
1

 R. Ernst, TU Braunschweig 1

A compositional approach to embedded
system performance analysis

R. Ernst

TU Braunschweig

 R. Ernst, TU Braunschweig 5

Overview

• heterogeneous embedded architectures

• formal performance analysis – holistic and flow based

• a compositional approach to performance analysis

• example

• context aware analysis

• conclusion

2

 R. Ernst, TU Braunschweig 6

Embedded systems - trends

• Trend 1: higher system integration
– integration of complete programmable subsystems on a single

IC – Multiprocessor-Systems-on-Chip (MpSoC)

 R. Ernst, TU Braunschweig 7

Nexperia example: Viper Setop Box
External SDRAM

Interrupt controller

Enhanced JTAG

Universal async.
receiver/transmitter

(UART)

Universal serial bus

IC debug

Clocks

CPU debug

ISO UART

Reset

MIPS
(PR3940)

CPU

TriMedia
C-Bridge

Memory controller

Fast C-Bridge

TriMedia
(TM32)
CPU

MIPS bridge

IEEE 1394
link layer controller

High-performance
2D-rendering engine

MIPS C-Bridge

I²C

Exp. bus interface
unit PCI/XIO

CRC
DMA

Adv. image
composition
Processor

MPEG-2
video decoder

Video input
processor

Memory-based
scaler

MPEG
system proc.

C-bridge

Interrupt ctrl.

Audio I/O

Sony Philips
Digital I/O

Transport stream
DMA

General-purpose
I/O

Synchronous
serial interface

Fa
st

PI
bu

s

M
IP

S
PI

bu
s

M
em

.
M

gm
t.

IF
bu

s

Tr
iM

ed
i a

PI
 b

u s

D$

I$

D$

I$

3

 R. Ernst, TU Braunschweig 8

Embedded systems - trends - 2

• Trend 2: networked systems
ubiquitous computing, telecom, automotive, avionics,
space, ...

subsystem
integration

subsystem
integration

Image source:
Siemens

service
integration
service

integration

 R. Ernst, TU Braunschweig 9

Embedded architectures - trends

• system function integration
– reactive and transformative parts
– function IP, legacy code, new functions

• component and subsystem reuse (IP)
– increased design productivity and reduced development cost

• programmable platforms
– improved design productivity
– increased volume
– examples: network processors, multi-media platforms,

automotive platforms, game platforms

4

 R. Ernst, TU Braunschweig 10

Embedded architecture - challenges

• design specialization
– increased performance
– reduced power consumption
– lower cost and size

• design flexibility
– late changes, platforms, reuse

• HW and SW IP integration
– result of reuse

⇒ embedded HW architectures are heterogeneous

 R. Ernst, TU Braunschweig 11

ES architectures are heterogeneous

• different processing element types
– processors, weakly programmable coprocessors, IP

components

• different interconnection networks and communication
protocols

• different memory types

• different scheduling and synchronization strategies

M

CoP

M

M

PDSP

M

P

5

 R. Ernst, TU Braunschweig 12

Heterogeneous architecture: Viper Setop
Box

External SDRAM

Interrupt controller

Enhanced JTAG

Universal async.
receiver/transmitter

(UART)

Universal serial bus

IC debug

Clocks

CPU debug

ISO UART

Reset

MIPS
(PR3940)

CPU

TriMedia
C-Bridge

Memory controller

Fast C-Bridge

TriMedia
(TM32)
CPU

MIPS bridge

IEEE 1394
link layer controller

High-performance
2D-rendering engine

MIPS C-Bridge

I²C

Exp. bus interface
unit PCI/XIO

CRC
DMA

Adv. image
composition
Processor

MPEG-2
video decoder

Video input
processor

Memory-based
scaler

MPEG
system proc.

C-bridge

Interrupt ctrl.

Audio I/O

Sony Philips
Digital I/O

Transport stream
DMA

General-purpose
I/O

Synchronous
serial interface

Fa
st

PI
bu

s

M
IP

S
PI

bu
s

M
em

.
M

gm
t.

IF
bu

s

Tr
iM

ed
i a

PI
 b

u s

D$

I$

D$

I$

 R. Ernst, TU Braunschweig 13

Managing HW architecture complexity

• development of application programmer interfaces (API) to
hide complexity from application programmer and improve
portability

• specialized RTOS to control resource sharing and
interfaces

⇒ complex multi-level HW/SW architecture

6

 R. Ernst, TU Braunschweig 14

Software architecture example

Bus

core

RTOS

I/O Int Bus-
CTRL

timer
timer

drivers

RTOS-APIs

application

periphery

cache

mem
private

private

private

private

sh
ar

ed

hardware

software

architecture

application

• layered software architecture with HW dependent SW and API

⇒ embedded SW is heterogeneous

ce1

pe1

API

 R. Ernst, TU Braunschweig 15

Communication Centric Design
• communication network as a backbone for systems integration

• state of the art:
– off chip: busses w. different

protocols and performance levels
– on chip:

Proprietary or
standard buses with bridges
AMBA, Sonics, ...

– future:
multi-stage networks
on-chip as well
as off-chip (PCI Express)

CoPro

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

communication networkcommunication network

Application B

Application A

7

 R. Ernst, TU Braunschweig 16

Subsystem integration - example

M2IP2M3

M1

Com Netw

DSPIP1

HWCPU

M2

IP2M3

M1
DSP

IP1HW

CPU

Integration

subsystem 1

subsystem 2
P1

P3

P2

Sens

Sens

subsystem 2

subsystem 1

 R. Ernst, TU Braunschweig 17

Communication centric design - key challenges

• subsystem integration&verification

• design space exploration and optimization

8

 R. Ernst, TU Braunschweig 18

Integration tasks

• resource sharing
– several SW processes mapped to one processing element

⇒ task scheduling
– mapping several communications mapped to one

communication path
⇒ communication (bus) scheduling

– several process data mapped to one memory
⇒ memory assignment (space & time)

• interface synthesis
– synthesizing process communication to target system

communication

• integration verification

 R. Ernst, TU Braunschweig 19

Integration verification

• correct implementation of specified function
• HW/SW co-simulation, verification

• correct target architecture parameters
• processor and communication performance
• adherence to timing requirements
• no memory over/underflow
• no run-time dependent dead-locks

general
design
problem

challenge to
heterogeneous
system design

9

 R. Ernst, TU Braunschweig 20

Actuatorsystem busSensor

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

application

cache

MEM

RTOS

core

drivers

RTOS-APIs

application

I/Ointbus-
CTRL

timer
timer

Release
Airbag

Complex performance objectives and constraints

Crash

PctrlCPsens. PdetcC
C

Pact.C
C

Reaction time of airbag after crash ?

tcom
+ tdrv

=
tAPI

+ tprocess

+ tAPI

=
tdrv

+ tcom

+ tdrv

=
tAPI

+ tprocess

+ tAPI

=
tdrv

+ tcom

=
tsenstcrash + tcsens + tdetc + tfbus + tcact + tairbag+ tact+ + tctrl tact+ tairbag+

physical delay

tsens +tcrash +

physical delay tcom
+ tdrv

tAPI
+ tprocess

+ tAPI

tdrv
+ tcom

+ tdrv

tAPI
+ tprocess

+ tAPI

tdrv
+ tcom

cache

MEM

 R. Ernst, TU Braunschweig 21

Complex run-time interdependencies

M2IP2M3

M1

Com Netw

DSPIP1

HWCPUSens

• run-time dependencies of independent components via
communication

• influence on timing and power

10

 R. Ernst, TU Braunschweig 22

CPU1M1

communication networkcommunication network

min execution time
⇒ high bus load

max execution time
⇒ low bus load

P1

tbc1 twc1

Interdependency example

• complex non-functional interdependencies

• complex system corner cases

 R. Ernst, TU Braunschweig 23

CoPro

Heterogeneous resource sharing -
example

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

com. netw.com. netw.

static execution
order scheduling

static priority
schedulingFCFS scheduling

earliest deadline
first scheduling

TDMA scheduling

proprietary
(abstract info)

11

 R. Ernst, TU Braunschweig 24

Performance verification - state of the art

• current approach: target architecture co-simulation
• combines functional and performance validation
• reuse component validation pattern for system integration and

function test
• reuse application benchmarks for target architecture function

validation
• visualization of system execution
• extensive simulation run times to include many test cases

 R. Ernst, TU Braunschweig 25

Co-simulation limitations

• identification of system performance corner cases
– different from component performance corner cases
– target architecture behavior unknown to the application

function developer (cp. functional HW test)
⇒ test case definition and selection ?

• analysis of target architecture
– confusing variety of run-time interdependencies
– data dependent “transient” run-time effects
– mixed in co-simulation

⇒ limited support of design space exploration
⇒ debugging challenge

• inclusion of incomplete application specifications
⇒ additional performance models required

12

 R. Ernst, TU Braunschweig 26

Alternatives?

• conservative design
– install independency in resource sharing
– example: fixed execution time slots – TDMA

• formal performance analysis

 R. Ernst, TU Braunschweig 29

Formal performance analysis

• formal techniques known for individual components and
subsystems (RMS, static scheduling etc.)

• heterogeneity is problem

13

 R. Ernst, TU Braunschweig 30

Performance model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component &
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type

 R. Ernst, TU Braunschweig 31

System performance analysis approaches

• global approach
– analysis scope extension to several subsystems

• flow based hierachical approach
– global flow analysis combined with local scheduling analysis

14

 R. Ernst, TU Braunschweig 32

Analysis scope extension
• coherent analysis („holistic“ approach)

• example: Tindell 94, Pop/Eles (DATE 2000, DAC 2002, …):
TDMA + static priority – automotive applications

• problem: scalability

P2 P1

T

TTP bus
interface

P3 P4

D

TTP bus
interfacequeue

RTOSRTOS

TTP bus (TDMA)

static priority
process scheduling

static priority
queueing
T: Transmitter

process

 R. Ernst, TU Braunschweig 33

Hierarchical approach

• independently scheduled subsystems are coupled by data
flow

⇒ subsystems coupled by stream of data
⇒ interpreted as activating events

⇒ coupling corresponds to event propagation

SB 1

scheduling
SB 1

P2

P1

SB 2

scheduling
SB 2

P4

P3

15

 R. Ernst, TU Braunschweig 34

Event propagation and analysis principle

environment model

local analysis

derive output event model

map to input event model

until convergence or non-schedulability

 R. Ernst, TU Braunschweig 35

Flow based hierarchical approaches

• event model generalization for a set of scheduling strategies
– arrival and service curves Chakraborty/Thiele/Gries/Künzli …
– new analysis approaches needed, e.g. Baruah
– used for network processor design

• event stream model adaptation
– use abstract interface stream properties to couple local analysis
– used e.g. for automotive software

16

 R. Ernst, TU Braunschweig 36

Generalized event model
• incoming events stream is integrated over time intervals and

captured in arrival curves

• event consumption is captured in service curves

• 2 curves each for upper and lower bounds (interval)

• upper and lower bounds linearly approximated for analyis

 R. Ernst, TU Braunschweig 37

Load analysis with interval event model

• Load analyis: Addition propagation of computation and
load intervals - min/max algebra

• e.g. buffer size: difference between input load and
processed events HW and SW resources

resource bounds

input stream bounds

remaining resources processed packet streamssource: L. Thiele, ETH Zurich

L. Thiele, ETH Zurich

17

 R. Ernst, TU Braunschweig 38

Compositional Approach (Ernst et al.)

• observation: real-time analysis assumes similar event
models at input
– periodic event stream

– periodic event streams with jitter

– periodic event streams with burst

– sporadic events with minimum event separation

– sporadic events with bursts

• comparable event models appear at output

• volume of generated events is fixed or interval (data
dependent)

tptp
te1 te2 te3

te1 te2 te3tptp

tint

tmin

te1 te2 te3 ten ten+1

te1 te2

 R. Ernst, TU Braunschweig 39

RTA event model examples

• static execution order
– periodic → periodic w. jitter

• Jitter: fixed part (scheduling) + variable part (data
dependency)

– sporadic → sporadic w. jitter

• static priority
– periodic → periodic w. jitter and burst

– sporadic → sporadic w. jitter and burst

• time driven scheduling: TDMA, round robin
– adds jitter to any model

18

 R. Ernst, TU Braunschweig 40

Example: Static priority with arbitrary deadlines

• complex execution sequence - may create output bursts

• found in communication scheduling and multiprocessing

busy period

T1

T2

T2

T2 T2

P3

P1

P2

priority analysis solution e.g. by Lehoczky

 R. Ernst, TU Braunschweig 41

Few stream models can be derived

• nact (t) no. of activating events in time t

• burst can be simplified and modeled as jitter greater period
with min. event distance

19

 R. Ernst, TU Braunschweig 42

Event stream model adaptation

• composition requires model adaptation

• adaptation for compatible input and output event models
– simple mathematical transformation to adapt analysis

Event Model InterFace (EMIF)
– no added function, no run-time effect

• adaptation for non-compatible input and output event models
– insert Event Adaptation Function (EAF) to transform models
– EAF describes interface buffer function

⇒ shows that buffer is required to couple subsystems

 R. Ernst, TU Braunschweig 43

periodic with jitter
J J J

TT
periodic with burst

Tb

t

b

t

periodic
TT

sporadic
x≥≥≥≥t x≥≥≥≥t x≥≥≥≥t

Event Model Interface Classification

jitter = 0burst length (b) = 1

t = T - J

t = T

t = t

lossless EMIF EMIF to less expressive model

T=T, t=T, b=1 T=T, J=0

20

 R. Ernst, TU Braunschweig 44

Using EMIFs and EAFs

Sporadic

Periodic with Burst Periodic with Jitter

Periodic
EAF buffer
required

upper bound only

 R. Ernst, TU Braunschweig 45

Example revisited

com.
netw.

subsystem 2

subsystem 1

Distortion

non-functional dependency cycle

21

 R. Ernst, TU Braunschweig 46

EMIF
w/ EAF

M2DSPIP2M3IP1

HWM1CPUSens

sporadic

EMIF EMIF

sporadic

EMIF

EMIF

burst

EMIF

sporadic

C1

C3

periodic periodic

com.
netw.

burst-based
netw

ork analysis

C2

 R. Ernst, TU Braunschweig 47

CPU

sporadic
w/ jitter

periodic
w/ burst

P3preemptionP1

EMIF
w/ EAF

NoCC1 interference C2

HWSens

EMIF

simple
periodic

simple
periodic

activation
by RTOS

com.
network

Dependency cycle

resynchronization
reduces jitter

22

 R. Ernst, TU Braunschweig 48

simple
periodic

EMIF
w/ EAF

EMIF
w/ EAF

M2DSPIP2M3IP1

HW
M1CPU

Sens

simple
sporadic sporadic

w/ jitter EMIF

simple
sporadic

C1

C3

periodic periodic

NoC C2

periodic
w/ burst

periodic
w/ burst

periodic
w/ jitter

fmax=1,7kHz, s=8kB

f=140kHz, s=1kB

f=20kHz

s=3kB

8kB→→→→ 32×××× (256 + 6) byte

1kB→→→→ 1×××× (1024 + 6) byte

3kB→→→→ 24×××× (128 + 6) byte

• t (P1)= 250 µµµµs

• t (P3)= 10 µµµµs

com.
network

 R. Ernst, TU Braunschweig 49

Results

39

23

 R. Ernst, TU Braunschweig 50

Application model compatibility

• stream model represents exact data volume
– keeps causality for application model activation
– required for „AND“ activation, e.g. data flow graphs

otherwise infinite buffers or starvation

– not needed for process systems with „OR“ activation or time
driven activation

P1 P2

1
1 1

1
1

1

CPU1 CPU2

P1 P2

2

1 1 1
1

CPU1 CPU2

P3
21

 R. Ernst, TU Braunschweig 51

System contexts

• another stream property – partial event order is kept

• application: tagged token (SPI model) to take system
contexts into account

• example set top box

24

 R. Ernst, TU Braunschweig 52

Context exploitation: Set top box

system bus

decryption
unit

RF

hard-disk

 R. Ernst, TU Braunschweig 53

Context exploitation: Set top box

decryption
unit

RF

hard-disk

mux MPEG-2

IP-traffic

• scenario 1: record video + watch movie + download file via
IP

25

 R. Ernst, TU Braunschweig 54

MPEG stream modeling

• stream properties
– I, B, P frame types of different data volume
– encoding with the following constraint on frame types

• stream coding
– set of constraints on the sequence of tagged tokens

Min 2 out of
12

I
Min 2 out of 12P
Min 6 out of 12B
Max 4 out of 12I
Max 4 out of 12P
Max 8 out of 12B

 R. Ernst, TU Braunschweig 55

Event stream contexts

• intra event stream context
– data volume and execution time depend on frame types and

frame sequence

• inter event stream context
– bus load and response times depend on relative phase of

streams

• inter + intra event stream contexts
– merged streams on bus have variable order

• solutions available for cyclo static streams (Chen/Mok) and
inter event stream contexts only (Tindell), extended to
constrained sequences and combinations

26

 R. Ernst, TU Braunschweig 56

Response time impact

• response times for static priority bus arbitration

III I I I I I

w/o context t respIP = 920

PI I I I P
tw context t respIP = 690

t

118

mux
IP

video streams are multiplexed
and have higher priority than
IP

 R. Ernst, TU Braunschweig 57

Analysis improvement due to intra event stream
contexts

context w/ot
context wt

max resp,

max resp,

27

 R. Ernst, TU Braunschweig 58

Set top box scenario 2

decryption
unit

RF

hard-disk

• scenario 2: decript video + download file via IP

Encrypted MPEG-2

Decrypted MPEG-2

IP-traffic

 R. Ernst, TU Braunschweig 59

Response time impact

140

I I

t

transaction period = 100

I I
50

I I

170 t

I I

100

enc enc

enc enc

dec dec

dec dec

dec
IP

enc

• enc and dec streams are coupled by decryption unit
execution time

28

 R. Ernst, TU Braunschweig 60

Analysis improvement due to inter event stream
contexts

context w/ot
context wt

max resp,

max resp,

 R. Ernst, TU Braunschweig 61

Analysis improvement due to both intra and inter event stream contexts

context w/ot
context wt

max resp,

max resp,

29

 R. Ernst, TU Braunschweig 62

Acknowledgement

• The following persons made major contributions to this
work

– Jörn Braam
– J. Bhavani
– Rafik Henia
– Marek Jersak
– Razvan Racu
– Kai Richter

 R. Ernst, TU Braunschweig 63

Conclusion

• systems integration is key ES design problem

• performance verification is key integration problem

• many hidden performance problems not reflected in system
function

• performance verification currently primarily based on
simulation – risky and time consuming

• presented compositional analysis based on abstract event
flow models

• event flow models enable analysis of complex situations
with feedback and contexts

• work applied in several ongoing industry cooperations
(SpeAC, FlexFilm, automotive SW, …)

30

 R. Ernst, TU Braunschweig 64

Literature

• see: www.spi-project.org

