Outline

- Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model

Data-flow networks

- A bit of history
- Syntax and semantics
 - actors, tokens and firings
- Scheduling of Static Data-flow
 - static scheduling
 - code generation
 - buffer sizing
- Other Data-flow models
 - Boolean Data-flow
 - Dynamic Data-flow

Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation

for Digital Signal Processors (HW and SW)

A bit of history

- Karp computation graphs ('66): seminal work
- Kahn process networks ('58): formal model
- Dennis Data-flow networks ('75): programming language for MIT DF machine
- Several recent implementations
 - graphical:
 - Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 - SPW (Cadence), COSSAP (Synopsys)
 - textual:
 - Silage (UCB, Mentor)
 - Lucid, Haskell

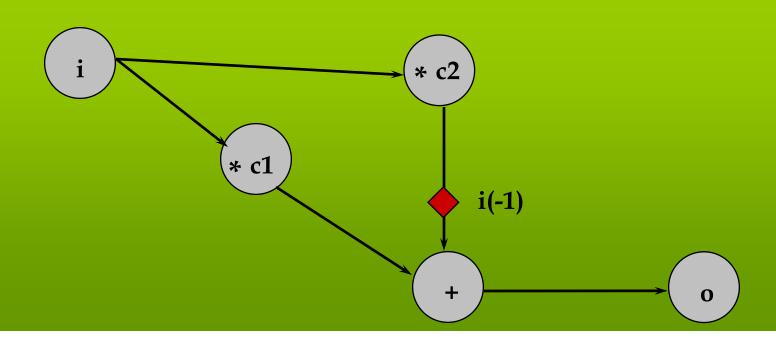
Data-flow network

- A Data-flow network is a collection of functional nodes which are connected and communicate over unbounded FIFO queues
- Nodes are commonly called actors
- The bits of information that are communicated over the queues are commonly called tokens

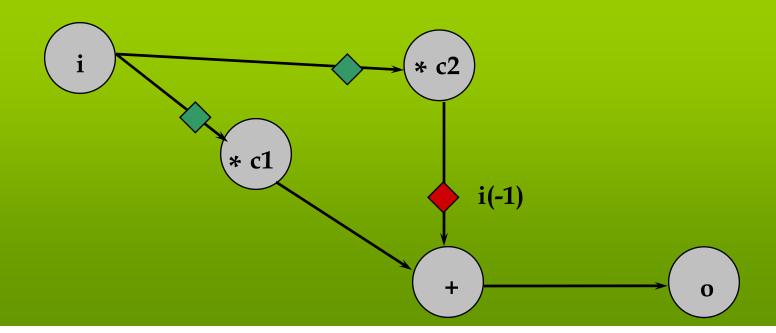
- (Often stateless) actors perform computation
- Unbounded FIFOs perform communication via sequences of tokens carrying values
 - integer, float, fixed point
 - matrix of integer, float, fixed point
 - image of pixels
- State implemented as self-loop
- Determinacy:
 - unique output sequences given unique input sequences
 - Sufficient condition: blocking read
 - (process cannot test input queues for emptiness)

- At each time, one actor is fired
- When firing, actors consume input tokens and produce output tokens
- Actors can be fired only if there are enough tokens in the input queues

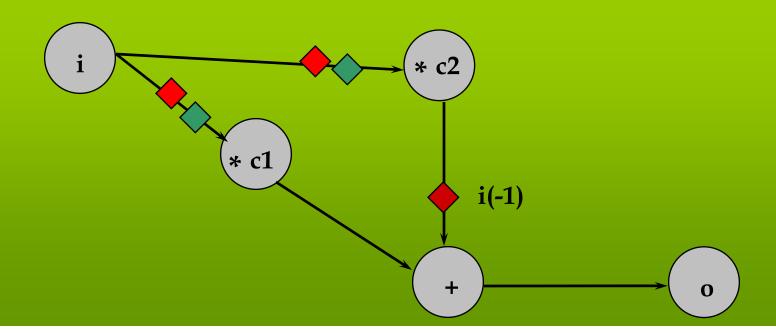
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



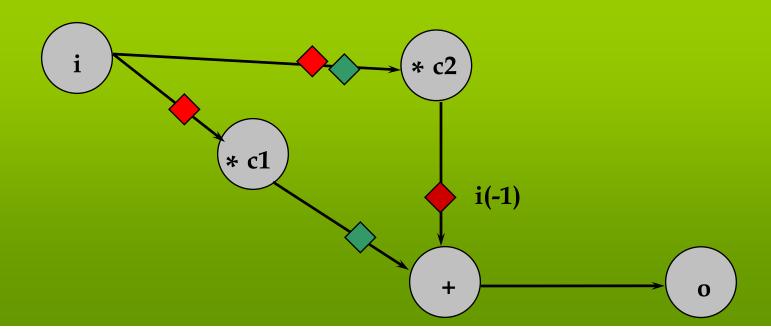
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - -o(n) = c1 i(n) + c2 i(n-1)



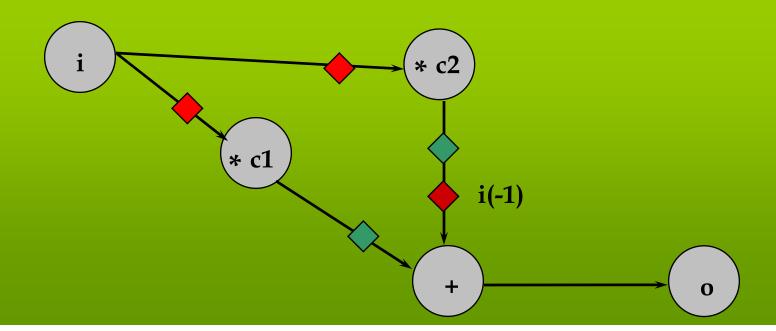
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



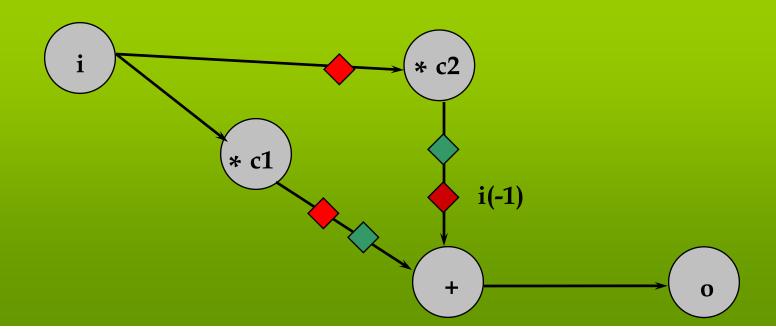
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



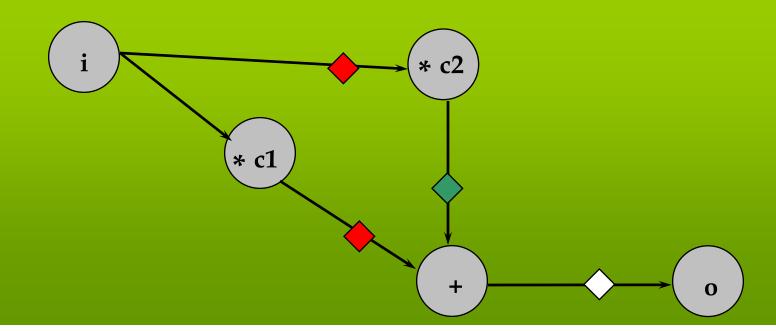
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



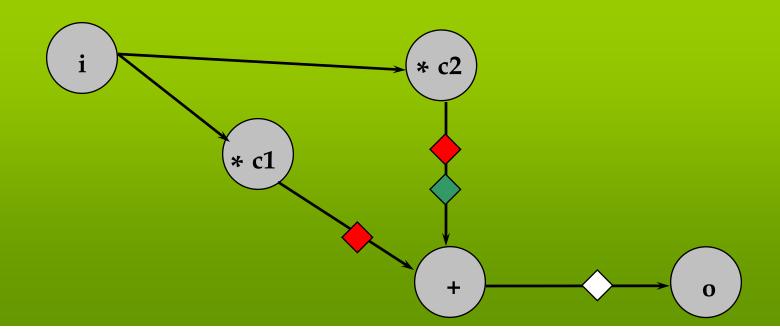
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



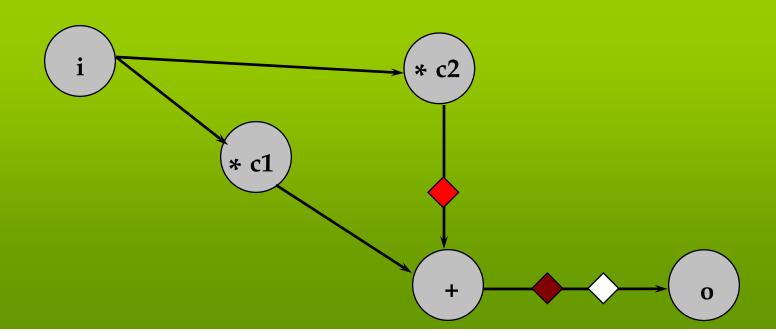
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



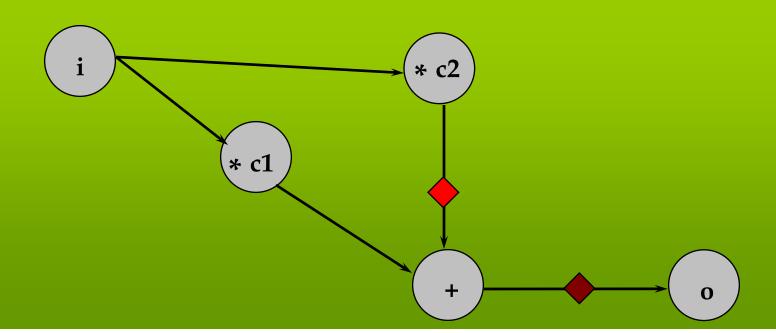
- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)



Questions

- Does the order in which actors are fired affect the final result?
- Does it affect the "operation" of the network in any way?
- Go to Radio Shack and ask for an unbounded queue!!

Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens
- Let tokens be noted by x_1 , x_2 , x_3 , etc...
- A sequence of tokens is defined as

$$X = [x_1, x_2, x_3, ...]$$

- Over the execution of the network, each queue will grow a particular sequence of tokens
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens)

Ordering of sequences

- Let X₁ and X₂ be two sequences of tokens.
- We say that X₁ is less than X₂ if and only if (by definition) X₁ is an initial segment of X₂
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive)
- This is also called the prefix order
- Example: [x₁, x₂] <= [x₁, x₂, x₃]
- Example: [x₁, x₂] and [x₁, x₃, x₄] are incomparable

Chains of sequences

- Consider the set S of all finite and infinite sequences of tokens
- This set is partially ordered by the prefix order
- A subset C of S is called a chain iff all pairs of elements of C are comparable
- If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)
- Example: { [x₁], [x₁, x₂], [x₁, x₂, x₃], ... } is a chain
- Example: { [x₁], [x₁, x₂], [x₁, x₃], ... } is not a chain

(Least) Upper Bound

- Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y
- Consider now the set Z (subset of S) of all the upper bounds of
- If Z has a least element u, then u is called the least upper bound (lub) of Y
- The least upper bound, if it exists, is unique
- Note: u might not be in Y (if it is, then it is the largest value of Y)

Complete Partial Order

- Every chain in S has a least upper bound
- Because of this property, S is called a Complete Partial Order
- Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
- Note: the least upper bound may be thought of as the limit of the chain

Processes

 Process: function from a p-tuple of sequences to a q-tuple of sequences

$$F: S^p \rightarrow S^q$$

Tuples have the induced point-wise order:

$$Y = (y_1, ..., y_p), Y' = (y'_1, ..., y'_p) \text{ in } S^p : Y <= Y' \text{ iff } y_i <= y'_i$$
 for all $1 <= i <= p$

- Given a chain C in S^p, F(C) may or may not be a chain in S^q
- We are interested in conditions that make that true

Continuity and Monotonicity

 Continuity: F is continuous iff (by definition) for all chains C, lub(F(C)) exists and

$$F(lub(C) = lub(F(C))$$

- Similar to continuity in analysis using limits
- Monotonicity: F is monotonic iff (by definition) for all pairs X, X'
 X <= X' => F(X) <= F(X')
- Continuity implies monotonicity
 - intuitively, outputs cannot be "withdrawn" once they have been produced
 - timeless causality. F transforms chains into chains

Least Fixed Point semantics

- Let X be the set of all sequences
- A network is a mapping F from the sequences to the sequences

$$X = F(X, I)$$

- The behavior of the network is defined as the unique least fixed point of the equation
- If F is continuous then the least fixed point exists LFP = LUB($\{F^n(\bot, I) : n \ge 0\}$)

From Kahn networks to Data Flow networks

- Each process becomes an actor: set of pairs of
 - firing rule(number of required tokens on inputs)
 - function
 (including number of consumed and produced tokens)
- Formally shown to be equivalent, but actors with firing are more intuitive
- Mutually exclusive firing rules imply monotonicity
- Generally simplified to blocking read

Examples of Data Flow actors

- SDF: Synchronous (or, better, Static) Data Flow
 - fixed input and output tokens

- BDF: Boolean Data Flow
 - control token determines consumed and produced tokens

Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors
- SDF networks can be statically scheduled at compile-time
 - execute an actor when it is known to be fireable
 - no overhead due to sequencing of concurrency
 - static buffer sizing
- Different schedules yield different
 - code size
 - buffer size
 - pipeline utilization

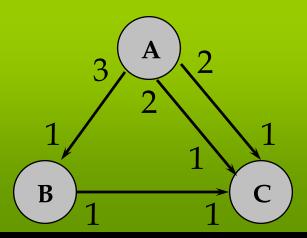
Static scheduling of SDF

- Based only on process graph (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is valid, i.e.:
 - admissible(only fires actors when fireable)
 - periodic
 (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules

 Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S
- $v_s(A) n_p = v_s(B) n_c$

must be satisfied for each edge



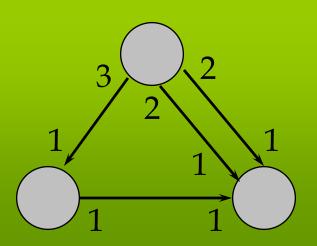
Balance for each edge:

$$- 3 v_S(A) - v_S(B) = 0$$

$$- v_{S}(B) - v_{S}(C) = 0$$

$$- 2 v_S(A) - v_S(C) = 0$$

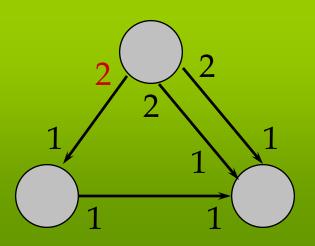
$$- 2 v_{S}(A) - v_{S}(C) = 0$$



$$\mathbf{M} = \begin{vmatrix} 3 & -1 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 0 & -1 \end{vmatrix}$$

- M v_S = 0
 iff S is periodic
- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule

(too many tokens accumulate on A->B or B->C)



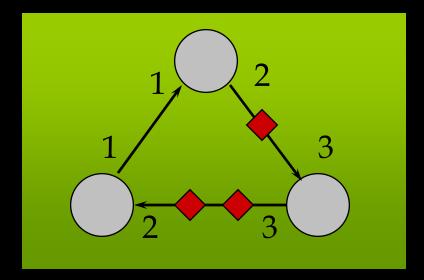
$$\mathbf{M} = \begin{vmatrix} \mathbf{2} & -1 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 0 & -1 \end{vmatrix}$$

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of $q = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^T$ satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCC is non-minimal valid schedule

Static SDF scheduling

- Main SDF scheduling theorem (Lee '86):
 - A connected SDF graph with n actors has a periodic schedule iff its topology matrix M has rank n-1
 - If M has rank n-1 then there exists a unique smallest integer solution q to M q=0
- Rank must be at least n-1 because we need at least n-1 edges (connected-ness), providing each a linearly independent row
- Admissibility is not guaranteed, and depends on initial tokens on cycles

Admissibility of schedules



No admissible schedule:

BACBA, then deadlock...

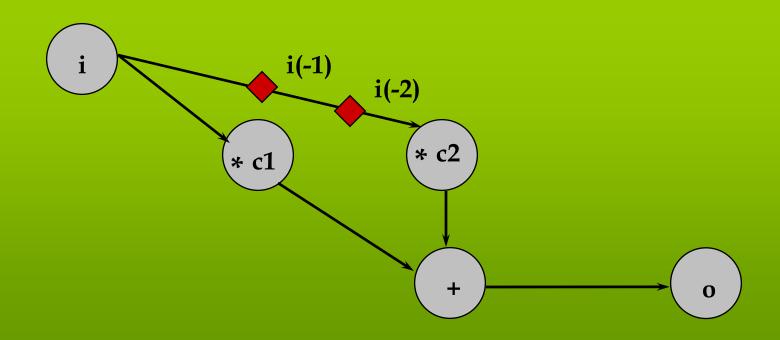
Adding one token (delay) on A->C makes

BACBACBA valid

 Making a periodic schedule admissible is always possible, but changes specification...

Admissibility of schedules

Adding initial token changes FIR order

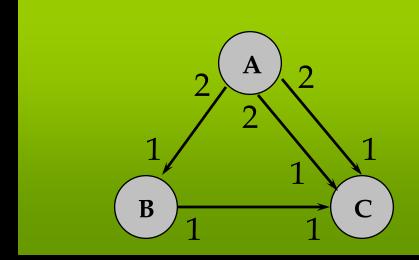


From repetition vector to schedule

Repeatedly schedule fireable actors up to number of times in

repetition vector

$$q = |1 \ 2 \ 2|^T$$



- Can find either ABCBC or ABBCC
- If deadlock before original state, no valid schedule exists (Lee '86)

From schedule to implementation

- Static scheduling used for:
 - behavioral simulation of DF (extremely efficient)
 - code generation for DSP
 - HW synthesis (Cathedral by IMEC, Lager by UCB, ...)
- Issues in code generation
 - execution speed (pipelining, vectorization)
 - code size minimization
 - data memory size minimization (allocation to FIFOs)
 - processor or functional unit allocation

Compilation optimization

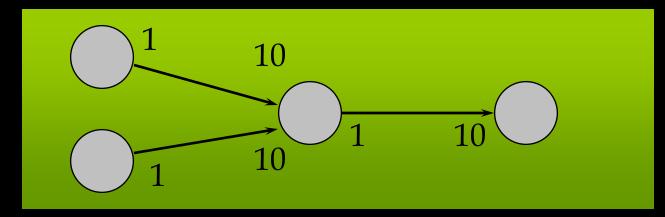
- Assumption: code stitching
 (chaining custom code for each actor)
- More efficient than C compiler for DSP
- Comparable to hand-coding in some cases
- Explicit parallelism, no artificial control dependencies
- Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa

Code size minimization

- Assumptions (based on DSP architecture):
 - subroutine calls expensive
 - fixed iteration loops are cheap ("zero-overhead loops")
- Absolute optimum: single appearance schedule
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 - may or may not exist for an SDF graph...
 - buffer minimization relative to single appearance schedules
 (Bhattacharyya '94, Lauwereins '96, Murthy '97)

Buffer size minimization

- Assumption: no buffer sharing
- Example:



 $q = |100 100 10 1|^T$

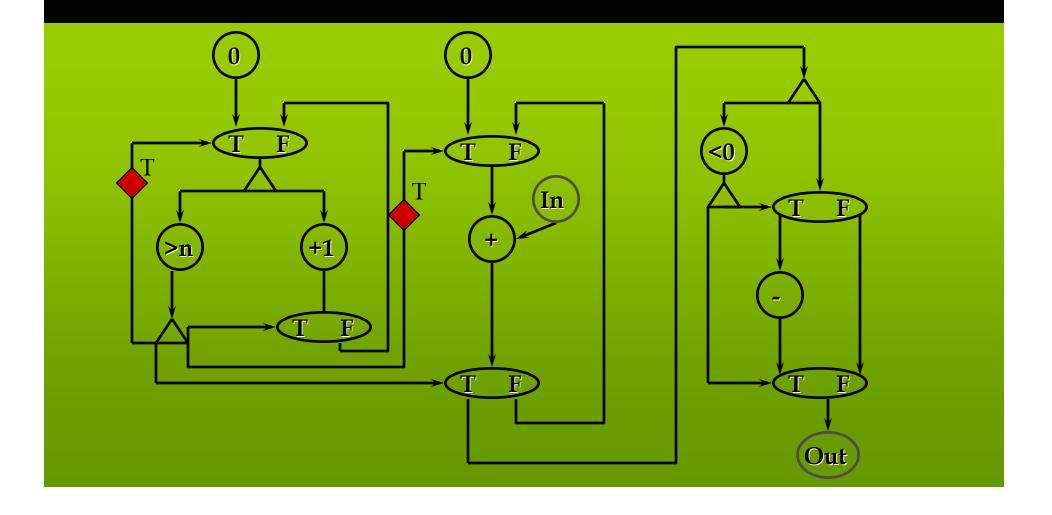
- Valid SAS: (100 A) (100 B) (10 C) D
 - requires 210 units of buffer area
- Better (factored) SAS: (10 (10 A) (10 B) C) D
 - requires 30 units of buffer areas, but...
 - requires 21 loop initiations per period (instead of 3)

Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination with pivoting
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck '93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special "patterns"
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 - (Parks '96: may not terminate, but never fails if feasible)

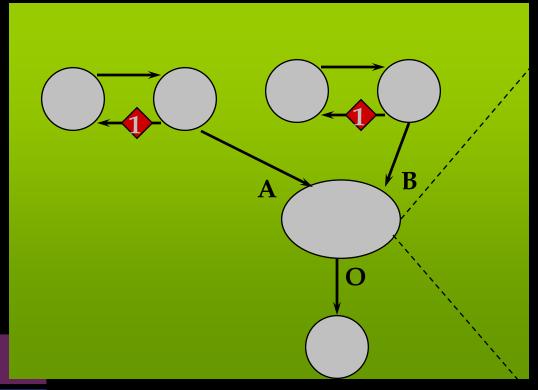
Example of Boolean DF

• Compute absolute value of average of *n* samples



Example of general DF

Merge streams of multiples of 2 and 3 in order (removing duplicates)



Deterministic merge (no "peeking")

```
a = get(A)
b = get(B)
forever {
    if (a > b) {
         put (O, a)
         a = get(A)
    } else if (a < b) {
         put (O, b)
         b = get(B)
    } else {
         put (O, a)
         a = get(A)
         b = get(B)
```

Summary of DF networks

Advantages:

- Easy to use (graphical languages)
- Powerful algorithms for
 - verification (fast behavioral simulation)
 - synthesis (scheduling and allocation)
- Explicit concurrency
- Disadvantages:
 - Efficient synthesis only for restricted models
 - (no input or output choice)
 - Cannot describe reactive control (blocking read)

Outline

- Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model