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A compositional approach to embedded 
system performance analysis

R. Ernst

TU Braunschweig
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Overview 

• heterogeneous embedded architectures

• formal performance analysis – holistic and flow based

• a compositional approach to performance analysis

• example

• context aware analysis

• conclusion
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Embedded systems - trends

• Trend 1: higher system integration
– integration of complete programmable subsystems on a single 

IC – Multiprocessor-Systems-on-Chip (MpSoC)
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Embedded systems - trends - 2

• Trend 2: networked systems
ubiquitous computing, telecom, automotive, avionics, 
space, ...

subsystem 
integration

subsystem 
integration

Image source: 
Siemens

service 
integration
service 

integration
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Embedded architectures - trends

• system function integration 
– reactive and transformative parts
– function IP, legacy code, new functions

• component and subsystem reuse (IP)
– increased design productivity and reduced development cost 

• programmable platforms 
– improved design productivity 
– increased volume
– examples: network processors, multi-media platforms, 

automotive platforms, game platforms 
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Embedded architecture - challenges

• design specialization 
– increased performance
– reduced power consumption
– lower cost and size

• design flexibility
– late changes, platforms, reuse

• HW and SW IP integration
– result of reuse

⇒ embedded HW architectures are heterogeneous
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ES architectures are heterogeneous

• different processing element types
– processors, weakly programmable coprocessors, IP

components 

• different interconnection networks and communication 
protocols

• different memory types

• different scheduling and synchronization strategies

M

CoP

M

M

PDSP

M

P



5

 R. Ernst, TU Braunschweig 12

Heterogeneous architecture: Viper Setop 
Box
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Managing HW architecture complexity 

• development of application programmer interfaces (API) to 
hide complexity from application programmer and improve 
portability

• specialized RTOS to control resource sharing and 
interfaces

⇒ complex multi-level HW/SW architecture
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Software architecture example
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• layered software architecture with HW dependent SW and API

⇒ embedded SW is heterogeneous
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Communication Centric Design
• communication network as a backbone for systems integration

• state of the art: 
– off chip: busses w. different 

protocols and performance levels
– on chip: 

Proprietary or 
standard buses with bridges
AMBA, Sonics, ...

– future: 
multi-stage networks 
on-chip as well 
as off-chip (PCI Express)
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Subsystem integration - example
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Communication centric design - key challenges

• subsystem integration&verification

• design space exploration and optimization



8

 R. Ernst, TU Braunschweig 18

Integration tasks

• resource sharing
– several SW processes mapped to one processing element

⇒ task scheduling
– mapping several communications mapped to one 

communication path
⇒ communication (bus) scheduling

– several process data mapped to one memory 
⇒ memory assignment (space & time) 

• interface synthesis
– synthesizing process communication to target system 

communication

• integration verification  
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Integration verification

• correct implementation of specified function
• HW/SW co-simulation, verification

• correct target architecture parameters
• processor and communication performance
• adherence to timing requirements
• no memory over/underflow
• no run-time dependent dead-locks

general
design 
problem 

challenge to  
heterogeneous 
system design
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Complex run-time interdependencies

M2IP2M3

M1

Com Netw

DSPIP1

HWCPUSens

• run-time dependencies of independent components via 
communication

• influence on timing and power
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CPU1M1

communication networkcommunication network

min execution time
⇒ high bus load

max execution time
⇒ low bus load

P1

tbc1 twc1

Interdependency example

• complex non-functional interdependencies

• complex system corner cases
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CoPro

Heterogeneous resource sharing -
example

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

com. netw.com. netw.

static execution
order scheduling

static priority
schedulingFCFS scheduling

earliest deadline
first scheduling

TDMA scheduling

proprietary
(abstract info)



11

 R. Ernst, TU Braunschweig 24

Performance verification - state of the art

• current approach: target architecture co-simulation
• combines functional and performance validation
• reuse component validation pattern for system integration and 

function test
• reuse application benchmarks for target architecture function 

validation
• visualization of system execution
• extensive simulation run times to include many test cases
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Co-simulation limitations

• identification of system performance corner cases
– different from component performance corner cases
– target architecture behavior unknown to the application 

function developer (cp. functional HW test)
⇒ test case definition and selection ?

• analysis of target architecture 
– confusing variety of run-time interdependencies
– data dependent “transient” run-time effects
– mixed in co-simulation

⇒ limited support of design space exploration
⇒ debugging challenge 

• inclusion of incomplete application specifications 
⇒ additional performance models required 
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Alternatives?

• conservative design
– install independency in resource sharing
– example: fixed execution time slots – TDMA

• formal performance analysis
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Formal performance analysis

• formal techniques known for individual components and 
subsystems (RMS, static scheduling etc.)

• heterogeneity is problem
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Performance model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component & 
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type

 R. Ernst, TU Braunschweig 31

System performance analysis approaches

• global approach
– analysis scope extension to several subsystems

• flow based hierachical approach
– global flow analysis combined with local scheduling analysis
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Analysis scope extension
• coherent analysis („holistic“ approach) 

• example: Tindell 94, Pop/Eles (DATE 2000, DAC 2002, …):
TDMA + static priority – automotive applications

• problem: scalability

P2 P1

T

TTP bus 
interface

P3 P4

D

TTP bus 
interfacequeue

RTOSRTOS

TTP bus (TDMA)

static priority
process scheduling

static priority
queueing
T: Transmitter 
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Hierarchical approach

• independently scheduled subsystems are coupled by data
flow

⇒ subsystems coupled by stream of data
⇒ interpreted as activating events

⇒ coupling corresponds to event propagation

SB 1

scheduling 
SB 1            

P2

P1

SB 2 

scheduling 
SB 2

P4

P3
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Event propagation and analysis principle

environment model 

local analysis

derive output event model 

map to input event model 

until convergence or non-schedulability
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Flow based hierarchical approaches

• event model generalization for a set of scheduling strategies
– arrival and service curves Chakraborty/Thiele/Gries/Künzli …
– new analysis approaches needed, e.g. Baruah
– used for network processor design

• event stream model adaptation
– use abstract interface stream properties to couple local analysis
– used e.g. for automotive software
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Generalized event model
• incoming events stream is integrated over time intervals and 

captured in arrival curves

• event consumption is captured in service curves 

• 2 curves each for upper and lower bounds (interval)

• upper and lower bounds linearly approximated  for analyis
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Load analysis with interval event model

• Load analyis: Addition propagation of computation and 
load intervals - min/max algebra 

• e.g. buffer size: difference between input load and 
processed events HW and SW resources

resource bounds

input stream bounds

remaining resources processed packet streamssource: L. Thiele, ETH Zurich

L. Thiele, ETH Zurich
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Compositional Approach (Ernst et al.)

• observation: real-time analysis assumes similar event 
models at input
– periodic event stream

– periodic event streams with jitter

– periodic event streams with burst

– sporadic events with minimum event separation

– sporadic events with bursts

• comparable event models appear at output

• volume of generated events is fixed or interval (data 
dependent)

tptp
te1 te2 te3

te1 te2 te3tptp

tint

tmin

te1 te2 te3 ten ten+1

te1 te2
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RTA event model examples

• static execution order
– periodic → periodic w. jitter

• Jitter: fixed part (scheduling) + variable part (data 
dependency)

– sporadic → sporadic w. jitter

• static priority  
– periodic → periodic w. jitter and burst

– sporadic → sporadic w. jitter and burst

• time driven scheduling: TDMA, round robin
– adds jitter to any model
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Example: Static priority with arbitrary deadlines

• complex execution sequence - may create output bursts

• found in communication scheduling and multiprocessing

busy period

T1

T2

T2

T2 T2

P3

P1

P2

priority analysis solution e.g. by Lehoczky
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Few stream models can be derived

• nact (t) no. of activating events in time t

• burst can be simplified and modeled as jitter greater period 
with min. event distance  
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Event stream model adaptation

• composition requires model adaptation

• adaptation for compatible input and output event models
– simple mathematical transformation to adapt analysis

Event Model InterFace (EMIF)
– no added function, no run-time effect

• adaptation for non-compatible input and output event models
– insert Event Adaptation Function (EAF) to transform models
– EAF describes interface buffer function 

⇒ shows that buffer is required to couple subsystems
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Using EMIFs and EAFs

Sporadic

Periodic with Burst Periodic with Jitter

Periodic
EAF buffer
required

upper bound only
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Example revisited

com.
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subsystem 2

subsystem 1

Distortion

non-functional dependency cycle
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CPU

sporadic
w/ jitter

periodic
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simple
periodic

EMIF
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EMIF    
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sporadic sporadic

w/ jitter EMIF
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fmax=1,7kHz, s=8kB

f=140kHz, s=1kB

f=20kHz

s=3kB

8kB→→→→ 32×××× ( 256 + 6 ) byte

1kB→→→→ 1×××× ( 1024 + 6 ) byte

3kB→→→→ 24×××× ( 128 + 6 ) byte

• t (P1)= 250 µµµµs 

• t (P3)= 10 µµµµs

com.
network
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Results

39
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Application model compatibility

• stream model represents exact data volume 
– keeps causality for application model activation
– required for „AND“ activation, e.g. data flow graphs

otherwise infinite buffers or starvation

– not needed for process systems with „OR“ activation or time 
driven activation

P1 P2

1
1 1

1
1

1

CPU1 CPU2

P1 P2

2

1 1 1
1

CPU1 CPU2

P3
21
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System contexts

• another stream property – partial event order is kept

• application: tagged token (SPI model) to take system 
contexts into account

• example set top box
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Context exploitation: Set top box

system bus

decryption
unit

RF

hard-disk
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Context exploitation: Set top box

decryption
unit

RF

hard-disk

mux MPEG-2

IP-traffic

• scenario 1: record video + watch movie + download file via 
IP
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MPEG stream modeling

• stream properties
– I, B, P frame types of different data volume
– encoding with the following constraint on frame types

• stream coding
– set of constraints on the sequence of tagged tokens

Min 2 out of 
12

I
Min 2 out of 12P
Min 6 out of 12B
Max 4 out of 12I
Max 4 out of 12P
Max 8 out of 12B
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Event stream contexts

• intra event stream context 
– data volume and execution time depend on frame types and 

frame sequence 

• inter event stream context
– bus load and response times depend on relative phase of 

streams 

• inter + intra event stream contexts
– merged streams on bus have variable order

• solutions available for cyclo static streams (Chen/Mok) and 
inter event stream contexts only (Tindell), extended to 
constrained sequences and combinations
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Response time impact

• response times for static priority bus arbitration

III I I I I I

w/o context t respIP = 920

PI I I I P
tw context t respIP = 690

t

118

mux
IP

video streams are multiplexed 
and have higher priority than 
IP
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Analysis improvement due to intra event stream
contexts

context  w/ot
context  wt

max resp,

max resp,
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Set top box scenario 2

decryption
unit

RF

hard-disk

• scenario 2: decript video + download file via IP

Encrypted MPEG-2

Decrypted MPEG-2

IP-traffic
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Response time impact

140

I I

t

transaction period = 100

I I
50

I I

170 t

I I

100

enc enc

enc enc

dec dec

dec dec

dec
IP

enc

• enc and dec streams are coupled by decryption unit 
execution time
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Analysis improvement due to inter event stream
contexts

context  w/ot
context  wt

max resp,

max resp,
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Analysis improvement due to both intra and inter event stream contexts

context  w/ot
context  wt

max resp,

max resp,
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Conclusion

• systems integration is key ES design problem

• performance verification is key integration problem

• many hidden performance problems not reflected in system 
function

• performance verification currently primarily based on 
simulation – risky and time consuming

• presented compositional analysis based on abstract event
flow models

• event flow models enable analysis of complex situations 
with feedback and contexts 

• work applied in several ongoing industry cooperations 
(SpeAC, FlexFilm, automotive SW, …) 
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