Software Synthesis and Co-Design
based on an Asynchronous
Concurrency Model

Bill Lin
Electrical and Computer Engineering

University of California, San Diego
billlin@ce.ucsd. edu

Acknowledgments

Industrial interactions
— Qualcomm Inc.
— Hughes Network Systems
— Nokia Design Center

Group members:
— Ranjita Bhagwan
— James Hurt
— Andrew May
— Xin Wang
— Xiaohan Zhu

Picasso Project

Billion Transistors Era

TI'sroadmap for 2001 [EB News, 8/31/98]
* 0.07nmm effective channel length

* Copper interconnect

* 1 GHz clock freguency

=400 million transistors on a single chip!

ARMOTDMI, latest 32-bit ARM RISC CPU
e 111K transistors

=400 million transistors = 3,603 ARM9 CPUs

System-on-a-Chip

Baseband Interface :
i Flaxibility Allows
OakDSPCore: Moo T
Base band amory
Signal
Processing ROM
Speech Me mory
Codec i & | e
Hard Radio I 4 | Reduced Chip Count
s b | e
cele rators Packaging
TinyRISC 1P
Protocol Stack
User Interface Digital
and Periphieral Logic
Control
RAM
Band sp'-"“" | ';';ﬂmm [DAC 2 i
ee [—y SiM
Rz=h Battery Gap |losillator|| PLL An2los| | | Card
Single-Chlp G5M Baseband Frocessor

Single-Chip Digital Baseband Processor

Outline

Model of computation
Software synthesis

Hardware synthesis
Hardware/software co-design

Models of Computation

User’s Perspective

Asynchronous Models

e Java, Modula-3, Ada,
Occam (CSP) ...
* used for concurrent software
o supported by multi-tasking OS

 VHDL, Verilog: hardware e DSP designs

o Esterd: reactive programming | ¢ hardware: Cathedral, Hyper, ...

software synthesis, logic o system synthesis, software:
synthesis Ptolemy, Cossap, SPW, ...

Synchronous Models Data-Fow Models

Programming Model

* Modd =“C" + CSP
— C-like basic constructs: easy to learn.

— CSP (Concurrent Sequential Processes) [Hoare' 85]
model of concurrency and communication. Formally

and rigorously defined.

Communication: send and recelve along channels

> |

Programming Model

P1 (i nput chan(int) a, P2 (input chan(int) b,
out put chan(int) b) out put chan(int) a)
{ {
int x, t; int y, z = 0;
for () { for (;:) {
X = <-a; [/l receive a<- = 10; // send
I1f (x <0) { y = <-b; // receive
X =10 - Xx; z = (z +y) % 345;
} else { }
x = 10 + x; }
}
b<- = x; // send
}
}

Programming Model

* True concurrent threads of control with
conditional execution and data-dependent loops

* Can model both control and data computations

Outline

Mode of computation
Software synthesis

Hardware synthesis
Hardware/software co-design

Traditional Approach

* Rea-Time Operating Systems (RTOS) widely
used to support multi-tasking, but ...

On-chip Task|Task| ... [Task
RAM = $$$
RTOS
Portability
depends
on RTOS

Context-switching
and communication
= performance
overhead

* Alternative approach: statically schedule the
computation at compile-time

Main Contribution

* Static scheduling
— Input: CSP-based model
— Output: Ordinary sequential C

* Advantages
— Portable to different processors with conventiona C
compilers

— Avoids memory and performance overhead of RTOS
— Compiler optimizations across processes

Intermediate Representation

* Hierarchical construction using Petri net algebra
[DAC 94, ISSS 97]

b<- =X

Synthesis Procedure

Systematically generate acyclic Petri net segments

Statically schedule operations (transitions) in each
segment

Generate control-flow graph induced by static
schedule

Generate C code from the control-flow graph

Maximal Expansions

* Cut-off places correspond to set of places
encountered when a cycle has been reached

Cut-off
places

* Corresponding acyclic Petrl net segment is called
aMaximal Expansion with respect to m

Cut-Off Markings

* Reachable markings from m with no enabled
transitions: CM (E)

* eg. m=(pl,p2), CM(E) ={ (p1,p2), (p3 p4) }

pl p2 pl
a g
p3 p3
b d h
' J

pl O p2 p3

Expansion on New Markings

* Until no new cut-off markings. Convergence
guaranteed. e.g. m= (p3,p4), CM(E) ={(p3,p4)}.

Static Schedule

* Definition: p: T -> N suchthat if t; precedest,,
then p(ty) < p(ty)

i pE
i“:

* Given p, use modified
‘)—f & Petri net firing rulesto
'O Oz ez generate reachability graph

Optimized Code Generation

* Code optimization across processes possible

gener at ed- program () gener at ed- program ()
{ {
int x, y, z = 0; int z = 0;
plp2: plp2:
X = 10; z = (z + 20) % 345;
If (x <10) x = 10 - x; goto plpZ;
else x = 10 + x; }
y = X,
z = (z +vy) % 345;
goto plpZ;
}

e.g. after constant propagation
* Sophisticated state-of-the-art optimizing C
compilers can exploit instruction-level parallelism
(e.g. super-scalar, pipelined, VLIW, EPIC CPUSs)

Experimental Results

* RC5 encryption chain example

A=ROTL(A*B, A) +5[2*i] ;
B=ROTL(B*A, B) +5[2*1 +1] ;
| ++:

}

Qut

Inl [l r = # of rounds
while (I <=7r1) {

* Contains data-dependent |oops and mixed control-
data computations

Implementation and Results

* |mplementation: C generator
— Synthesis = pre-processor to C
— Threads = multi-tasking using C + Solaris Threads (can
port to other thread packages or RTOS)

* Results
Size|Synthesis| Threads
2MB 2.0 34.7
8MB 6.1 103.5

32MB 21.7 554.5
Rate|1.51MB/s| 58KB/s

Java Generator

* Synthesis
— Generate Javainstead of C
— No usage of Java Threads and Monitors
— Only need (Embedded) JavaVM “ minus’ Java Threads
and Monitors

* Threads

— Processes and channels mapped to Java Threads and
Monitors

— Need Java VM that supports Java Threads and
Monitors

Outline

Mode of computation
Software synthesis

Hardware synthesis
Hardware/software co-design

Hardware Synthesis

* Procedure
— Group processes together into Petri nets (degenerate

Case. one process, one Petri net)
N1

> >

— Apply handshake expansion to each Petri net for
external communications

— Apply static scheduling of each Petri net to synthesize
state machine

— Convert state machine to behavioral VHDL (Verilog)
— Apply VHDL (Verilog) synthesis

Handshake Expansion

* Examples:
— request / acknowledge protocol
— sender_ready / recelver_ready protocol
— on-chip bus protocols

chan

req)
C1l ||| C2

dat a >

Hardware Synthesis

* Commercial tools based on earlier high-level
synthesis research

— IMEC, Berkeley, IBM, Irvine, CMU, USC, ...
* Cycle-true synthesis (high-level RT synthesis)

— retains one-to-one correspondence between states and
clock cycles

* Behavioral synthesis
— Introduces “ micro-cycles’ as extra degree of freedom

Embedding VHDL / Verilog

native Pl(input chan(int) a, b,
out put chan(int) c);

native P4(input chan(int) a);

P2(1 nput chan(int) a,
out put chan(int) b, c) {

} .

P3(1 nput chan(int) a,
out put chan(int) b, c) {

} .

system (i nput chan(int) cin,
out put chan(int) cout)
{
chan(int) c1, c2, c3;
par {
Pl (cin, cl, c2);
P2 (c2, cl1, c3);
P3 (c3, c4, cout);
}
}

* Embedded VHDL /
Verilog component is
encapsulated using
handshake protocol

cout

Outline

Mode of computation
Software synthesis

Hardware synthesis
Hardware/software co-design

Problem

i application task | task task
program i
Embedded : ,
Red-Time |/O drivers real-time OS
Software ¢ ¢
Program Program
DSP core RAM NP core RAM | |a/m
&
ﬁ High-Speed || 5o | [DIA
ASIC HW RAM
Hardware: Circuitry accelerators
Gates & Glue Logic | | Host interface
Macros

CoWare Approach

CoWare = C compilation + HDL synthesis

+ |nterface Synthesis
[IEEE’'97, DAES 97, DAC’ 96, EuroDAC’ 96]

11 C” 11 VH DL” 11 VH DL”
C|..|IC
app. code app. app.
Drivers RTOS |nterface |Interface
DSP| M nmP | M M S
1/O unit 1/O unit|| " || ASIC
\\\ //
Y " s
< || — f 1=100Mhz
f 2=200M hz
System ar chitecture

New Approach

Permits direct programming of software and
nardware components when appropriate

Permits the embedding of C/ Javaand VHDL /
Verilog for the development of software and
hardware components, respectively, when
appropriate

Permits the use of model as a scripting language

to glue together components, including non-trivial
glue logic behavior

Builds upon interface synthesis and co-simulation
solutions from CoWare project

Putting 1t all Together

Concurrent Specification,
Including embedding of C/ Java code
and VHDL / Verilog components

'l' | ".ﬂ” Ly .
I-: b if - _I .:-i-..‘ .‘ ’._. -: 7 H
;
i . gm‘rnum ‘ {l . Reduced Chip Count
it l H and Chip Scale
0 = ,.T.,a,, Packaging
.

Software Hardware
Synthesis Synthesis
C/ Java VHDL / Verilog
Compilation Synthesis
Interface Synthesis

I8 Fle uhquIm
: +.- N':L-' Platform Reus
g F 8% Across Standa vds

Dual Core
Co-Emulatian

Thank You

billl1 n@ce. ucsd. edu

