
Mapping and architecture exploration

DSP

CPU

HW

HW

• Configure the resources, e.g. the size of an internal
memory, width of a bus.

• Map the processes to the resources.

• “Compile” the processes in terms of the “services”
provided by the mapped resources:

Effective scheduling of process operations mapped to a CPU is a key issue:

• reduce the context-switching between tasks for efficient execution

• increase data coherency among processes for efficient memory usage

Scheduling Classification

• Dynamic scheduling
– Make all scheduling decisions at run-time
– Context switch overhead

• Static scheduling
– Make all scheduling decisions at compile-time
– Reduce context switch overhead
– Restricted to specification without data-dependent controls

(e.g. if-then-else)

• Quasi-static scheduling
– Allow specification to have data-dependent controls
– Perform static scheduling as much as possible
– Leave data-dependent choices resolved at run-time

Quasi-static scheduling

QSS

Sequentialize concurrent operations as much as possible.

A better starting point for code generation technologies:
• Straight-line code across function blocks

• Bounded memory usage during the code execution

Scheduling concurrent programs

OUT

START

while(1){
read(START, N, 1);
for(i=0,y=0;i<N;i++){

read(DATA, d, 1);
D = d * d;
x[0] = D;
read(DATA, d, 1);
D = d * d;
x[1] = D;
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

DATA

PORT IN

while(1){
read(START, N, 1);
for(i=0,y=0;i<N;i++){

read(IN, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

DATA

while(1){
read(DATA, d, 1);
D = d * d;
write(PORT, D, 1);

}

START

OUT

Outline

• The problem and an approach
– Petri Net: a model for capturing the behavior of a program
– Definition of a schedule
– An algorithm

• An application to MPEG2 decoder
– The effectiveness
– The outstanding problem: False Path Problem

• Approaches for the False Path Problem
– Cong’s observation
– Future directions

Scheduling concurrent programs

DATA

PORT IN

while(1){
read(START, N, 1);
for(i=0,y=0;i<N;i++){

read(IN, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

while(1){
read(DATA, d, 1);
D = d * d;
write(PORT, D, 1);

}

START

OUT

DATA PORTA B

2
OUT

START

IN

C

D E

D and E are in conflict.
We call {D, E} an Equal
Choice Set (ECS).

Scheduling concurrent programs

DATA A B

OUT

START

C

D E

DATA

PORT IN

while(1){
read(START, N, 1);
for(i=0,y=0;i<N;i++){

read(IN, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

while(1){
read(DATA, d, 1);
D = d * d;
write(PORT, D, 1);

}

START

OUT

2

D and E are in conflict.
We call {D, E} an Equal
Choice Set (ECS).

Scheduling concurrent programs

2,6

START
2,5,6
C

E
2,8 2,6,9

OUT

2,7

OUT

DATA A B

2

START

C

D E

F

1

2

3 4

5 6

7

8
9

• A path to the node r from each node.
• All and only transitions of an enabled ECS from each node.
• One node r associated with the initial marking.

D

1,2,8

3,8

2,4,8

DATA

A

B

DATA
1,2,
4,8

3,4,8
A B

2,4
4,8

F

Finding a schedule on the Petri net

p1

p2

p3 p4

p5 p6

p7

p8
p9

OUT

DATA A B

2

START

C

D E

F

r (p2 p6)

START

v1 (p2 p5 p6)

C

v2 (p2 p7)
D E

v3 (p2 p6 p9)

OUT

v4 (p2 p6) : r

: r

: the node at which a cycle was found.

v5 (p2 p8)

DATA
A

B

DATA

A

B

v6 (p2 p4 p4 p8)

F
v7 (p2 p7): v2

: v2

: v2

: r

: r

: r

2. Ancestor with the same marking

Two checks when a node is created:

1. Termination conditions

Finding a schedule on the Petri net

OUT

DATA A B

2

START

C

D E

F

p1

p2

p3 p4

p5 p6

p7

p8
p9

OUT

r (p2 p6)

START

v1 (p2 p5 p6)

C

v2 (p2 p7)
D E

v3 (p2 p6 p9)v5 (p2 p8)

DATA
A

B

DATA

A

B

v6 (p2 p4 p4 p8)

F

Generating code from a schedule

OUT

r (p2 p6)

START

v1 (p2 p5 p6)

C

v2 (p2 p7)
D E

v3 (p2 p6 p9)v5 (p2 p8)

DATA
A

B

DATA

A

B

v6 (p2 p4 p4 p8)

F

Start: read(START, N, 1); i=0; y=0;

DE: if(i < N){

read(DATA, d, 1); D = d*d; x[0] = D;

read(DATA, d, 1); D = d*d; x[1] = D;
y=y+x[0]+2*x[1]; i++; goto DE;

}

else{ write(OUT, y, 1); goto Start; }

START

OUT

DATA

Properties of the algorithm

• Claim1:
If the algorithm terminates successfully, a schedule is obtained.

- The schedule provides an upper bound on memories required for
communicating data.

• Claim2:
If the algorithm does NOT terminate successfully, no schedule exists

under given termination conditions.

Improving efficiency

• Which transition to choose at each node?

– Find sequences of transitions to create cycles.
T-invariants: a basis of the linear system A x = 0

A[i, j]: # of tokens produced to the i-th place by the j-th transition.

DATA A B START C D E F OUT
[0 0 0 1 1 0 1 0 1]
[2 2 2 0 0 1 0 1 0]

– Choose a T-invariant using a heuristic,
and use it as much as possible.

OUT

DATA A B

2

START

C

D E

F

p1

p2

p3 p4

p5 p6

p7

p8
p9

START

OUT

r (p2 p6)

v1 (p2 p5 p6)

C
v2 (p2 p7)

D E
v3 (p2 p6 p9)

T-invariants:

Finding a schedule on the Petri net

OUT

DATA A B

2

START

C

D E

F

p1

p2

p3 p4

p5 p6

p7

p8
p9

OUT

r (p2 p6)

START

v1 (p2 p5 p6)

C

v2 (p2 p7)
D E

v3 (p2 p6 p9)v5 (p2 p8)

DATA
A

B

DATA

A

B

v6 (p2 p4 p4 p8)

F

The MPEG2 decoder

• Part of a complete commercial video decoder
• Described in YAPI (developed at Philips)

– based on Kahn Process Network
– partially translated into FlowC to apply QSS

• 11 processes
– 5000 lines of code of C++ code

• 45 FIFOs

Hdr

Vld DecMV Predict

ISIQ IDCT Add ManagerWriteMB

OutMem

The MPEG2 decoder

smbc = prop.skipped_cnt;
while (smbc > 0) {

DoPredictionSkipped(<params>);
Write(mbOut, mb_p);
smbc--;

}
/* Other Predict stuff here */

smbc = mb_prop.skipped_cnt;
while (smbc > 0) {

Read(mbIn, mb_p);
Write(mb_dOut, mb_p);
smbc--;

}
/* Other Add stuff here */

Predict

mbOut

mbIn mb_dOut

Add

The MPEG2 decoder

smbc = prop.skipped_cnt;
while (smbc > 0) {

DoPredictionSkipped(<params>);
Write(mbOut, mb_p);
smbc--;

}
/* Other Predict stuff here */

Predict_smbc = Predict_prop.skipped_cnt;
Add_smbc = Add_ mb_prop.skipped_cnt

looplabel:
(void) (Add_smbc > 0);
if (Predict_smbc > 0) {

DoPredictionSkipped(<params>);
Write(mbOut, Predict_mb_p, 1);
Read(mbIn, Add_mb_p, 1);
Write(mb_dOut, Add_mb_p, 1);
Predict_smbc--;
Add_smbc--;
goto looplabel;

} else if (!(Predict_smbc > 0) {
}

smbc = mb_prop.skipped_cnt;
while (smbc > 0) {

Read(mbIn, mb_p);
Write(mb_dOut, mb_p);
smbc--;

}
/* Other Add stuff here */

• Various optimizations still
possible:

– remove unused variables
– remove unused

communications

The MPEG2 decoder

Total TestBench OS
Total vld+hdr 5 blocks

Philips 7.5 4.66 0.94 3.72 0.27 2.58
QSS 4.1 2.51 0.94 1.57 0.28 1.31

MPEG

Total Computation Communication
Philips 3.72 1.49 2.23
QSS 1.57 1.44 0.13

5 blocks

• Performance improved by 45%
– reduction of communication (no internal FIFOs between

statically scheduled processes)
– reduction of run-time scheduling (OS)
– no reduction in computation

Outline

• The problem and an approach
– Petri Net: a model for capturing the behavior of a program
– Definition of a schedule
– An algorithm

• An application to MPEG2 decoder
– The effectiveness
– The outstanding problem: False Path Problem

• Approaches for the False Path Problem
– Conventional approaches
– Cong’s observation
– Future directions

False paths in scheduling concurrent programs

IN

Y Y

while(1){
M=read(X);
for(j=0;j<M;j++){

E[j]=read(Y);
}

}

while(1){
N=read(IN);
write(X, N);
for(i=0;i<N;i++){

write(Y, D[i]);
}

}

X X

E

F G

A

CB

D H

X

Y

False paths in scheduling concurrent programs

1,4

A
2,X,4
E

B C
1,5 3,Y,5

2,5

3,Y,6 3,Y,4

2,Y,6

1,6

F

G

F G

D

H

i<N?

N=read(IN);
write(X,N);
i=0;

M=read(X);
j=0;

j<M?

i=i+1;

j=j+1;

j<M?

E

F G

A

CB

D H

Y

1

2

3

4

5

6

X

False state False state

B

D

C

B

A

C E

D

B C

.

.

.

A

B C

A

B C

D

.

.

.

• The false path problem arises very often in practice.

• With this problem, the scheduling algorithm blows up, or produces huge schedules.

Our previous approach for the false path problem

1. Manually change the input program to eliminate the false paths:
[Arrigoni et. al, 2002]

E

F G

A

CB

D H

Y

1

2

3

4

5

6

X

Done

Loop

1,4

A
2,X,4
E

B C
1,D,5 3,Y,L,5

2,5

3,Y,6

2,Y,6

F

G

F G

D

H

• Effective if specified correctly.

• The additional burden to the user may not be practical.

Our previous approach for the false path problem

2. Compute sets of values of variables at each state:
[Cousot, 1976]

1,4

A
2,X,4
E

B C
1,5 3,Y,5

2,5

3,Y,6 3,Y,4

2,Y,6

1,6

F

G

F G

D

H

i<N?

N=read(IN);
write(X,N);
i=0;

M=read(X);
j=0;

j<M?

i=i+1;

j=j+1;

j<M?

The convex hull computation at {2,5}

i

j

• Restrictions on arithmetic operations to be handled.

• Restrictions on the problem sizes.

1

1

0 ≤ i, 0 ≤ j
i = j, M = N

0 ≤ i < N

0 ≤ i < N,
i ≥ N

Outline

• The problem and an approach
– Petri Net: a model for capturing the behavior of a program
– Definition of a schedule
– An algorithm

• An application to MPEG2 decoder
– The effectiveness
– The outstanding problem: False Path Problem

• Approaches for the False Path Problem
– Conventional approaches
– Cong’s observation
– Future directions

Cong’s observation

A certain pattern exists beyond the false states in the reachability tree:
• The pattern is observed in typical dataflow applications we have in practice.
• The pattern makes a scheduler fail to find a (finite) schedule.
• The pattern is caused by a structural property of the input Petri net.

1,4

A
2,X,4
E

B C
1,5 3,Y,5

2,5

3,Y,6 3,Y,4

2,Y,6

1,6

F

G

F G

D

H B

D

C

B

A

C E

D

B C

A

B C

A

B C

D

...

E

F G

A

CB

D H

Y

1

2

3

4

5

6

X

...

Cong’s observation

1,4

A
2,Y,4
E

B C
3,5 2,Y,5

2,5

2,Z,6 2,Y,Z,43,6

F F G

H

B

E

C

F G

.

E

F G

A

CB

D

H

Y

1

2

3

4

5

6

Z

..

3,Z,4

G

D

B

E

C

Cong’s observation

• Transition dependency
A transition s requires a transition t, s ⇒ t, if for any T-invariant of the Petri net, if
it contains s, then it also contains t.

– T-invariant: a solution of the marking equations. I.e., a set of instances of
transitions such that if all and only the instances of the set are fired, the resulting
marking is same as before.

E

F G

A

CB

D

H

Y

1

2

3

4

5

6

Z

T-invariants (minimal):
{A, B, D, E, G}
{C, F, H}

ECS1={B,C} and
ECS2={F,G} are recurrent:

B ⇒ G and F ⇒ C

C ⇒ F and G ⇒ B

• Recurrent ECS’es
Two distinct ECS’es, ECS1 and ECS2, are recurrent if there exist distinct
elements {si, sj} ⊆ ECS1 and {tk, tl} ⊆ ECS2, such that si ⇒ tk and tl ⇒ sj.

Cong’s observation

Proposition
No schedule of a given Petri net contains recurrent ECS’es.

Proof:
What to show: any attempt to include one of recurrent ECS’es in a schedule leads to either a

deadlock or infinite paths.
Say ECS1 and ECS2 are recurrent, with {si, sj} ⊆ ECS1 and {tk, tl} ⊆ ECS2 and si ⇒ tk and

tl ⇒ sj.
• A schedule needs to include all resolutions of an ECS contained in it.
• Any instance of ECS1 in the reachability tree has a path such that

– the path starts with si, and
– tk and sj do not appear in the path, and
– the path ends with a deadlock, or else is infinite (no repeated marking in the path).

• Had a schedule contained ECS1, there is its instance for which the path above does not
have any marking repeated in the pre-history of the path in the schedule.

Cong’s observation

1,4

A
2,Y,4
E

B C
3,5 2,Y,5

2,5

2,Z,6 2,Y,Z,43,6

F F G

H

B

E

C

F G

.

E

F G

A

CB

D

H

Y

1

2

3

4

5

6

Z

..

3,Z,4

G

D

B

E

C
ECS1={B,C} and ECS2={F,G} are recurrent:
1. C ⇒ F and G ⇒ B
2. B ⇒ G and F ⇒ C

Cong’s observation: summary

• Recurrent ECS’es lead the schedule search to either deadlock or endless.
• The recurrence between ECS’es is a structural property of a Petri net.

– The proposition holds regardless of markings.
– The property can be found with a structural analysis.

Directions of research with Cong’s observation:

1. Application to the false path problem

2. Application to the schedulability analysis

3. Extension of the notion of recurrent ECS’es

Directions of research with Cong’s observation

1. Application to the false path problem

1,4

A
2,X,4
E

B C
1,5 3,Y,5

2,5

3,Y,6 3,Y,4

2,Y,6

1,6

F

G

F G

D

H

i<N?

N=read(IN);
write(X,N);
i=0;

M=read(X);
j=0;

j<M?

i=i+1;

j=j+1;

j<M?

E

F G

A

CB

D H

Y

1

2

3

4

5

6

X

False state False state

B

D

C

B

A

C E

D

B C

.

.

.

A

B C

A

B C

D

.

.

.

Concluding remarks

• Static scheduling of concurrent programs finds attractive applications in
practice.

• Petri nets with abstracted control flow seem to be a reasonable model, but
the false path problem stands as a showstopper.

• Previous attempts directly looked at data-value analysis.

• Cong’s observation deals with structural properties of the Petri nets:
– A strong proposition, independent of markings
– A mechanism of a failure of a schedule search revealed
– While not directly applicable to the false path problem, it may lead to an

effective way to address the problem.

Directions of research with Cong’s observation

2. Application to the schedulability problem

Question: when does the other direction of Cong’s proposition hold? I.e.
Given two distinct ECS’es, suppose that no schedule contains either of
them. Are these ECS’es recurrent then?

Directions of research with Cong’s observation

3. Extension of the notion of recurrent ECS’es

E

F G

A

CB

D H

Directions of research with Cong’s observation

3. Extension of the notion of recurrent ECS’es

H

I J

A

CB

D K

E F

G

L M

N

ECS1={B,C} , ECS2={I,J} ,
ECS3={E,F} , ECS4={L,M}

C ⇒ I ∨ L

F ⇒ I ∨ L

I ⇒ C ∨ F

L ⇒ C ∨ F

B ⇔ J

B ⇔ M

E ⇔ J

E ⇔ M

None of them is recurrent
to each other.

	Mapping and architecture exploration
	Scheduling Classification
	Quasi-static scheduling
	Scheduling concurrent programs
	Outline
	Scheduling concurrent programs
	Scheduling concurrent programs
	Scheduling concurrent programs
	Finding a schedule on the Petri net
	Finding a schedule on the Petri net
	Generating code from a schedule
	Properties of the algorithm
	Improving efficiency
	Finding a schedule on the Petri net
	The MPEG2 decoder
	The MPEG2 decoder
	The MPEG2 decoder
	The MPEG2 decoder
	Outline
	False paths in scheduling concurrent programs
	False paths in scheduling concurrent programs
	Our previous approach for the false path problem
	Our previous approach for the false path problem
	Outline
	Cong’s observation
	Cong’s observation
	Cong’s observation
	Cong’s observation
	Cong’s observation
	Cong’s observation: summary
	Directions of research with Cong’s observation
	Concluding remarks
	Directions of research with Cong’s observation
	Directions of research with Cong’s observation
	Directions of research with Cong’s observation

