
Analyzing the MPSoC Design
Space: the MPARM
environment

Davide Bertozzi
Luca Benini

DEIS University of Bologna
{dbertozzi-lbenini}@deis.unibo.it

A SoC Platform: Nexperia™ DVP

Scalable VLIW
Media Processor:
• 100 to 300+ MHz
• 32-bit or 64-bit

Nexperia™

System Buses
• 32-128 bit

General-purpose
Scalable RISC
Processor
• 50 to 300+ MHz
• 32-bit or 64-bit

Library of Device
IP Blocks
• Image coprocessors
• DSPs
• UART
• 1394
• USB
…and more

TMTM--xxxxxxxx
DD

II

TriMedia CPUTriMedia CPU

DEVICE IP BLOCKDEVICE IP BLOCK

DEVICE IP BLOCKDEVICE IP BLOCK

DEVICE IP BLOCKDEVICE IP BLOCK

..

..

..

DVP SYSTEM SILICON
PI

 B
U

S

MMI

D
VP

 M
EM

O
R

Y
B

U
SDEVICE IP BLOCK

PRxxxx
D$

I$

MIPS CPU

DEVICE IP BLOCK
.

.

.
DEVICE IP BLOCK

PI
 B

U
S

Does it look familiar?
Think about TI, Motorola…

MIPS™ TriMedia™SDRAM

MP-SoC DESIGN

Plenty of cores can be integrated
Current silicon technology allows ~100s
Near future allows ~1000s

Emergence of heterogeneous embedded processors
IP design reuse to increase SoC productivity
Orthogonalization of communication versus
computation

Standard interface sockets (OCP, VSI)
Communication bottleneck

Need for system interconnect scalability and modularity

Interconnect delay problem

Taken from W.J. Dally presentation: Computer architecture is all about interconnect
(it is now and it will be more so in 2010) HPCA Panel February 4, 2002

• Global on-chip comm. to operation delay 2:1, will be 9:1 in 2010
• Latency for across chip communication: 6-10 clock cycles (50 nm)
• Fraction of chip area reachable in 1 clock cycle: 0.4-1.4%

Effect on the performance of the overall design

Outline

MPSoC design challenges
Hardware
Software

Introduction to MPARM
MPARM at work

On-Chip communication:
design objectives
Overcomes technology hurdles and become
key differentiating factor

Low communication latency
High communication bandwidth
Low energy consumption

Support applications
Sustainable scalability
High system-level reliability
High system behavior predictability

Communication architectures
SHARED BUS (broadcast)

Low area
Poor scalability
High energy consumption

SHARED BUS
MASTER MASTER

SLAVE SLAVE SLAVE

MASTER

NETWORK on CHIP (reduce sharing)
Scalability and modularity
Low energy consumption
Increase of design complexity

Network on ChipNetwork-on-Chip

These are extreme points of
a wide design space

Approach to
design space analysis

Realization of meaningful points in the design space
Modelling accuracy emphasized

Performance analysis of on-chip interconnects for different:
Classes of applications (computation vs communication dominated)

Software architectures (stand-alone vs OS supported appln)
System configurations (cache size, memory latency, ..)

Multiprocessor SoC simulation environment (MPARM)
Porting of the different SoC interconnects

Communication Architecture Design Space

Shared bus
(AMBA) Advanced NoC arch.

(Xpipes)
Evolutionary arch.

(STBUS)

Proposed NoC architectures
From shared busses to network-on-chip architectures

Evolutionary communication architectures
Sonics Micronetwork
STBus Interconnect

More radical solutions required in the long term
Early work: Maia heterogeneous architecture
Tile-based architecture (Dally and Lacy)
Nostrum
HiNoC
Linkoeping SoCBUS
SPIN
Star-connected on-chip network
Aethereal
Proteo

XPIPES: Features
Parameterizable network building blocks

Plug-and-play composable for arbitrary network topology
Design time tunable

Pipelined links
Source based routing

Street sign routing
Very high performance switch design

Wormhole switching
Minimize buffering area while reducing latency

Standard OCP interface
Written in synthesizable SystemC at the cycle accurate level

Heterogeneous topology

SoC component specialization lead to the integration of
heterogeneous cores

Ex. MPEG4 Decoder

• Non-uniform block sizes
• SDRAM: communication
bottleneck

• Many neighboring cores
do not communicate

Risk of under-utilizing many tiles and links
Risk of localized congestion

On a homogeneous fabric:

Soft macros

LIBRARY OF DESIGN TIME
TUNABLE AND COMPOSABLE SOFT MACROS

GLOBAL PARAMETERS

Flit size
Degree of redundancy in error detecting codes
Address space of cores
Number of bits for end-to-end flow control
Number of flit types
Max no. of hops between any two nodes
Number of packet types

Soft macros
LIBRARY OF DESIGN TIME

TUNABLE AND COMPOSABLE SOFT MACROS

BLOCK-SPECIFIC PARAMETERS

NETWORK INTERFACE
Interface parameters (nr of data/address lines, max. burst length)
Type of interface (master, slave, or both)
Flit buffer size in the output port
Content of routing table

SWITCH
Nr of I/O ports
Nr of virtual channels
Link buffer size

LINK
Nr of pipeline stages

Link delay bottleneck

Wire delay is serious concern for NoC Links
If NoC “beat” is determined by worst case link delay,
performance can be severely limited

Pipelined links
Delay is transformed in Latency
Data introduction rate is not bound by link delay any
more

Switch operation must be latency-insensitive
Buffering requirements

FLIT A FLIT B FLIT C FLIT D

Network interface

Open Core Protocol (OCP)
End-to-end communication protocol

• pipelining
• independence of request/response
phase

Network protocol

IP
Network

Interface Network

PAYLOAD HEADERTAIL

Packet

FLITFLITFLIT…FLIT
Header includes:

Path across the network
Source
Destination
Command type

Burst ID (MBurst)
Packet identifier within message (ID-PACKET)
Local target IP address (IP_ADDR)

NI Architecture
Request phase

Response phase

Static packeting DP_FAST BUF_OUT

Receive response SYNCHRO

Request Phase
OCP

Response Phase
OCP

OCP
Master

Wrapper

IP (initiator)

datastream

Req_ex_datastream

Busy_dpfast

flitout

Req_ex_flitout

Busy_buffer

datastream

Req_ex_datastream

Busy_rec_response From
network

To
network

Enable_new_readStart_receive_response

lutword

numSB

Only one
outstanding

“Read”

Network interface (OCP Slave)

Switch architecture
Highly parameterized
Buffering at the outputs with virtual channel support
Deeply pipelined architecture
Forward control flow (ACK/NACK protocol)
Distributed error detection logic

Aggregate bandwidth:
64 Gbit/s (32 bit links, 500 MHz)
Estimated switch area (0.10 um)
0.33 mm2

Output port architecture

IN[0]

IN[1]

IN[2]

IN[3]

ACK/NACK

I/O matching Arbitration
Mux

Buffering
Forward control

Output arbiter

Error detection IN[0]
Error detection IN[1]
Error detection IN[2]
Error detection IN[3]

OUT[0]

Register arbiter

Pipeline depth 7
Parameterizable # of Virtual channels
CRC-based error detection

VC FIFOs

Flow control

Transmission
ACK and buffering

ACK/NACK propagation
NACK

Memory deallocation
Retransmission
Go-back-N

Network throughput and
latency

Clock cycles

TRASMISSIONE BURST READ TRANSAZIONE
COMPLETA

0

1

2

3

4

5

6

7

8

9

40 50 60 70 80 90 100 110 120

cicli di clock

ri
ch

ie
st

e
p

re
se

n
ta

te

al
l'I

P
 s

la
ve

 e
 r

is
p

o
st

a
al

l'I
P

 m
as

te
r

REQUEST PHASE
RESPONSE PHASE

R
eq

u e
s t

s r
e c

e i
ve

d
by

sl
av

e
IP

a n
d

re
p l

y
to

m
a s

te
r I

P

Clock cycles

Complete burst read transaction

10

23

NI Slave

NI master

Master IP

Slave IP

Master IP

Slave IP

7

7

7

4

4

6

10

Example: MPEG4 decoder
Core graph representation with annotated
average communication requirements

NoC Floorplans

Application specific: centralized

Application specific: distributed
General purpose: mesh

Performance, area and power

Relative link utilization
(customNoC/meshNoC):
1.5, 1.55
Relative area
(meshNoC/customNoC):
1.52, 1.85
Relative power
(meshNoC/customNoC):
1.03, 1.22

Less latency and better
Scalability of custom NoCs

Outline

MPSoC design challenges
Hardware
Software

Introduction to MPARM
MPARM at work

Design flow and verification
T1

T2
Tn

Untimed functional sim.
dataflow graph
specification

Inputs:
•Executable specification with

explicit parallelism (e.g. task graph)
•Real-time (QoS), power

constraints / objective function

Graph nodes mapping
(computation, storage,

communication)
Transaction-level sim.

Compilation and configurationCycle-accurate sim.

N
O
C

N
O
C

Middleware Architecture
Applications

Application Libraries
Communication (MP), IO, Synch,

Domain specific computation

APIs

Kernel services
process, communication, power

management

System Calls

Device drivers
Network interface, Coprocessor
& Local Memory Management

HAL Calls

Hardware
Memory accesses Special instructions

Architecture of DD tools

Software optimizers (S2S)
parallelization, DTSE, Stat-Schedule

Specification and development
graphical environments, CASE tools

Executable generation
(cross) compiler, linker, assembler

Simulation, Debug, Profiling
mpsimulator, debugger, profiler

Source code

Source code

Binary code

T
ra

ce
s&

St
at

is
tic

s

M
P
A
R
M

Outline

MPSoC design challenges
Hardware
Software

Introduction to MPARM
MPARM at work

Architecture

SYSTEM INTERCONNECT

Core INTERRUPT
CONTROLLER

AMBA or STBus or Xpipes

Core Core Core

SHARED
MEM SEMAPHORESPRI MEM 1 PRI MEM 2 PRI MEM 3 PRI MEM 4

Simulation is cycle accurate
(~ 62-82 Kcycles/sec with 6 cores on a Pentium4 2.2 GHz)

Processor core

ARM7

Interrupt
Controller

Timer

I$,D$
MMU

UART

Local Bus

C++ Class (SWARM)

SystemC Module (wrapper)

external int

bus
master BUS/NoC

I- and D-cache are modelled
Hardware blocks for OS support: timers, IntCntrl, ..
ISS instantiated as a C++ class

Core wrapper
Synchronizes the ISS with the system

Breaks the instruction execution loop on a cycle
by-cycle basis
Checks and updates core boundary signals
Drives the bus interfaces

It is the only core-specific simulation support
block

Integration of new ISS in C++ is easy
More work for integrating C (e.g. simplescalar)

Simulation Accuracy

Request Grant 4-beat
Burst

Cycle accurate and bus signal accurate simulation model
Accuracy of core simulation depends on ISS

Communication Assist in MPARM

SystemC wrapper
SWARM bus

master

external intI/O, Int I/D cache

Core

DMA

Object table

BUS

bus
master

BUS

DMA engine programmed by writes to its address space
Direct support to global objects and their application-controlled transfer

Software Environment
Requires programming abstractions and run-time support
Porting of a parallel RTOS: RTEMS

Includes POSIX APIs
Multi-processor support
Multi-tasking support
Inter-processor

 synchronization and communication primitives

Hardware support for message passing:
Shared memory provides hardware communication channel
Processor-dedicated interrupt slaves

Simulation time for booting a 5 processors system: 1 minute

Analysis toolkit
Simulation control

Profiling activation/deactivation/options
Based on pseudo-instruction (swi)

Profiling support
In core (internal core events)
In bus master (on-chip communication)
New profiling capabilities can be easily
programmed in C++
Waveform tracking is available

Power modeling under way…

Outline

MPSoC design challenges
Hardware
Software

Introduction to MPARM
MPARM at work

Traffic Modeling
Traditionally used traffic models trade-off accuracy with complexity:

Stochastic traffic models
Analytical distributions
Easily parameterizable

Trace-based models
Higher accuracy
Does not consider dynamic traffic-dependent effects

 (e.g. inter-processor communication)
Functional traffic

Traffic directly generated by running applications
Requires OS support Complexity

Accuracy

Performance analysis
We assessed performance in presence of 3 different

communication patterns:
1. Mutually dependent tasks

2. Independent tasks

3. Pipelined tasks

Synchronization point
Execution flow

Exchange of dataInter-processor
communication

Arbitration Policies
Master #1 Master #2 Master #N

SLOT DURATION
TDMA

Master #1

Master #2

Master #4

Master #3 Master #1 Master #4Round robin

Slot reservation
Master #2 to N: Round Robin

Master #1

SLOT RESERVATION

Goal
performance investigation of the arbitration algorithms under
different traffic patterns across the bus

Mutually dependent tasks

Performance metric:
Execution time

A synchronization point
does exist

Slot reservation makes
up for the asymmetric
workload of processors

TDMA inefficiently
allocates bandwidth

RTEMS bootstrap on 5 processors

Independent Tasks

SHARED BUS

Proc.1 Proc.2 Proc.3

Private Mem.1 Private Mem.2 Private Mem.3

Performance metric:
average execution time

slo
t5

00
0-

I
slo

t5
00

0-
av

g
slo

tI8
00

0-
I

slo
t8

00
0-

av
g

slo
t1

20
00

-I
slo

t1
20

00
-a

vg
ro

un
dr

ob
in

td
m

a5
00

0
td

m
a8

00
0

td
m

a1
20

00

0

50000

100000

150000

200000

250000

300000

Execution Time
 (clock cycles)

 2 Processors
4 Processors
6 Processors
8 Processors

fast
performance
degradation

Best
performance

Pipelined Tasks

SHARED BUS

Matrix
multiplication

1.
Performance metric:

throughput
2.

TDMA is surprisingly
outperformed by

round-robin

Proc.1 Proc.2 Proc.N Output matrixFIFO QUEUE FIFO QUEUE

Matrix
generation Matrix

multiplication

TDMA Performance
TDMA poor performance depends on hw/sw mismatch

Producer
Creates queue in priv. mem.

Writes messages into queue

Reads request msg from shared

Data written to shared

Interrupt sent to consumer

Consumer

Request msg written to shared

Interrupt sent to producer

Reads data from shared

Bus access

Bus access

Bus access

Bus access

This interactive handshake mechanism is inefficiently
accommodated by a TDMA based arbitration policy

Bus access

Bus access

Bus access

Bus access

HW-SW Mismatch

RTEMS:
High level communication primitives

Application layer

Low level implementation

PERFORMANCE PENALTY!!!!!

Software architecture should match the underlying hardware platform
to preserve and maximize system performance

Design space exploration

Explore & compare different OCBs
Identify key differences and
performance bottlenecks
Case study

AMBA vs. STBUS

STbus – Shared Bus

STbus – Full Crossbar

STbus – Partial Crossbar

Comparison: bus traffic

STbus

0

10

20

30

40

50

60

70

%bus used (on all cycles) %bus used (on requested
cycles)

asm-matrixdep
asm-matrixind
os-matrixind
os-matrixdep

AMBA bus

0
5

10
15
20
25
30
35
40
45
50

%bus used (on all cycles) %bus used (on requested
cycles)

asm-matrixdep
asm-matrixind
os-matrixind
os-matrixdep

Communication support in OS
increases significantly bus traffic
(bus congestion)

Stbus achieves better bus efficiency

Comparison: bus latency
Latency for read accesses

STbus

0
5

10
15
20
25
30
35

Average
time for
read

Max
time for
read

Min time
for read

Average
wait for
read

Max
wait for
read

Min wait
for read

asm-matrixdep
asm-matrixind
os-matrixind
os-matrixdep

AMBA bus

0
5

10
15
20
25
30
35
40

Average
time for
read

Max
time for
read

Min time
for read

Average
wait for
read

Max
wait for
read

Min wait
for read

asm-matrixdep
asm-matrixind
os-matrixind
os-matrixdep

Max time and average
time for read have different
ratios with/without OS
(due to different incidence of bursts)

Stbus has lower latency

Comparison: performance of
elementary transactions

A v e r a g e t i m e f o r r e a d

0

5

10

15

20

asm-
matr ixdep

asm-matr ixind os-matr ixind os-matr ixdep

Stbus

AMBA bus

A v e r a g e t i m e f o r w r i t e

0

1

2

3

4

5

6

asm-matr ixdep asm-matr ixind os-matr ixind os-matr ixdep

Stbus

AMBA bus

Stbus is consistently faster than AMBA on all benchmarks

Analysis: Protocol differences

AMBA

STBUS

Design space exploration:
cache size & miss penalty

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

execution
time (cycles)

1 4
1k

8 1 4
4k

8 1 4
8k

8

memory latency and cache size

Non optimized (-O0) code

ST bus
AMBA BUS

• STBUS cuts execution times by 9 to 35% with respect to AMBA
• A 4kB cache can bring 4 to 26% speed-ups wrt 1KB cache
• Increasing memory wait states from 1 to 4 slows down execution times

from 35 to 104%

Design space exploration:
Code optimization strength

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

execution
time (cycles)

1 4
1k

8 1 4
4k

8 1 4
8k

8

memory latency and cache size

code optimization comparison (AMBA)

 -O0
 -O2

0

500000

1000000

1500000

2000000

2500000

3000000

execution
time (cycles)

1 4
1k

8 1 4
4k

8 1 4
8k

8

memory latency and cache size

code optimization comparison (STbus)

 -O0
 -O2

• In the STBus case, code optimization achieves 31 to 52% lower execution
times

Summary

Paradigm shift towards MPSoC
Designing MPSoCs

Huge design space
Communication is critical
Software-related effects are dominant

Hardware/software interface bottleneck

MPARM provides a complete
infrastructure for research in this area

Outlook
Simulation engine

TLM of communication links for speeding up simulation
Modeling GALS MPSoCs (first, multiple clocks)

Hardware platform
OCP+Advanced interconnect (NoC): Xpipes
Advanced memory system (scratchpad)
Support for DPM (shutdown, DVS, complete power
modeling)
New cores (PPC, StrongARM, LX, Reconfig)

Software environment
Rethink communication support in OS
Integrate code optimizers (performance & power)
Bridge the gap to higher level of abstraction (e.g. support
for dataflow programming)

	Analyzing the MPSoC Design Space: the MPARM environment
	A SoC Platform: Nexperia™ DVP
	MP-SoC DESIGN
	Interconnect delay problem
	Outline
	On-Chip communication: design objectives
	Communication architectures
	Approach to design space analysis
	Proposed NoC architectures
	XPIPES: Features
	Heterogeneous topology
	Soft macros
	Soft macros
	Link delay bottleneck
	Network interface
	NI Architecture
	Switch architecture
	Output port architecture
	Flow control
	Network throughput and latency
	Example: MPEG4 decoder
	NoC Floorplans
	Performance, area and power
	Outline
	Design flow and verification
	Middleware Architecture
	Architecture of DD tools
	Outline
	Architecture
	Processor core
	Core wrapper
	Simulation Accuracy
	Software Environment
	Analysis toolkit
	Outline
	Traffic Modeling
	Performance analysis
	Arbitration Policies
	Mutually dependent tasks
	Independent Tasks
	Pipelined Tasks
	TDMA Performance
	HW-SW Mismatch
	Design space exploration
	STbus – Shared Bus
	STbus – Full Crossbar
	STbus – Partial Crossbar
	Comparison: bus traffic
	Comparison: bus latency
	Comparison: performance of elementary transactions
	Analysis: Protocol differences
	Design space exploration: cache size & miss penalty
	Design space exploration: Code optimization strength
	Summary
	Outlook

