
Software Synthesis and Co-Design
based on an Asynchronous

Concurrency Model

Bill Lin
Electrical and Computer Engineering
University of California, San Diego

billlin@ece.ucsd.edu

Acknowledgments

• Industrial interactions
– Qualcomm Inc.
– Hughes Network Systems
– Nokia Design Center

• Group members:
– Ranjita Bhagwan
– James Hurt
– Andrew May
– Xin Wang
– Xiaohan Zhu

Picasso Project

Billion Transistors Era

TI’s roadmap for 2001 [EB News, 8/31/98]
• 0.07µm effective channel length
• Copper interconnect
• 1 GHz clock frequency
F 400 million transistors on a single chip!

ARM9TDMI, latest 32-bit ARM RISC CPU
• 111K transistors
F 400 million transistors = 3,603 ARM9 CPUs

System-on-a-Chip

Single-Chip Digital Baseband Processor

Outline

• Model of computation
• Software synthesis
• Hardware synthesis
• Hardware/software co-design

Models of Computation
User’s Perspective

• Java, Modula-3, Ada,
 Occam (CSP) …
• used for concurrent software
• supported by multi-tasking OS

• VHDL, Verilog: hardware
• Esterel: reactive programming
 software synthesis, logic
 synthesis

• DSP designs
• hardware: Cathedral, Hyper, …
• system synthesis, software:
 Ptolemy, Cossap, SPW, ...

Asynchronous Models

Synchronous Models Data-Flow Models

Programming Model

• Model = “C” + CSP
– C-like basic constructs: easy to learn.
– CSP (Concurrent Sequential Processes) [Hoare’85]

model of concurrency and communication. Formally
and rigorously defined.

Communication: send and receive along channels

Programming Model

P1 (input chan(int) a,
 output chan(int) b)
{
 int x, t;
 for (;;) {
 x = <-a; // receive
 if (x < 0) {
 x = 10 - x;
 } else {
 x = 10 + x;
 }
 b<- = x; // send
 }
}

P2 (input chan(int) b,
 output chan(int) a)
{
 int y, z = 0;
 for (;;) {
 a<- = 10; // send
 y = <-b; // receive
 z = (z + y) % 345;
 }
}

P1 P2

Programming Model

• True concurrent threads of control with
conditional execution and data-dependent loops

• Can model both control and data computations

Outline

• Model of computation
• Software synthesis
• Hardware synthesis
• Hardware/software co-design

Traditional Approach

• Real-Time Operating Systems (RTOS) widely
used to support multi-tasking, but …

• Alternative approach: statically schedule the
computation at compile-time

CPU

RTOS

Task Task Task...
Context-switching

and communication
= performance

overhead

On-chip
RAM = $$$

Portability
depends

on RTOS

Main Contribution

• Static scheduling
– Input: CSP-based model
– Output: Ordinary sequential C

• Advantages
– Portable to different processors with conventional C

compilers
– Avoids memory and performance overhead of RTOS
– Compiler optimizations across processes

Intermediate Representation

• Hierarchical construction using Petri net algebra
[DAC’94, ISSS’97]

a<-=10

p2

y=<-b

x=<-a

p1

b<-=x

p2

y=x

x=10

p1

Synthesis Procedure

• Systematically generate acyclic Petri net segments
• Statically schedule operations (transitions) in each

segment
• Generate control-flow graph induced by static

schedule
• Generate C code from the control-flow graph

Maximal Expansions

• Cut-off places correspond to set of places
encountered when a cycle has been reached

• Corresponding acyclic Petri net segment is called
a Maximal Expansion with respect to m

a
p1

b d

c e

g
p2

h
p3

p4
k

l

i

j

f

a
p1

b d

c e

g
p2

h
p3

p4
k

l

i

j

f
p2’p1’ p3’

Cut-off
places

Cut-Off Markings

• Reachable markings from m with no enabled
transitions: CM(E)

• e.g. m = (p1,p2), CM(E) = { (p1,p2), (p3,p4) }

a

p1

b d

c e

g

p2

h

p3

p4

k

l

i

j

f

p2’p1’ p3’

a

p1

b d

c e

g

p2

h

p3

p4

k

l

i

j

f

p2’p1’ p3’

Cut-off
marking

Expansion on New Markings

• Until no new cut-off markings. Convergence
guaranteed. e.g. m = (p3,p4), CM(E) = {(p3,p4)}.
Stop.

a
p1

b d

c e

h
p3

p4’

k

l

i

j

f

g
p2

p3’

p4

a
p1

b d

c e

h
p3

p4’

k

l

i

j

f

g
p2

p3’

p4

a
p1

b d

c e

h
p3

p4’

k

l

i

j

f

g
p2

p3’

p4

Static Schedule

• Definition: π : T -> N such that if t1 precedes t2,
then π(t1) < π(t2)

a

p1

b d

c e

g

p2

h

p3

p4
k

l

i

j

f

p2’p1’ p3’

a g

b h

c i c k e i e k

d h

j l

p1p2

f p3p4

• Given π, use modified
Petri net firing rules to
generate reachability graph

Optimized Code Generation

• Code optimization across processes possible

• Sophisticated state-of-the-art optimizing C
compilers can exploit instruction-level parallelism
(e.g. super-scalar, pipelined, VLIW, EPIC CPUs)

generated-program ()
{
 int x, y, z = 0;
p1p2:
 x = 10;
 if (x < 10) x = 10 - x;
 else x = 10 + x;
 y = x;
 z = (z + y) % 345;
 goto p1p2;
}

generated-program ()
{
 int z = 0;
p1p2:
 z = (z + 20) % 345;
 goto p1p2;
}

e.g. after constant propagation

Experimental Results

• RC5 encryption chain example

• Contains data-dependent loops and mixed control-
data computations

RC5
EncryptIn

Out RC5
Decrypt

...
// r = # of rounds
while (i <= r) {
 A=ROTL(A^B,A)+S[2*i];
 B=ROTL(B^A,B)+S[2*i+1];
 i++;
}
...

Implementation and Results

• Implementation: C generator
– Synthesis = pre-processor to C
– Threads = multi-tasking using C + Solaris Threads (can

port to other thread packages or RTOS)

• Results
Size ThreadsSynthesis

2MB
8MB

32MB

34.7
103.5
554.5

2.0
6.1

21.7
Rate 58KB/s1.51MB/s

Java Generator

• Synthesis
– Generate Java instead of C
– No usage of Java Threads and Monitors
– Only need (Embedded) Java VM “minus” Java Threads

and Monitors

• Threads
– Processes and channels mapped to Java Threads and

Monitors
– Need Java VM that supports Java Threads and

Monitors

Outline

• Model of computation
• Software synthesis
• Hardware synthesis
• Hardware/software co-design

Hardware Synthesis

• Procedure
– Group processes together into Petri nets (degenerate

case: one process, one Petri net)

– Apply handshake expansion to each Petri net for
external communications

– Apply static scheduling of each Petri net to synthesize
state machine

– Convert state machine to behavioral VHDL (Verilog)
– Apply VHDL (Verilog) synthesis

P1

P2

P3
N1 N2

Handshake Expansion

• Examples:
– request / acknowledge protocol
– sender_ready / receiver_ready protocol
– on-chip bus protocols

P1 P2chan

C1 C2
req
ack

data

Hardware Synthesis

• Commercial tools based on earlier high-level
synthesis research
– IMEC, Berkeley, IBM, Irvine, CMU, USC, …

• Cycle-true synthesis (high-level RT synthesis)
– retains one-to-one correspondence between states and

clock cycles

• Behavioral synthesis
– introduces “micro-cycles” as extra degree of freedom

Embedding VHDL / Verilog

• Embedded VHDL /
Verilog component is
encapsulated using
handshake protocol

native P1(input chan(int) a, b,
 output chan(int) c);

native P4(input chan(int) a);

P2(input chan(int) a,
 output chan(int) b, c) {
 …
}

P3(input chan(int) a,
 output chan(int) b, c) {
 …
}

system (input chan(int) cin,
 output chan(int) cout)
{
 chan(int) c1, c2, c3;
 par {
 P1 (cin, c1, c2);
 P2 (c2, c1, c3);
 P3 (c3, c4, cout);
 }
}

P2

P3

P1
cin

cout

c1

c2

c3

c4

Outline

• Model of computation
• Software synthesis
• Hardware synthesis
• Hardware/software co-design

Problem

DSP core Program
RAM µP core

I/O drivers real-time OS

task ...

ASIC
Circuitry

High-Speed
HW

accelerators

Glue Logic

application
program

Program
RAM

Data
RAM

task task

A/D
&

D/A

Host interface

Embedded
Real-Time
Software

Hardware:
Gates &
Macros

CoWare Approach

ASIC
M

I/O unit

System architecture

µPM

I/O unit

Drivers RTOS Interface

“C”
app. code C “VHDL”

app.

DSP

φ1=100Mhz

φ2=200Mhz

...

... C

ASIC

Interface

“VHDL”
app.

M

C VHDL

C VHDL

CoWare = C compilation + HDL synthesis
+ Interface Synthesis

[IEEE’97, DAES’97, DAC’96, EuroDAC’96]

New Approach

• Permits direct programming of software and
hardware components when appropriate

• Permits the embedding of C / Java and VHDL /
Verilog for the development of software and
hardware components, respectively, when
appropriate

• Permits the use of model as a scripting language
to glue together components, including non-trivial
glue logic behavior

• Builds upon interface synthesis and co-simulation
solutions from CoWare project

Putting it all Together

Concurrent Specification,
including embedding of C / Java code

and VHDL / Verilog components

VHDL / Verilog
Synthesis

C / Java
Compilation

Interface Synthesis

Software
Synthesis

Hardware
Synthesis

Thank You
billlin@ece.ucsd.edu

