
Center for Embedded Computer Systems
University of California, Irvine and San Diego

http://www.cecs.uci.edu/~spark

SPARK: A Parallelizing
High-Level Synthesis Framework

Supported by Semiconductor Research Corporation & Intel Inc

Sumit Gupta

Rajesh Gupta, Nikil Dutt, Alex Nicolau

2
Copyright Sumit Gupta 2003

System Level SynthesisSystem Level Synthesis

System
Level
Model

Task
Analysis

HW/SW
Partitioning

ASIC

Processor
Core

Memory

FPGA

I/O

Hardware
Behavioral
Description

Software
Behavioral
Description

Software
Compiler

High
Level

Synthesis

3
Copyright Sumit Gupta 2003

High Level SynthesisHigh Level Synthesis

M e m o r y

ALUC
on

tr
ol

Data path

d = e - f g = h + i

If Node
T Fc

x = a + b
c = a < b

j = d x g
l = e + x

x = a + b;
c = a < b;
if (c) then
d = e – f;

else
g = h + i;

j = d x g;
l = e + x;

Transform behavioral descriptions to RTL/gate level

From C to CDFG to Architecture

4
Copyright Sumit Gupta 2003

High Level SynthesisHigh Level Synthesis

M e m o r y

ALUC
on

tr
ol

Data path

d = e - f g = h + i

If Node
T Fc

x = a + b
c = a < b

j = d x g
l = e + x

x = a + b;
c = a < b;
if (c) then
d = e – f;

else
g = h + i;

j = d x g;
l = e + x;

Transform behavioral descriptions to RTL/gate level

From C to CDFG to Architecture

Problem # 1Problem # 1 :: Poor quality of HLS results beyond Poor quality of HLS results beyond
straightstraight--line behavioral descriptionsline behavioral descriptions
Poor/No controllability of the HLSPoor/No controllability of the HLS
resultsresults

Problem # 2Problem # 2 ::

5
Copyright Sumit Gupta 2003

OutlineOutline
nn Motivation and Background Motivation and Background
nn Our Approach to Our Approach to ParallelizingParallelizing HighHigh--Level SynthesisLevel Synthesis
nn Code Transformations Techniques for PHLSCode Transformations Techniques for PHLS

nn Parallelizing Transformations Parallelizing Transformations
nn Dynamic TransformationsDynamic Transformations

nn The PHLS Framework and Experimental ResultsThe PHLS Framework and Experimental Results
nn Multimedia and Image Processing ApplicationsMultimedia and Image Processing Applications
nn Case Study: Intel Instruction Length DecoderCase Study: Intel Instruction Length Decoder

nn Conclusions and Future WorkConclusions and Future Work

6
Copyright Sumit Gupta 2003

HighHigh--level Synthesislevel Synthesis
nn WellWell--researched area: from early 1980’sresearched area: from early 1980’s

nn Renewed interest due to new system level design methodologies Renewed interest due to new system level design methodologies
nn Large number of synthesis optimizations have been proposed Large number of synthesis optimizations have been proposed

nn Either Either operation leveloperation level: algebraic transformations on DSP codes: algebraic transformations on DSP codes
nn or or logic levellogic level: Don’t Care based control optimizations: Don’t Care based control optimizations
nn In contrast, compiler transformations operate at both operation In contrast, compiler transformations operate at both operation level level

(fine(fine--grain) and source level (coarsegrain) and source level (coarse--grain) grain)
nn Parallelizing Compiler TransformationsParallelizing Compiler Transformations

nn Different optimization objectives and cost models than HLSDifferent optimization objectives and cost models than HLS
ØØOur aimOur aim: Develop Synthesis and Parallelizing Compiler : Develop Synthesis and Parallelizing Compiler

Transformations that are “useful” for HLS Transformations that are “useful” for HLS
nn Beyond scheduling results: in Beyond scheduling results: in Circuit Area and DelayCircuit Area and Delay
nn For large designs with For large designs with complex control flowcomplex control flow (nested (nested

conditionals/loops)conditionals/loops)

7
Copyright Sumit Gupta 2003

Our Approach: Our Approach: ParallelizingParallelizing HLS (PHLS)HLS (PHLS)

C Input VHDL
Output

Original
CDFG

Optimized
CDFG

Scheduling
& Binding

Source-Level Compiler
Transformations

Scheduling Compiler &
Dynamic Transformations

nn Optimizing Compiler and Parallelizing Compiler transformations Optimizing Compiler and Parallelizing Compiler transformations
applied at applied at SourceSource--levellevel (Pre(Pre--synthesis) and during synthesis) and during SchedulingScheduling
nn SourceSource--level code refinement using level code refinement using PrePre--synthesissynthesis transformationstransformations
nn Code Restructuring by Code Restructuring by SpeculativeSpeculative Code MotionsCode Motions
nn Operation Operation replicationreplication to improve concurrencyto improve concurrency
nn DynamicDynamic transformations: transformations: exploit new opportunities during exploit new opportunities during

schedulingscheduling

8
Copyright Sumit Gupta 2003

PHLS Transformations PHLS Transformations
Organized into Four GroupsOrganized into Four Groups

1.1. PrePre--synthesissynthesis: Loop: Loop--invariant code motions, Loop invariant code motions, Loop
unrolling, CSEunrolling, CSE

2.2. SchedulingScheduling: Speculative Code Motions, Multi: Speculative Code Motions, Multi--
cycling, Operation Chaining, Loop Pipeliningcycling, Operation Chaining, Loop Pipelining

3.3. DynamicDynamic: Transformations applied dynamically : Transformations applied dynamically
during scheduling: Dynamic CSE, Dynamic Copy during scheduling: Dynamic CSE, Dynamic Copy
Propagation, Dynamic Branch BalancingPropagation, Dynamic Branch Balancing

4.4. Basic Compiler TransformationsBasic Compiler Transformations: Copy : Copy
Propagation, Dead Code EliminationPropagation, Dead Code Elimination

9
Copyright Sumit Gupta 2003

Speculative Code MotionsSpeculative Code Motions

+

+
If Node

T F
Reverse

Speculation

Conditional
Speculation

Speculation

Across Hierarchical
Blocks

_

a

b

c

Operation Movement to reduce impact of
Programming Style on Quality of HLS Results

Early Condition
Execution

Evaluates conditions
As soon as possible

10
Copyright Sumit Gupta 2003

Dynamic TransformationsDynamic Transformations
nn Called Called “dynamic”“dynamic” since they are applied during since they are applied during

scheduling (versus a pass before/after scheduling)scheduling (versus a pass before/after scheduling)
nn Dynamic Branch BalancingDynamic Branch Balancing
nn Increase the scope of code motionsIncrease the scope of code motions
nn Reduce impact of programming style on HLS resultsReduce impact of programming style on HLS results

nn Dynamic CSE and Dynamic Copy PropagationDynamic CSE and Dynamic Copy Propagation
nn Exploit the Operation movement and duplication due Exploit the Operation movement and duplication due

to speculative code motionsto speculative code motions
nn Create new opportunities to apply these transformations Create new opportunities to apply these transformations

nn Reduce the number of operations Reduce the number of operations

11
Copyright Sumit Gupta 2003

Dynamic Branch BalancingDynamic Branch Balancing

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+ a

+ b

_ c

_ d
S0

S1

S2

S3

++Resource Allocation

Original Design

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

Scheduled Design

Unbalanced
Conditional

Longest PathLongest Path

12
Copyright Sumit Gupta 2003

Insert New Scheduling Step in Shorter BranchInsert New Scheduling Step in Shorter Branch

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+ a

+ b

_ c

_ d
S0

S1

S2

S3

++Resource Allocation

Original Design Scheduled Design

13
Copyright Sumit Gupta 2003

Insert New Scheduling Step in Shorter BranchInsert New Scheduling Step in Shorter Branch

If Node
T F

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+ a

+ b

_ c

_ d
S0

S1

S2

S3

++Resource Allocation

e_ _e

Original Design Scheduled Design

Dynamic Branch Balancing inserts new scheduling stepsDynamic Branch Balancing inserts new scheduling steps
nn Enables Conditional SpeculationEnables Conditional Speculation
nn Leads to further code compactionLeads to further code compaction

14
Copyright Sumit Gupta 2003

Dynamic CSEDynamic CSE: Going beyond Traditional CSE: Going beyond Traditional CSE

a = b + c;
cd = b < c;
if (cd)

d = b + c;
else

e = g + h;

C Description

BB 2 BB 3

BB 1

d = b + c

BB 4

a = b + c

e = g + h

HTG Representation

If Node
T F

BB 0

BB 2 BB 3

BB 1

d = a

BB 4

a = b + c

e = g + h

After Traditional CSE

If Node
T F

BB 0

15
Copyright Sumit Gupta 2003

a = b + c;
cd = b < c;
if (cd)

d = b + c;
else

e = g + h;

C Description

BB 2 BB 3

BB 1

d = b + c

BB 4

a = b + c

e = g + h

HTG Representation

If Node
T F

BB 0

BB 2 BB 3

BB 1

d = a

BB 4

a = b + c

e = g + h

After Traditional CSE

If Node
T F

BB 0

nn We use notion of We use notion of DominanceDominance of Basic Blocksof Basic Blocks
nn Basic block Basic block BBiBBi dominates dominates BBjBBj if all control paths from if all control paths from

the the initialinitial basic block of the design graph leading to basic block of the design graph leading to
BBjBBj goes through goes through BBiBBi

nn We can eliminate an operation We can eliminate an operation opjopj in in BBjBBj using common using common
expression in expression in opiopi if if BBiBBi dominates dominates BBjBBj

Dynamic CSEDynamic CSE: Going beyond Traditional CSE: Going beyond Traditional CSE

16
Copyright Sumit Gupta 2003

New Opportunities for “New Opportunities for “DynamicDynamic” CSE” CSE
Due to Code MotionsDue to Code Motions

BB 2 BB 3

BB 1

a = b + c

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

Scheduler
decides to
Speculate

BB 2 BB 3

BB 1

a = dcse

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

dcse = b + c BB 0BB 0

CSE CSE not possiblenot possible since BB2 since BB2
does not dominate BB6does not dominate BB6

CSE CSE possiblepossible now since now since
BB0 does not dominate BB6BB0 does not dominate BB6

17
Copyright Sumit Gupta 2003

BB 2 BB 3

BB 1

a = b + c

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

BB 2 BB 3

BB 1

a = dcse

BB 6 BB 7

BB 5

d = dcse

BB 4

BB 8

dcse = b + c BB 0BB 0Scheduler
decides to
Speculate

New Opportunities for “New Opportunities for “DynamicDynamic” CSE” CSE
Due to Code MotionsDue to Code Motions

CSE CSE not possiblenot possible since BB2 since BB2
does not dominate BB6does not dominate BB6

CSE CSE possiblepossible now since now since
BB0 does not dominate BB6BB0 does not dominate BB6

If scheduler moves or duplicates an operation op, apply CSE on
remaining operations using op

If scheduler moves or duplicates an operation If scheduler moves or duplicates an operation opop, apply CSE on , apply CSE on
remaining operations using remaining operations using opop

18
Copyright Sumit Gupta 2003

Condition Speculation & Dynamic CSECondition Speculation & Dynamic CSE

BB 1 BB 2

BB 0

BB 5 BB 6

BB 4

a = b + c

BB 3

BB 7

d = b + c

BB 1 BB 2

BB 0

BB 5 BB 6

BB 4

a = a'

BB 3

BB 7

a' = b + c a' = b + c

d = b + c BB 8BB 8

Scheduler
decides to

Conditionally
Speculate

19
Copyright Sumit Gupta 2003

Condition Speculation & Dynamic CSECondition Speculation & Dynamic CSE

BB 1 BB 2

BB 0

BB 5 BB 6

BB 4

a = b + c

BB 3

BB 7

d = b + c

BB 1 BB 2

BB 0

BB 5 BB 6

BB 4

a = a'

BB 3

BB 7

a' = b + c a' = b + c

d = a'BB 8 BB 8

Scheduler
decides to

Conditionally
Speculate

20
Copyright Sumit Gupta 2003

Condition Speculation & Dynamic CSECondition Speculation & Dynamic CSE

BB 1 BB 2

BB 0

BB 5 BB 6

BB 4

a = b + c

BB 3

BB 7

d = b + c

BB 1 BB 2

BB 0

BB 5 BB 6

BB 4

a = a'

BB 3

BB 7

a' = b + c a' = b + c

d = a'BB 8 BB 8

Scheduler
decides to

Conditionally
Speculate

nn Use the notion of dominance Use the notion of dominance
by groups of basic blocksby groups of basic blocks
n All Control Paths leading up

to BB8 come from either
BB1 or BB2: =>=> BB1 and BB1 and
BB2 BB2 together dominatetogether dominate BB8BB8

21
Copyright Sumit Gupta 2003

Loop Shifting: An Incremental Loop Loop Shifting: An Incremental Loop
Pipelining TechniquePipelining Technique

BB 0

b +
_ d

Loop
Exit

Loop
Node

BB 3

BB 2

BB 1

BB 4

BB 0

b +
_ d

Loop
Exit

Loop
Node

BB 3

BB 2

BB 1

BB 4

a + c_

a + c_

LoopLoop
ShiftingShifting

a + c_

22
Copyright Sumit Gupta 2003

Loop Shifting: An Incremental Loop Loop Shifting: An Incremental Loop
Pipelining TechniquePipelining Technique

BB 0

a +

b

c_

+
_ d

Loop
Exit

Loop
Node

BB 3

BB 2

BB 1

BB 4

BB 0

b +
_ d

Loop
Exit

Loop
Node

BB 3

BB 2

BB 1

BB 4

a +

c_

a + c_

LoopLoop
ShiftingShifting

CompacCompac
--tiontion

23
Copyright Sumit Gupta 2003

SPARKSPARK
High Level High Level
Synthesis Synthesis

FrameworkFramework

24
Copyright Sumit Gupta 2003

SPARK Parallelizing HLS FrameworkSPARK Parallelizing HLS Framework
nn C input and C input and SynthesizableSynthesizable RTL VHDL outputRTL VHDL output
nn ToolTool--box box of Transformations and Heuristicsof Transformations and Heuristics

nn Each of these can be developed independently of the otherEach of these can be developed independently of the other
nn Script based Script based control over transformations & heuristicscontrol over transformations & heuristics
nn Hierarchical Intermediate Representation (Hierarchical Intermediate Representation (HTGsHTGs))

nn Retains structural information about design (conditional blocks,Retains structural information about design (conditional blocks,
loops)loops)

nn Enables efficient and structured application of transformationsEnables efficient and structured application of transformations
nn Complete HLS tool:Complete HLS tool: Does Binding, Control Synthesis and Does Binding, Control Synthesis and

Backend VHDL generationBackend VHDL generation
nn Interconnect Minimizing Resource BindingInterconnect Minimizing Resource Binding

nn Enables Enables Graphical VisualizationGraphical Visualization of Design description of Design description
and intermediate resultsand intermediate results

nn 100,000+ lines of C++ code100,000+ lines of C++ code

25
Copyright Sumit Gupta 2003

Synthesizable CSynthesizable C
nn ANSIANSI--C front end from Edison Design Group (EDG)C front end from Edison Design Group (EDG)
nn Features of C not supported for synthesisFeatures of C not supported for synthesis

nn PointersPointers
nn However, Arrays and passing by reference However, Arrays and passing by reference areare supportedsupported

nn Recursive Function CallsRecursive Function Calls
nn GotosGotos

nn Features for which support has not been implementedFeatures for which support has not been implemented
nn MultiMulti--dimensional arraysdimensional arrays
nn StructsStructs
nn Continue, BreaksContinue, Breaks

nn Hardware component generated for each function Hardware component generated for each function
nn A called function is instantiated as a hardware component in A called function is instantiated as a hardware component in

calling functioncalling function

26
Copyright Sumit Gupta 2003

HTGHTG DFGDFGGraph VisualizationGraph Visualization

27
Copyright Sumit Gupta 2003

Resource Utilization GraphResource Utilization Graph

SchedulingScheduling

28
Copyright Sumit Gupta 2003

Example of Example of ComplexComplex HTGHTG
nn Example of a real design: Example of a real design:

MPEGMPEG--1 pred2 function1 pred2 function
nn Just for demonstration; you are Just for demonstration; you are

not expected to read the textnot expected to read the text

nn Multiple nested loops and Multiple nested loops and
conditionalsconditionals

29
Copyright Sumit Gupta 2003

ExperimentsExperiments
nn Results presented here forResults presented here for

nn PrePre--synthesis transformationssynthesis transformations
nn Speculative Code MotionsSpeculative Code Motions
nn Dynamic CSEDynamic CSE

nn We used We used SPARKSPARK to synthesize designs derived from to synthesize designs derived from
several industrial designsseveral industrial designs
nn MPEGMPEG--1, MPEG1, MPEG--2, GIMP Image Processing software2, GIMP Image Processing software
nn Case StudyCase Study of Intel Instruction Length Decoderof Intel Instruction Length Decoder

nn Scheduling ResultsScheduling Results
nn Number of States in FSMNumber of States in FSM
nn Cycles on Longest Path Cycles on Longest Path

through Designthrough Design

nn VHDL: Logic Synthesis VHDL: Logic Synthesis
nn Critical Path Length (ns)Critical Path Length (ns)
nn Unit AreaUnit Area

30
Copyright Sumit Gupta 2003

Target ApplicationsTarget Applications

1501503535221111GIMP GIMP
tilertiler

2602606161441818MPEGMPEG--2 2
dp_framedp_frame

2872874545661111MPEGMPEG--1 1
pred2pred2

12312317172244MPEGMPEG--1 1
pred1pred1

of # of
OperationsOperations

Non# Non--Empty Empty
Basic BlocksBasic Blocks

of # of
LoopsLoops

of Ifs# of IfsDesignDesign

31
Copyright Sumit Gupta 2003

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

+ Speculative Code Motions

+ Pre-Synthesis Transforms

+ Dynamic CSE

MPEG-1 Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

Scheduling & Logic Synthesis ResultsScheduling & Logic Synthesis Results

Non-speculative CMs: Within
BBs & Across Hier Blocks

42%

10%

36%

36%

8%

39%

32
Copyright Sumit Gupta 2003

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

+ Speculative Code Motions

+ Pre-Synthesis Transforms

+ Dynamic CSE

MPEG-1 Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

Scheduling & Logic Synthesis ResultsScheduling & Logic Synthesis Results

Non-speculative CMs: Within
BBs & Across Hier Blocks

42%

10%

36%

36%

8%

39%

Overall: 63Overall: 63--66 % improvement in Delay66 % improvement in Delay

Almost constant Area Almost constant Area

33
Copyright Sumit Gupta 2003

Non-speculative CMs: Within
BBs & Across Hier Blocks

+ Speculative Code Motions

+ Pre-Synthesis Transforms

+ Dynamic CSE

Scheduling & Logic Synthesis ResultsScheduling & Logic Synthesis Results
MPEG-2 DpFrame Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

GIMP Tiler Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

14%

20%
1%

33%

41%

52%

34
Copyright Sumit Gupta 2003

Non-speculative CMs: Within
BBs & Across Hier Blocks

+ Speculative Code Motions

+ Pre-Synthesis Transforms

+ Dynamic CSE

Scheduling & Logic Synthesis ResultsScheduling & Logic Synthesis Results
MPEG-2 DpFrame Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

GIMP Tiler Function

0

0.2

0.4

0.6

0.8

1

1.2

Longest Path(l
cyc)

Critical Path(c
ns)

Total Delay (c*l) Unit Area

14%

20%
1%

33%

41%

52%

Overall: 48Overall: 48--76 % improvement in Delay76 % improvement in Delay

Almost constant Area Almost constant Area

35
Copyright Sumit Gupta 2003

Case Study: Case Study: IntelIntel Instruction Length DecoderInstruction Length Decoder

Stream of
Instructions

Instruction Length Decoder

First
Insn

Second
Insn

Third
Instruction

Instruction BufferInstruction Buffer

36
Copyright Sumit Gupta 2003

Example Design: ILD Block from IntelExample Design: ILD Block from Intel

nn Case Study: A design derived from the Case Study: A design derived from the Instruction Length Instruction Length
DecoderDecoder of the Intel Pentiumof the Intel Pentium®® class of processorsclass of processors
nn Decodes length of instructions streaming from Decodes length of instructions streaming from

memorymemory
nnHas to look at up to 4 bytes at a timeHas to look at up to 4 bytes at a time

nn Has to execute in Has to execute in one cycleone cycle and decode about 64 bytes and decode about 64 bytes
of instructionsof instructions

ØØ Characteristics of Microprocessor functional blocksCharacteristics of Microprocessor functional blocks
nn Low Latency: Single or Dual cycle implementationLow Latency: Single or Dual cycle implementation
nn Consist of several small computationsConsist of several small computations
nn Intermix of control and data logicIntermix of control and data logic

37
Copyright Sumit Gupta 2003

Basic Instruction Length Decoder:Basic Instruction Length Decoder:
Initial DescriptionInitial Description

Length Contribution 1

Need Byte 4 ?

Need Byte 2 ?

Need Byte 3 ?

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

=
+

+

+

Total Length
Of Instruction

Length Contribution 2

Length Contribution 3

Length Contribution 4

38
Copyright Sumit Gupta 2003

Instruction Length Decoder: Instruction Length Decoder:
Decoding 2Decoding 2ndnd InstructionInstruction

Length Contribution 1

Need Byte 4 ?

Need Byte 2 ?

Need Byte 3 ?

B
yt

e
3

B
yt

e
4

=
+

+

+

Total
Length
Of Insn

Length Contribution 2

Length Contribution 3

Length Contribution 4
B

yt
e

5

B
yt

e
6First

Insn

After decoding the
length of an
instruction

v Start looking from
next byte
v Again examine up
to 4 bytes to
determine length of
next instruction

39
Copyright Sumit Gupta 2003

Instruction Length Decoder:Instruction Length Decoder:
ParallelizedParallelized DescriptionDescription

Need Byte 4 ?

Need Byte 2 ?

Need Byte 3 ?

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

Length Contribution 1

Length Contribution 2

Length Contribution 3

Length Contribution 4

=
+

+

+

Total Length
Of Instruction

v Speculatively
calculate the length
contribution of all 4
bytes at a time
v Determine actual
total length of
instruction based
on this data

40
Copyright Sumit Gupta 2003

ILD: Extracting Further ParallelismILD: Extracting Further Parallelism
B

yt
e

1

B
yt

e
2

B
yt

e
3

B
yt

e
4

Byte 1
Insn.
Len
Calc

Byte 3
Insn.
Len
Calc

Byte 5
Insn.
Len
Calc

Byte 2
Insn.
Len
Calc

Byte 4
Insn.
Len
Calc

B
yt

e
5

v Speculatively
calculate length of
instructions assuming
a new instruction
starts at each byte
v Do this calculation
for all bytes in parallel
v Traverse from 1st

byte to last
v Determine length of
instructions starting
from the 1st till the last
v Discard unused
calculations

41
Copyright Sumit Gupta 2003

Initial:Initial: MultiMulti--Cycle Cycle SequentialSequential ArchitectureArchitecture

Length Contribution 1

Need Byte 4 ?

Need Byte 3 ?

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

Length Contribution 2

Length Contribution 3

Length Contribution 4

Need Byte 2 ?

42
Copyright Sumit Gupta 2003

ILD Synthesis: Resulting ArchitectureILD Synthesis: Resulting Architecture
Speculate Operations,

Fully Unroll Loop,
Eliminate Loop Index

Variable

43
Copyright Sumit Gupta 2003

ILD Synthesis: Resulting ArchitectureILD Synthesis: Resulting Architecture
Speculate Operations,

Fully Unroll Loop,
Eliminate Loop Index

Variable

Multi-cycle
Sequential

Architecture

Multi-cycle
Sequential

Architecture

Single cycle
Parallel

Architecture

Single cycle
Parallel

Architecture

nn Our toolbox approach enables us to develop a script to Our toolbox approach enables us to develop a script to
synthesize applications from different domainssynthesize applications from different domains

nn Final design looks close to the actual implementation done Final design looks close to the actual implementation done
by Intelby Intel

44
Copyright Sumit Gupta 2003

ConclusionsConclusions
nn Parallelizing code transformations enable a new range of Parallelizing code transformations enable a new range of

HLS transformationsHLS transformations
nn Provide the needed improvement in quality of HLS results Provide the needed improvement in quality of HLS results

nn Possible to be competitive against manually designed circuits. Possible to be competitive against manually designed circuits.
nn Can enable productivity improvements in microelectronic designCan enable productivity improvements in microelectronic design

nn Built a synthesis system with a range of code transformationsBuilt a synthesis system with a range of code transformations
nn Platform for applying Coarse and FinePlatform for applying Coarse and Fine--grain Optimizationsgrain Optimizations
nn ToolTool--box approach where transformations and heuristics can be box approach where transformations and heuristics can be

developeddeveloped
nn Enables the designer to find the right Enables the designer to find the right synthesis scriptsynthesis script for for

different application domainsdifferent application domains
nn Performance improvements of 60Performance improvements of 60--70 % across a number of designs70 % across a number of designs
nn We have shown its effectiveness on an Intel designWe have shown its effectiveness on an Intel design

45
Copyright Sumit Gupta 2003

AcknowledgementsAcknowledgements
nn AdvisorsAdvisors
nn Professors Rajesh Gupta, Professors Rajesh Gupta, NikilNikil DuttDutt, Alex , Alex NicolauNicolau

nn Contributors to SPARK frameworkContributors to SPARK framework
nn Nick Nick SavoiuSavoiu, , MehrdadMehrdad ReshadiReshadi, , SunwooSunwoo KimKim

nn Intel Strategic CAD Labs (SCL)Intel Strategic CAD Labs (SCL)
nn Timothy Timothy KamKam, Mike , Mike KishinevskyKishinevsky

nn Supported by Semiconductor Research Supported by Semiconductor Research
Corporation and Intel SCLCorporation and Intel SCL

Thank YouThank You

