

Co-Design and Co-Verification using a Synchronous Language

Satnam Singh Xilinx Research Labs

Software

Hardware

DDIAAS: DDIAAASSANDIA	r	4 Ø X .	34 		757252EC; 7522EE;
CONDE	HSIC	HSIO	HSIO	HSIO	
BRAM					BRAM
I BRAM	1 BRAM		1 BRAM		I BRAM
M BRAN	M BRAN	N BRAN			d BRAN
ERAM BRAN	BRAM BRAN	BRAM BRAN	CPL		ERAM ERAN
RAM BRAM	RAM BRAM	RAM BRAM			RAM BRAM
I BRAM	A BRAM B	A BRAM B			/ BRAM B
RAM BRAN	BRA	BRAN	BRAN	BRA	RAM BRAN
	HSIO	HSIC	HSIO	HSIO	

Virtex-II PRO

Device	Array Size	Logic Gates	PPCs	GBIOs	BRAMs
2VP2	16 x 22	38K	0	4	12
2VP4	40 x 22	81K	1	4	28
2VP7	40 x 34	133K	1	8	44
2VP20	56 x 46	251K	2	8	88
2VP50	88 x 70	638K	4	16	216

	56x	×46
CONTRA DCM HSID DCM HS	10 11	
BFAM		
M BRAM BRAM BRAM	M BRAM	M BRAM BRAM M BRAM M BRAM
AM GRA AM GRA AM BRA	AM URA	AM BRAI AM BRAI AM BRAI AM BRAI
SRAM BR	ND MAND	BRAM BR
	Maha Maha	
	AND MAN	
M BRAM	M GRAM	M BRAM M BRAM M BRAM
AM BRA	APD MAP	Tam BRA
CRAM C	D Wahd	ERAM E
BRAM		BRAM
COMPARENT HSID	10	HSIC DCM HSIC HSIC

Formal Techniques Project

- Domain specific languages for hardware design and verification (Lava) and cryptology (Cryptol).
- Formal methods for CAD (routing) and dynamic reconfiguration (reconfiguration controllers).
- Formal notations/representations for HW/SW co-design and verification (e.g. Esterel)
- Property checking (PSL/Sugar)
- IP-reuse (more powerful type systems la de Alfaro and Henzinger)

Problems Challenges

- Customer requirements for migrating software into hardware ("salmon effect"):
 - determinism: multiple SW processes on RTOS vs. genuinely concurrent HW
 - verification
 - isolation
- Customer requirements to trade-off HW/SW partitioning for products at different price points.
- Requirements for verification of SW+HW
- Safe Dynamic Reconfiguration
- Verification of control-based systems

LocalLink (Point to Point)

E XILINX

Aurora (Link Layer Protocol)

TX of 10 Gigabit Ethernet MAC

Verify RX Control Signals

Safe Dynamic Reconfiguration

JPEG2000 Platform

Video Monitoring Application

Bus Based Reconfiguration

Bus Based Reconfiguration

Bus Based Reconfiguration

Single Specification for Hardware and Software

Embedded Developer Kit

Configuration

FSM Specification

Write to memory as soon as Addr and Data have arrived. Wait for memory Latency before iterating. Restart behavior each Replay.

Esterel Specification

Write to memory as soon as Addr and Data have arrived. Wait for memory Latency before iterating. Restart behavior each Replay.

loop
 abort
 { await Addr || await Data };
 emit Write(funcW(?Addr,?Data));
 await Latency tick
 when Replay
end loop

FIFO Extract

```
{ // equation style
 sustain{
   ReadEmpty = Read and pre(FifoIsEmpty)
   FifoIsEmpty = if (?Entries = 0) }
  // imperative style
  every DeltaEntries do
    emit next ?Entries <= ?Entries
                   + ?DeltaEntries;
  end every
```

Concurrent Loops

Orthogonality

- Orthogonal language constructs for:
 - Sequencing
 - Concurrency
 - Waiting
 - Pre-emption
- Freely mixable at any level.
- "Things are only written once." Gérard Berry.

Esterel Studio

Creating design

Via Safe State Machines

Via Esterel code

loop [await A || await B]; emit O each R

Signals—	Waves-
Time RESET	0 1787 ns 3574 ns
TICK	0 1 2 3 4 5 6 7 8 9 10
CLOCK	
A0	
A1	
A2	
A3	
A4	
A5	

EXILINX

	-click button to set	the inputs and to select p	roperties to verify in th	ne tabs below	
Outputs	Environment A	ssertions External Ob	servers Settings		
Model (G0 G1 G2 H1 H2 P Q R S	outputs				
				Reset C	Outputs
lesults			[Verify	Abort
	Туре	Name	Status	Counter ex	ample scenario
c	output	НО	Never emitted		

Code generation

Hardware UART XC2V1000

Direct use in SoC

Soft UART MicroBlaze XC2V1000

sender

parallel to serial shift

receive

serial to parallel

UART without bus interface

OPB Protocol

UART with OPB Interface

Generated circuit

Comparison with Original CoreGen IP

Verification by simulation

Signals		Waves																
Time					36 ns				72 ns			1	08 ns			1	44 ns	
CLOCK	=0				பா											บบบ		лл
RESET	=0																	
TICK	=2	0 1 2	3 4 5	678	9 10	11 12	13 14 19	5 16 13	7 18 19	20 21 2	22 23 24	1 25 26	27 28	29 30 31	32 3	3 34 35	i 36 37	38 39 4
system/OPBBus/DBus	=0	X+ 0	1	0														
system/OPBBus/DBus_r	=0	X+ 0																
system/OPBBus/ABus	=0	X+ 0	64	128	78	65	79	129	79	66	77	130	78	67	78	131	76	68
system/OPBBus/RNW	=0																	
system/OPBBus/select	=0																	
system/OPBBus/xferAck	=0																	
system/OPBBus/errAck	=0																	
system/OPBBus/retry	=0																	
system/OPBBus/toutSup	=0																	
system/OPBBus/timeout																		
system/Master[0].request	: =1																	
system/Master[0].grant	=0																	ſ
system/Master[0].select	=0																	
system/Master[0].RNW			L .												_			
system/Master[1].request	: =1																	
system/Master[1].grant	=1																	
system/Master[1].select	=0																	
system/Slave[0].retry																		
system/Slave[0].xferAck	=0																	
system/Slave[0].errAck	=0																	
system/Slave[0].toutSup	=0																	
system/Slave[0].DBus_o	=XXX	XXX	0															
system/Slave[1].select	=0																	
system/Slave[1].xferAck	=0																	
system/Slave[1].errAck	=0																	
system/Slave[1].retry	=0																	
																	1	1

Verification with Observers

Verification engines

- 2 proof engines available inside Esterel Studio
 - Built-in verifier : TiGer
 - BDD technique
 - Prover Plug-in
 - SAT technique

🎤 fifo11	Configurat	ion [Simulat	tion]		×
General	Code Gen	Coverage	Verification	Enviro	∢ ►
• Us	e Prover SL p	lug-in (SAT)			
	Global veri	fication			
	C Bug chasin	ig strategy			
	🗖 Timeout (r	minut 1			
	o built in uori				
	- Droportioe pr	ner (BDD) :e-conditione -			
	 Global eva 	luation			
	C Sten-hv-st	en calculation			
		op calcalater			
🕴 🕴 See I	Environment t	ab for addition	hal Verification	I E	
Help		OK	<u>C</u> ancel	Apply	

Formal verification

Of the FIFO :

proving that only a read access can make it exit the "full" state

Proven in less than 2 seconds

Specification of master behavior ...

... slave

and arbiter

OPB Protocol violations

e.g. Checking that RNW doesn't change during a transaction :

Formal verification

Of the OPB slave interface :

proving that it won't cause bus timeouts

Туре	Name	Status
observer	observ_xferac_BUG	Always Absent

Proven in less than 2 seconds

Formal verification

Of the FIFO : proving that only initialized data is returned

Interactive Deadlock Demo

Other examples (LocalLink, Aurora, ...)

Positive Conclusions

- Control-based calculations can be implemented in hardware using a software style specification in Esterel ("computing without processors").
- Synchronous observers provide an additional verification technique to simulation, assertion languages (Sugar/OpenVERA etc.) and permits co-verification.
- Co-synthesis allows HW/SW trade-offs to be explored.
- VHDL/RTL provide poor interface between high systems and back-end tools.

Next Steps

- Currently working on:
 - Xilinx Link Layer protocol (LocalLink, Aurora).
 - TX portion of 10 gigabit ethernet MAC.
- Wire-speed high level processing of gigabit and 10-gigabit traffic.
- Language enhancements to better support HW design.
- Interface synthesis (a la CoWare)
- Control for System Generator

System Generator

