-defined

– Mealy machine: δ and λ depend on input and state

� composition may be undefined

�what if λ1({ i1 }, s1) = { o1 } but o2 ∉ λ2({ i3 }, s2) ?

• Causality analysis in Mealy FSMs (Berry ‘98)

FSM Composition

FSM1 FSM2

i1 i3o1 o2

19

EE249Fall03

Moore vs. Mealy

• Theoretically, same computational power (almost)

• In practice, different characteristics

• Moore machines:

– non-reactive

(response delayed by 1 cycle)

– easy to compose

(always well-defined)

– good for implementation

– software is always “slow”

– hardware is better when I/O is latched

20

EE249Fall03

Moore vs. Mealy

• Mealy machines:

– reactive

(0 response time)

– hard to compose

(problem with combinational cycles)

– problematic for implementation

– software must be “fast enough”

(synchronous hypothesis)

– may be needed in hardware, for speed

21

EE249Fall03

Hierarchical FSM models

• Problem: how to reduce the size of the representation?

• Harel’s classical papers on StateCharts (language) and bounded

concurrency (model): 3 orthogonal exponential reductions

• Hierarchy:

– state a “encloses” an FSM

– being in a means FSM in a is active

– states of a are called OR states

– used to model pre-emption and exceptions

• Concurrency:

– two or more FSMs are simultaneously active

– states are called AND states

• Non-determinism:

– used to abstract behavior

error

a

recovery

odd

even

done

a1 a2

22

EE249Fall03

Models Of Computation
for reactive systems

• Main MOCs:

– Communicating Finite State Machines

– Dataflow Process Networks

– Petri Nets

– Discrete Event

– Codesign Finite State Machines

• Main languages:

– StateCharts

– Esterel

– Dataflow networks

23

EE249Fall03

StateCharts

• An extension of conventional FSMs

• Conventional FSMs are inappropriate for the behavioral description of

complex control

– flat and unstructured

– inherently sequential in nature

• StateCharts supports repeated decomposition of states into sub-states in an

AND/OR fashion, combined with a synchronous (instantaneous broadcast)

communication mechanism

24

EE249Fall03

State Decomposition

• OR-States have sub-states that are related to each other by

exclusive-or

• AND-States have orthogonal state components (synchronous

FSM composition)

– AND-decomposition can be carried out on any level of states (more

convenient than allowing only one level of communicating FSMs)

• Basic States have no sub-states (bottom of hierarchy)

• Root State : no parent states (top of hierarchy)

25

EE249Fall03

StateChart OR-decomposition

S

V

T

S

V

T

f

f

f

e

h

e

h

g g

To be in state U the system must

be either in state S or in state T

U

26

EE249Fall03

StateChart AND-decomposition

V,W

V.Y
V,Z

V

W

X

X,Y

X,W

X.Z

R

Q

Z

Y

U

RQ

S T
k

e

e

e

k

To be in state U the system

must be both in states S and T

27

EE249Fall03

StateCharts Syntax

• The general syntax of an expression labeling a transition in a StateChart is

e[c]/a ,where

– e is the event that triggers the transition

– c is the condition that guards the transition

(cannot be taken unless c is true when e occurs)

– a is the action that is carried out if and when the transition is taken

• For each transition label:

– event condition and action are optional

– an event can be the changing of a value

– standard comparisons are allowed as conditions and assignment statements as

actions

28

EE249Fall03

StateCharts Actions and Events

• An action a on the edge leaving a state may also appear as an event

triggering a transition going into an orthogonal state:

– a state transition broadcasts an event visible immediately to all other

FSMs, that can make transitions immediately and so on

– executing the first transition will immediately cause the second transition

to be taken simultaneously

• Actions and events may be associated to the execution of orthogonal

components : start(A) , stopped(B)

29

EE249Fall03

Graphical Hierarchical FSM Languages

• Multitude of commercial and non-commercial variants:

– StateCharts, UML, StateFlow, …

• Easy to use for control-dominated systems

• Simulation (animated), SW and HW synthesis

• Original StateCharts have problems with causality loops and

instantaneous events:

– circular dependencies can lead to paradoxes

– behavior is implementation-dependent

– not a truly synchronous language

• Hierarchical states necessary for complex reactive system

specification

30

EE249Fall03

Synchronous vs. Asynchronous FSMs

• Synchronous (Esterel, StateCharts):

– communication by shared variables that are read and written in zero

time

– communication and computation happens instantaneously at

discrete time instants

– all FSMs make a transition simultaneously (lock-step)

– may be difficult to implement

– multi-rate specifications

– distributed/heterogeneous architectures

31

EE249Fall03

Synchronous vs. Asynchronous FSMs

• A-synchronous FSMs:

– free to proceed independently

– do not execute a transition at the same time (except for CSP

rendezvous)

– may need to share notion of time: synchronization

– easy to implement

32

EE249Fall03

Synchronization

Base station - Base station

Base station - Mobile stations

Base station - Mobile station

33

EE249Fall03

Handover

• A Mobile Station moving across the cell boundary needs to maintain active

connections without interruptions or degradations

• Handover

– tight inter-base-station synchronization (in GSM achieved using GPS)

– asynchronous base station operation (UMTS)

34

EE249Fall03

Frame Synchronization

• Medium Access Control Layer: TDMA

– each active connection is assigned a number of time slots (channel)

• A common notion of time is needed

– each Base Station sends a frame synchronization pilot (FS) at the beginning of

every frame to ensure that all Mobile Stations have the same slot counts

FS 0 1 2 3 4 5 6 7 8 FS 0 1 2 3 4 5 6 7 8 ...

35

EE249Fall03

Bit Synchronization

• Transmitter interleaves the payload data with a pilot sequence known

by the receiver

• Receiver extracts the clock from the pilot sequence and uses it to

sample the payload data.

PS PD PS PD ...

RX

36

EE249Fall03

Asynchronous communication

• Blocking vs. non-Blocking

– Blocking read

– process can not test for emptiness of input

– must wait for input to arrive before proceed

– Blocking write

– process must wait for successful write before continue

– blocking write/blocking read (CSP, CCS)

– non-blocking write/blocking read (FIFO, CFSMs, SDL)

– non-blocking write/non-blocking read (shared variables)

A B

37

EE249Fall03

Asynchronous communication

• Buffers used to adapt when sender and receiver have different
rate

– what size?

• Lossless vs. lossy

– events/tokens may be lost

– bounded memory: overflow or overwriting

– need to block the sender

• Single vs. multiple read

– result of each write can be read at most once or several times

A B

38

EE249Fall03

Communication Mechanisms

• Rendez-Vous (CSP)

– No space is allocated for the data, processes need to synchronize in

some specific points to exchange data

– Read and write occur simultaneously

• FIFO

– Bounded (ECFSMs, CFSMs)

– Unbounded (SDL, ACFSMs, Kahn Process Networks, Petri Nets)

• Shared memory

– Multiple non-destructive reads are possible

– Writes delete previously stored data

39

EE249Fall03

Communication models

Unsynchronized

Read-Modify-write

Unbounded FIFO

Bounded FIFO

Single Rendezvous

Multiple Rendezvous

Transmitters

many

many

one

one

one

many

Receivers

many

many

one

one

one

many

Buffer

Size

one

one

unbounded

bounded

one

one

Blocking

Reads

no

yes

yes

no

yes

no

Blocking

Writes

no

yes

no

maybe

yes

no

Single

Reads

no

no

yes

yes

yes

yes

40

EE249Fall03

Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

– Petri Nets

– The Tagged Signal Model

41

EE249Fall03

Discrete Event

• Explicit notion of time (global order…)

• Events can happen at any time asynchronously

• As soon as an input appears at a block, it may be executed

• The execution may take non zero time, the output is marked with

a time that is the sum of the arrival time plus the execution time

• Time determines the order with which events are processed

• DE simulator maintains a global event queue (Verilog and

VHDL)

• Drawbacks

– global event queue => tight coordination between parts

– Simultaneous events => non-deterministic behavior

– Some simulators use delta delay to prevent non-determinacy

42

EE249Fall03

Simultaneous Events in DE

AA BB CC
tt

tt

Fire B or C?Fire B or C?

AA BB CC

tt

AA BB CC

tt

tt

B has 0 delayB has 0 delay B has delta delayB has delta delay

Fire C once? or twice?Fire C once? or twice?

t+t+

Fire C twice.Fire C twice.

Still have problem with 0Still have problem with 0--delay delay

(causality) loop(causality) loop

Can be refined

E.g. introduce timing constraints

(minimum reaction time 0.1 s)

43

EE249Fall03

Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

– Petri Nets

– The Tagged Signal Model

44

EE249Fall03

Co-Design Finite State Machines:
Combining FSM and Discrete Event

• Synchrony and asynchrony

• CFSM definitions

– Signals & networks

– Timing behavior

– Functional behavior

• CFSM & process networks

• Example of CFSM behaviors

– Equivalent classes

45

EE249Fall03

Codesign Finite State Machine

• Underlying MOC of Polis and VCC

• Combine aspects from several other MOCs

• Preserve formality and efficiency in implementation

• Mix

– synchronicity

– zero and infinite time

– asynchronicity

– non-zero, finite, and bounded time

• Embedded systems often contain both aspects

46

EE249Fall03

Synchrony: Basic Operation

• Synchrony is often implemented with clocks

• At clock ticks

– Module reads inputs, computes, and produce output

– All synchronous events happen simultaneously

– Zero-delay computations

• Between clock ticks

– Infinite amount of time passed

47

EE249Fall03

Synchrony: Basic Operation (2)

• Practical implementation of synchrony

– Impossible to get zero or infinite delay

– Require: computation time <<< clock period

– Computation time = 0, w.r.t. reaction time of environment

• Feature of synchrony

– Functional behavior independent of timing

– Simplify verification

– Cyclic dependencies may cause problem

– Among (simultaneous) synchronous events

48

EE249Fall03

Synchrony:
Triggering and Ordering

• All modules are triggered at each clock tick

• Simultaneous signals

– No a priori ordering

– Ordering may be imposed by dependencies

– Implemented with delta steps

computation

continuous time

ticks

delta steps

49

EE249Fall03

Synchrony:
System Solution

• System solution

– Output reaction to a set of inputs

• Well-designed system:

– Is completely specified and functional

– Has an unique solution at each clock tick

– Is equivalent to a single FSM

– Allows efficient analysis and verification

• Well-designed-ness

– May need to be checked for each design (Esterel)

– Cyclic dependency among simultaneous events

50

EE249Fall03

Synchrony:
Implementation Cost

• Must verify synchronous assumption on final design

– May be expensive

• Examples:

– Hardware

– Clock cycle > maximum computation time

– Inefficient for average case

– Software

– Process must finish computation before

– New input arrival

– Another process needs to start computation

51

EE249Fall03

Pure Asynchrony:
Basic Operation

• Events are never simultaneous

– No two events have the same tag

• Computation starts at a change of the input

• Delays are arbitrary, but bounded

52

EE249Fall03

Asynchrony:
Triggering and Ordering

• Each module is triggered to run at a change of input

• No a priori ordering among triggered modules

– May be imposed by scheduling at implementation

53

EE249Fall03

Asynchrony:
System Solution

• Solution strongly dependent on input timing

• At implementation

– Events may “appear” simultaneous

– Difficult/expensive to maintain total ordering

– Ordering at implementation decides behavior

– Becomes DE, with the same pitfalls

54

EE249Fall03

Asynchrony:
Implementation Cost

• Achieve low computation time (average)

– Different parts of the system compute at different rates

• Analysis is difficult

– Behavior depends on timing

– Maybe be easier for designs that are insensitive to

– Internal delay

– External timing

55

EE249Fall03

Asynchrony vs. Synchrony in System Design

• They are different at least at

– Event buffering

– Timing of event read/write

• Asynchrony

– Explicit buffering of events for each module

– Vary and unknown at start-time

• Synchrony

– One global copy of event

– Same start time for all modules

56

EE249Fall03

Combining
Synchrony and Asynchrony

• Wants to combine

– Flexibility of asynchrony

– Verifiability of synchrony

• Asynchrony

– Globally, a timing independent style of thinking

• Synchrony

– Local portion of design are often tightly synchronized

• Globally asynchronous, locally synchronous

– CFSM networks

57

EE249Fall03

CFSM Overview

• CFSM is FSM extended with

– Support for data handling

– Asynchronous communication

• CFSM has

– FSM part

– Inputs, outputs, states, transition and output relation

– Data computation part

– External, instantaneous functions

58

EE249Fall03

CFSM Overview (2)

• CFSM has:

– Locally synchronous behavior

– CFSM executes based on snap-shot input assignment

– Synchronous from its own perspective

– Globally asynchronous behavior

– CFSM executes in non-zero, finite amount of time

– Asynchronous from system perspective

• GALS model

– Globally: Scheduling mechanism

– Locally: CFSMs

EE249Fall03

Network of CFSMs: Depth-1 Buffers

• Globally Asynchronous, Locally Synchronous (GALS) model

CFSM2

CFSM3

C=>G

CFSM1

C=>F
B=>C

F^(G==1)

(A==0)=>B

C=>A
CFSM1

CFSM2

C=>B

F

G

C

C

B
A

C=>G

C=>B

60

EE249Fall03

Introducing a CFSM

• A Finite State Machine

• Input events, output events and state events

• Initial values (for state events)

• A transition function

�Transitions may involve complex, memory-less, instantaneous

arithmetic and/or Boolean functions

�All the state of the system is under form of events

• Need rules that define the CFSM behavior

61

EE249Fall03

CFSM Rules: phases

• Four-phase cycle:

� Idle

� Detect input events

� Execute one transition

� Emit output events

• Discrete time

– Sufficiently accurate for synchronous systems

– Feasible formal verification

• Model semantics: Timed Traces i.e. sequences of events

labeled by time of occurrence

62

EE249Fall03

CFSM Rules: phases

• Implicit unbounded delay between phases

• Non-zero reaction time

(avoid inconsistencies when interconnected)

• Causal model based on partial order

(global asynchronicity)

– potential verification speed-up

• Phases may not overlap

• Transitions always clear input buffers

(local synchronicity)

63

EE249Fall03

Communication Primitives

• Signals

– Carry information in the form of events and/or values

– Event signals: present/absence

– Data signals: arbitrary values

– Event, data may be paired

– Communicate between two CFSMs

– 1 input buffer / signal / receiver

– Emitted by a sender CFSM

– Consumed by a receiver CFSM by setting buffer to 0

– “Present” if emitted but not consumed

64

EE249Fall03

Communication Primitives (2)

• Input assignment

– A set of values for the input signals of a CFSM

• Captured input assignment

– A set of input values read by a CFSM at a particular time

• Input stimulus

– Input assignment with at least one event present

65

EE249Fall03

Signals and CFSM

• CFSM

– Initiates communication through events

– Reacts only to input stimulus

– except initial reaction

– Writes data first, then emits associated event

– Reads event first, then reads associated data

66

EE249Fall03

CFSM networks

• Net

– A set of connections on the same signal

– Associated with single sender and multiple receivers

– An input buffer for each receiver on a net

– Multi-cast communication

• Network of CFSMs

– A set of CFSMs, nets, and a scheduling mechanism

– Can be implemented as

– A set of CFSMs in SW (program/compiler/OS/uC)

– A set of CFSMs in HW (HDL/gate/clocking)

– Interface (polling/interrupt/memory-mapped)

67

EE249Fall03

Scheduling Mechanism

• At the specification level

– Should be as abstract as possible to allow optimization

– Not fixed in any way by CFSM MOC

• May be implemented as

– RTOS for single processor

– Concurrent execution for HW

– Set of RTOSs for multi-processor

– Set of scheduling FSMs for HW

68

EE249Fall03

Timing Behavior

• Scheduling Mechanism

– Globally controls the interaction of CFSMs

– Continually deciding which CFSMs can be executed

• CFSM can be

– Idle

– Waiting for input events

– Waiting to be executed by scheduler

– Executing

– Generate a single reaction

– Reads its inputs, computes, writes outputs

69

EE249Fall03

Timing Behavior: Mathematical Model

• Transition Point

– Point in time a CFSM starts executing

• For each execution

– Input signals are read and cleared

– Partial order between input and output

– Event is read before data

– Data is written before event emission

70

EE249Fall03

Timing Behavior: Transition Point

• A transition point ti

– Input may be read between ti and ti+1

– Event that is read may have occurred between ti-1 and ti+1

– Data that is read may have occurred between t0 and ti+1

– Outputs are written between ti and ti+1

• CFSM allow loose synchronization of event & data

– Less restrictive implementation

– May lead to non intuitive behavior

71

EE249Fall03

Event/Data Separation

Sender S

Receiver R

t1ti-1 t2 ti t3 t4 ti+1

Read Event Read Value

Write v1 Emit Write v2 Emit

• Value v1 is lost even though

– It is sent with an event

– Event may not be lost

• Need atomicity

72

EE249Fall03

Atomicity

• Group of actions considered as a single entity

• May be costly to implement

• Only atomicity requirement of CFSM

– Input events are read atomically

– Can be enforced in SW (bit vector) HW (buffer)

– CFSM is guaranteed to see a snapshot of input events

• Non-atomicity of event and data

– May lead to undesirable behavior

– Atomicized as an implementation trade-off decision

73

EE249Fall03

Non Atomic Data Value Reading

• Receiver R1 gets (X=4, Y=5), R2 gets (X=5 Y=4)

• X=4 Y=5 never occurs

• Can be remedied if values are sent with events

– still suffers from separation of data and event

Sender S

Receiver R1

t1 t2 t3 t4 t5 t6

Receiver R2

X:=4

Y:=4 X:=5 Y:=5

Read X

Read X Read Y

Read Y

74

EE249Fall03

Atomicity of Event Reading

• R1 sees no events, R2 sees X, R3 sees X, Y

• Each sees a snapshot of events in time

• Different captured input assignment

– Because of scheduling and delay

Sender S

Receiver R1

t1 t2 t3 t4 t5

Receiver R2

Receiver R3

Emit X Emit Y

Read

Read

Read

75

EE249Fall03

Functional Behavior

• Transition and output relations

– input, present_state, next_state, output

• At each execution, a CFSM

– Reads a captured input assignment

– If there is a match in transition relation

– consume inputs, transition to next_state, write outputs

– Otherwise

– consume no inputs, no transition, no outputs

76

EE249Fall03

Functional Behavior (2)

• Empty Transition

– No matching transition is found

• Trivial Transition

– A transition that has no output and no state changes

– Effectively throw away inputs

• Initial transition

– Transition to the init (reset) state

– No input event needed for this transition

77

EE249Fall03

CFSM and Process Networks

• CFSM

– An asynchronous extended FSM model

– Communication via bounded non-blocking buffers

– Versus CSP and CCS (rendezvous)

– Versus SDL (unbounded queue & variable topology)

– Not continuous in Kahn’s sense

– Different event ordering may change behavior

– Versus dataflow (ordering insensitive)

78

EE249Fall03

CFSM Networks

• Defined based on a global notion of time

– Total order of events

– Synchronous with relaxed timing

– Global consistent state of signals is required

– Input and output are in partial order

79

EE249Fall03

Buffer Overwrite

• CFSM Network has

– Finite Buffering

– Non-blocking write

– Events can be overwritten

– if the sender is “faster” than receiver

• To ensure no overwrite

– Explicit handshaking mechanism

– Scheduling

80

EE249Fall03

Example of CFSM Behaviors

• A and B produce i1 and i2 at every i

• C produce err or o at every i1,i2

• Delay (i to o) for normal operation is nr, err operation 2nr

• Minimum input interval is ni

• Intuitive “correct” behavior

– No events are lost

A

B

C
i

i1

i2

err o

81

EE249Fall03

Equivalent Classes of CFSM Behavior

• Assume parallel execution (HW, 1 CFSM/processor)

• Equivalent classes of behaviors are:

– Zero Delay

– nr= 0

– Input buffer overwrite

– ni<nr

– Time critical operation

– ni/2<nr≤ni

– Normal operation

– nr<ni/2

82

EE249Fall03

Equivalent Classes of CFSM Behavior (2)

• Zero delay: nr= 0

– If C emits an error on some input

– A, B can react instantaneously & output differently

– May be logically inconsistent

• Input buffers overwrite: ni<nr

– Execution delay of A, B is larger than arrival interval

– always loss of event

– requirements not satisfied

83

EE249Fall03

Equivalent Classes of CFSM Behavior (3)

• Time critical operation: ni/2<nr≤ni

– Normal operation results in no loss of event

– Error operation may cause lost input

• Normal operation: nr<ni/2

– No events are lost

– May be expensive to implement

• If error is infrequent

– Designer may accept also time critical operation

– Can result in lower-cost implementation

84

EE249Fall03

Equivalent Classes of CFSM Behavior (4)

• Implementation on a single processor

– Loss of Event may be caused by

– Timing constraints

– ni<3nr

– Incorrect scheduling

– If empty transition also takes nr

– ACBC round robin will miss event

– ABC round robin will not

85

EE249Fall03

Some Possibility of Equivalent Classes

• Given 2 arbitrary implementations, 1 input stream:

– Dataflow equivalence

– Output streams are the same ordering

– Petri net equivalence

– Output streams satisfy some partial order

– Golden model equivalence

– Output streams have the same ordering

– Except reordering of concurrent events

– One of the implementations is a reference specification

– Filtered equivalence

– Output streams are the same after filtered by observer

86

EE249Fall03

Conclusion

• CFSM

– Extension: ACFSM: Initially unbounded FIFO buffers

– Bounds on buffers are imposed by refinement to yield ECFSM

– Delay is also refined by implementation

– Local synchrony

– Relatively large atomic synchronous entities

– Global asynchrony

– Break synchrony, no compositional problem

– Allow efficient mapping to heterogeneous architectures

