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High Level SynthesisHigh Level Synthesis
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If Node
T Fc

x = a + b
c = a < b

j = d x g
l = e + x

x = a + b;
c = a < b;
if (c) then
d = e – f;

else
g = h + i;

j = d x g;
l = e + x;

Transform behavioral descriptions to RTL/gate level

From C to CDFG to Architecture
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x = a + b;
c = a < b;
if (c) then
d = e – f;

else
g = h + i;

j = d x g;
l = e + x;

Transform behavioral descriptions to RTL/gate level

From C to CDFG to Architecture

Problem # 1Problem # 1 :: Poor quality of HLS results beyond Poor quality of HLS results beyond 
straightstraight--line behavioral descriptionsline behavioral descriptions
Poor/No controllability of the HLSPoor/No controllability of the HLS
resultsresults

Problem # 2Problem # 2 ::
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OutlineOutline
nn Motivation and Background Motivation and Background 
nn Our Approach to Our Approach to ParallelizingParallelizing HighHigh--Level SynthesisLevel Synthesis
nn Code Transformations Techniques for PHLSCode Transformations Techniques for PHLS

nn Parallelizing Transformations Parallelizing Transformations 
nn Dynamic TransformationsDynamic Transformations

nn The PHLS Framework and Experimental ResultsThe PHLS Framework and Experimental Results
nn Multimedia and Image Processing ApplicationsMultimedia and Image Processing Applications
nn Case Study: Intel Instruction Length DecoderCase Study: Intel Instruction Length Decoder

nn Conclusions and Future WorkConclusions and Future Work
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HighHigh--level Synthesislevel Synthesis
nn WellWell--researched area: from early 1980’sresearched area: from early 1980’s

nn Renewed interest due to new system level design methodologies Renewed interest due to new system level design methodologies 
nn Large number of synthesis optimizations have been proposed Large number of synthesis optimizations have been proposed 

nn Either Either operation leveloperation level: algebraic transformations on DSP codes: algebraic transformations on DSP codes
nn or or logic levellogic level:  Don’t Care based control optimizations:  Don’t Care based control optimizations
nn In contrast, compiler transformations operate at both operation In contrast, compiler transformations operate at both operation level level 

(fine(fine--grain) and source level (coarsegrain) and source level (coarse--grain) grain) 
nn Parallelizing Compiler TransformationsParallelizing Compiler Transformations

nn Different optimization objectives and cost models than HLSDifferent optimization objectives and cost models than HLS
ØØOur aimOur aim: Develop Synthesis and Parallelizing Compiler : Develop Synthesis and Parallelizing Compiler 

Transformations that are “useful” for HLS Transformations that are “useful” for HLS 
nn Beyond scheduling results: in Beyond scheduling results: in Circuit Area and DelayCircuit Area and Delay
nn For large designs with For large designs with complex control flowcomplex control flow (nested (nested 

conditionals/loops)conditionals/loops)
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Our Approach: Our Approach: ParallelizingParallelizing HLS (PHLS)HLS (PHLS)

C Input VHDL
Output

Original 
CDFG

Optimized 
CDFG 

Scheduling
& Binding

Source-Level Compiler
Transformations

Scheduling Compiler & 
Dynamic Transformations

nn Optimizing Compiler and Parallelizing Compiler transformations Optimizing Compiler and Parallelizing Compiler transformations 
applied at applied at SourceSource--levellevel (Pre(Pre--synthesis) and during synthesis) and during SchedulingScheduling
nn SourceSource--level code refinement using level code refinement using PrePre--synthesissynthesis transformationstransformations
nn Code Restructuring by Code Restructuring by SpeculativeSpeculative Code MotionsCode Motions
nn Operation Operation replicationreplication to improve concurrencyto improve concurrency
nn DynamicDynamic transformations: transformations: exploit new opportunities during exploit new opportunities during 

schedulingscheduling
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PHLS Transformations PHLS Transformations 
Organized into Four GroupsOrganized into Four Groups

1.1. PrePre--synthesissynthesis: Loop: Loop--invariant code motions, Loop invariant code motions, Loop 
unrolling, CSEunrolling, CSE

2.2. SchedulingScheduling: Speculative Code Motions, Multi: Speculative Code Motions, Multi--
cycling, Operation Chaining, Loop Pipeliningcycling, Operation Chaining, Loop Pipelining

3.3. DynamicDynamic: Transformations applied dynamically : Transformations applied dynamically 
during scheduling: Dynamic CSE, Dynamic Copy during scheduling: Dynamic CSE, Dynamic Copy 
Propagation, Dynamic Branch BalancingPropagation, Dynamic Branch Balancing

4.4. Basic Compiler TransformationsBasic Compiler Transformations: Copy : Copy 
Propagation, Dead Code EliminationPropagation, Dead Code Elimination
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Speculative Code MotionsSpeculative Code Motions
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Dynamic TransformationsDynamic Transformations
nn Called Called “dynamic”“dynamic” since they are applied during since they are applied during 

scheduling (versus a pass before/after scheduling)scheduling (versus a pass before/after scheduling)
nn Dynamic Branch BalancingDynamic Branch Balancing
nn Increase the scope of code motionsIncrease the scope of code motions
nn Reduce impact of programming style on HLS resultsReduce impact of programming style on HLS results

nn Dynamic CSE and Dynamic Copy PropagationDynamic CSE and Dynamic Copy Propagation
nn Exploit the Operation movement and duplication due Exploit the Operation movement and duplication due 

to speculative code motionsto speculative code motions
nn Create new opportunities to apply these transformations Create new opportunities to apply these transformations 

nn Reduce the number of operations Reduce the number of operations 
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Dynamic Branch BalancingDynamic Branch Balancing
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Insert New Scheduling Step in Shorter BranchInsert New Scheduling Step in Shorter Branch
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Insert New Scheduling Step in Shorter BranchInsert New Scheduling Step in Shorter Branch
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Dynamic Branch Balancing inserts new scheduling stepsDynamic Branch Balancing inserts new scheduling steps
nn Enables Conditional SpeculationEnables Conditional Speculation
nn Leads to further code compactionLeads to further code compaction
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Dynamic CSEDynamic CSE: Going beyond Traditional CSE: Going beyond Traditional CSE

a = b + c;
cd = b < c;
if (cd)

d = b + c;
else

e = g + h;
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a = b + c;
cd = b < c;
if (cd)

d = b + c;
else

e = g + h;

C Description
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After Traditional CSE

If Node
T F

BB 0

nn We use notion of We use notion of DominanceDominance of Basic Blocksof Basic Blocks
nn Basic block Basic block BBiBBi dominates dominates BBjBBj if all control paths from if all control paths from 

the the initialinitial basic block of the design graph leading to basic block of the design graph leading to 
BBjBBj goes through goes through BBiBBi

nn We can eliminate an operation We can eliminate an operation opjopj in in BBjBBj using common using common 
expression in expression in opiopi if if BBiBBi dominates dominates BBjBBj

Dynamic CSEDynamic CSE: Going beyond Traditional CSE: Going beyond Traditional CSE
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New Opportunities for “New Opportunities for “DynamicDynamic” CSE” CSE
Due to Code MotionsDue to Code Motions
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CSE CSE not possiblenot possible since BB2 since BB2 
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CSE CSE possiblepossible now since now since 
BB0 does not dominate BB6BB0 does not dominate BB6
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New Opportunities for “New Opportunities for “DynamicDynamic” CSE” CSE
Due to Code MotionsDue to Code Motions

CSE CSE not possiblenot possible since BB2 since BB2 
does not dominate BB6does not dominate BB6

CSE CSE possiblepossible now since now since 
BB0 does not dominate BB6BB0 does not dominate BB6

If scheduler moves or duplicates an operation op, apply CSE on 
remaining operations using op

If scheduler moves or duplicates an operation If scheduler moves or duplicates an operation opop, apply CSE on , apply CSE on 
remaining operations using remaining operations using opop
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Condition Speculation & Dynamic CSECondition Speculation & Dynamic CSE
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Condition Speculation & Dynamic CSECondition Speculation & Dynamic CSE
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Condition Speculation & Dynamic CSECondition Speculation & Dynamic CSE
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nn Use the notion of dominance Use the notion of dominance 
by groups of basic blocksby groups of basic blocks
n All Control Paths leading up 

to BB8 come from either 
BB1 or BB2: =>=> BB1 and BB1 and 
BB2 BB2 together dominatetogether dominate BB8BB8
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Loop Shifting: An Incremental Loop Loop Shifting: An Incremental Loop 
Pipelining TechniquePipelining Technique
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Loop Shifting: An Incremental Loop Loop Shifting: An Incremental Loop 
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SPARK Parallelizing HLS FrameworkSPARK Parallelizing HLS Framework
nn C input and C input and SynthesizableSynthesizable RTL VHDL outputRTL VHDL output
nn ToolTool--box box of Transformations and Heuristicsof Transformations and Heuristics

nn Each of these can be developed independently of the otherEach of these can be developed independently of the other
nn Script based Script based control over transformations & heuristicscontrol over transformations & heuristics
nn Hierarchical Intermediate Representation (Hierarchical Intermediate Representation (HTGsHTGs))

nn Retains structural information about design (conditional blocks,Retains structural information about design (conditional blocks,
loops)loops)

nn Enables efficient and structured application of transformationsEnables efficient and structured application of transformations
nn Complete HLS tool:Complete HLS tool: Does Binding, Control Synthesis and Does Binding, Control Synthesis and 

Backend VHDL generationBackend VHDL generation
nn Interconnect Minimizing Resource BindingInterconnect Minimizing Resource Binding

nn Enables Enables Graphical VisualizationGraphical Visualization of Design description of Design description 
and intermediate resultsand intermediate results

nn 100,000+ lines of  C++ code100,000+ lines of  C++ code
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Synthesizable CSynthesizable C
nn ANSIANSI--C front end from Edison Design Group (EDG)C front end from Edison Design Group (EDG)
nn Features of C not supported for synthesisFeatures of C not supported for synthesis

nn PointersPointers
nn However, Arrays and passing by reference However, Arrays and passing by reference areare supportedsupported

nn Recursive Function CallsRecursive Function Calls
nn GotosGotos

nn Features for which support has not been implementedFeatures for which support has not been implemented
nn MultiMulti--dimensional arraysdimensional arrays
nn StructsStructs
nn Continue, BreaksContinue, Breaks

nn Hardware component generated for each function Hardware component generated for each function 
nn A called function is instantiated as a hardware component in A called function is instantiated as a hardware component in 

calling functioncalling function
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HTGHTG DFGDFGGraph VisualizationGraph Visualization
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Resource Utilization GraphResource Utilization Graph

SchedulingScheduling
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Example of Example of ComplexComplex HTGHTG
nn Example of a real design: Example of a real design: 

MPEGMPEG--1 pred2 function1 pred2 function
nn Just for demonstration; you are Just for demonstration; you are 

not expected to read the textnot expected to read the text

nn Multiple nested loops and Multiple nested loops and 
conditionalsconditionals
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ExperimentsExperiments
nn Results presented here forResults presented here for

nn PrePre--synthesis transformationssynthesis transformations
nn Speculative Code MotionsSpeculative Code Motions
nn Dynamic CSEDynamic CSE

nn We used We used SPARKSPARK to synthesize designs derived from to synthesize designs derived from 
several industrial designsseveral industrial designs
nn MPEGMPEG--1, MPEG1, MPEG--2, GIMP Image Processing software2, GIMP Image Processing software
nn Case StudyCase Study of Intel Instruction Length Decoderof Intel Instruction Length Decoder

nn Scheduling ResultsScheduling Results
nn Number of States in FSMNumber of States in FSM
nn Cycles on Longest Path Cycles on Longest Path 

through Designthrough Design

nn VHDL: Logic Synthesis VHDL: Logic Synthesis 
nn Critical Path Length (ns)Critical Path Length (ns)
nn Unit AreaUnit Area
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Target ApplicationsTarget Applications

1501503535221111GIMP GIMP 
tilertiler

2602606161441818MPEGMPEG--2 2 
dp_framedp_frame

2872874545661111MPEGMPEG--1 1 
pred2pred2

12312317172244MPEGMPEG--1 1 
pred1pred1

# of # of 
OperationsOperations

# Non# Non--Empty Empty 
Basic BlocksBasic Blocks

# of # of 
LoopsLoops

# of Ifs# of IfsDesignDesign
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Non-speculative CMs: Within 
BBs & Across Hier Blocks
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Non-speculative CMs: Within 
BBs & Across Hier Blocks
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Case Study: Case Study: IntelIntel Instruction Length DecoderInstruction Length Decoder
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Instruction Length Decoder

First
Insn
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Third
Instruction
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Example Design: ILD Block from IntelExample Design: ILD Block from Intel

nn Case Study: A design derived from the Case Study: A design derived from the Instruction Length Instruction Length 
DecoderDecoder of the Intel Pentiumof the Intel Pentium®® class of processorsclass of processors
nn Decodes length of instructions streaming from Decodes length of instructions streaming from 

memorymemory
nnHas to look at up to 4 bytes at a timeHas to look at up to 4 bytes at a time

nn Has to execute in Has to execute in one cycleone cycle and decode about 64 bytes and decode about 64 bytes 
of instructionsof instructions

ØØ Characteristics of Microprocessor functional blocksCharacteristics of Microprocessor functional blocks
nn Low Latency: Single or Dual cycle implementationLow Latency: Single or Dual cycle implementation
nn Consist of several small computationsConsist of several small computations
nn Intermix of control and data logicIntermix of control and data logic
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Basic Instruction Length Decoder:Basic Instruction Length Decoder:
Initial DescriptionInitial Description
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Instruction Length Decoder: Instruction Length Decoder: 
Decoding 2Decoding 2ndnd InstructionInstruction
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Need Byte 2 ?

Need Byte 3 ?

B
yt

e 
3

B
yt

e 
4

=
+

+

+

Total 
Length 
Of Insn

Length Contribution 2

Length Contribution 3

Length Contribution 4
B

yt
e 

5

B
yt

e 
6First

Insn

After decoding the 
length of an 
instruction

v Start looking from 
next byte
v Again examine up 
to 4 bytes to 
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Instruction Length Decoder:Instruction Length Decoder:
ParallelizedParallelized DescriptionDescription
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bytes at a time
v Determine actual 
total length of 
instruction based 
on this data
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ILD: Extracting Further ParallelismILD: Extracting Further Parallelism
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Initial:Initial: MultiMulti--Cycle Cycle SequentialSequential ArchitectureArchitecture
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ILD Synthesis: Resulting ArchitectureILD Synthesis: Resulting Architecture
Speculate Operations,

Fully Unroll Loop,
Eliminate Loop Index 

Variable
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ILD Synthesis: Resulting ArchitectureILD Synthesis: Resulting Architecture
Speculate Operations,

Fully Unroll Loop,
Eliminate Loop Index 

Variable

Multi-cycle 
Sequential

Architecture 

Multi-cycle 
Sequential

Architecture 

Single cycle 
Parallel

Architecture 

Single cycle 
Parallel

Architecture 

nn Our toolbox approach enables us to develop a script to Our toolbox approach enables us to develop a script to 
synthesize applications from different domainssynthesize applications from different domains

nn Final design looks close to the actual implementation done Final design looks close to the actual implementation done 
by Intelby Intel
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ConclusionsConclusions
nn Parallelizing code transformations enable a new range of Parallelizing code transformations enable a new range of 

HLS transformationsHLS transformations
nn Provide the needed improvement in quality of HLS results Provide the needed improvement in quality of HLS results 

nn Possible to be competitive against manually designed circuits. Possible to be competitive against manually designed circuits. 
nn Can enable productivity improvements in microelectronic designCan enable productivity improvements in microelectronic design

nn Built a synthesis system with a range of code transformationsBuilt a synthesis system with a range of code transformations
nn Platform for applying Coarse and FinePlatform for applying Coarse and Fine--grain Optimizationsgrain Optimizations
nn ToolTool--box approach where transformations and heuristics can be box approach where transformations and heuristics can be 

developeddeveloped
nn Enables the designer to find the right Enables the designer to find the right synthesis scriptsynthesis script for for 

different application domainsdifferent application domains
nn Performance improvements of  60Performance improvements of  60--70 % across a number of designs70 % across a number of designs
nn We have shown its effectiveness on an Intel designWe have shown its effectiveness on an Intel design
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