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Carnegie
Mellon Outline

◆ Introduction
– Interconnect delay dominance
– Back-end models and analyses
– Front-end metrics

◆ Elmore delay
– Introduced in 1948
– Applied to digital IC problems in early 1980’s
– Somewhat ineffective for deep submicron (DSM)

◆ Probability Interpretation of Moments (PRIMO)
◆ Stable n-Pole Models (SnP)
◆ Conclusions
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◆ Metal resistance per unit length is increasing, while gate output
resistance is decreasing, with scaling

◆ Average wire lengths are not scaling, so portion of delay associated
with the interconnect is increasing

◆ Gate delay is further decreasing with increasing metal resistance
due to shielding effects

Interconnect Dominance
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Back-end Analyses

Extraction

Physical Design

Test Generation

Design Verification Timing Verification

Simulation Floorplanning

Logic Partitioning
Die Planning

Logic
Synthesis

Logic Design and
Simulation

Behavioral Level Design

◆ DSM interconnect
dominance impacts all
aspects of the top-down
design flow

Back-end
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◆ Model order reduction via moment matching can be used
effectively for interconnect verification

◆ Orthonormalized moments, or Krylov subspace methods were
recently proposed for increased numerical accuracy

Back-end Verification
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◆ Same as moment
matching if we have
infinite precision

◆ Can capture dozens
of dominant poles

◆ Approximations to
the 10’s of gigahertz
is straightforward

◆ Some issues remain
to be solved with
regard to passivity
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◆ But there are very few
applications which require
this level of detail

◆ There is a greater need for
improved interconnect
modeling at the front-end
and physical design levels
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Back-end Analyses

Extraction

Physical Design

Test Generation

Design Verification Timing Verification

Simulation Floorplanning

Logic Partitioning
Die Planning

Logic
Synthesis

Logic Design and
Simulation

Behavioral Level Design

◆ Catching all of the
interconnect problems at
back-end is too late!
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◆ Even with an approximate interconnect topology and values,
moment matching and Krylov subspace methods are
inappropriate for the front-end of design

◆ Higher order moments can be calculated at a fraction of the cost
[RICE] required to calculate the first one

◆ But calculating the delays requires nonlinear iterations

Front-end Metrics
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Mellon The Elmore Delay

◆ Metric of choice for front-end applications and performance-
driven physical design

◆ Explicit delay metric, yet can still capture interconnect resistance
effects

◆ Primarily applied to RC tree circuits [Penfield & Rubenstein]
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◆ Elmore (1948) proposed to treat the derivative of a monotonic
step response as a PDF, and estimate the median (50% delay
point) by the mean
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◆ Exact only if h(t) is symmetrical
◆ We’ve proven that RC tree impulse responses have positive

skew
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◆ The circuit response moments

are related to the Central Moments of the h(t) Distribution by:

◆ Roughly speaking:
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◆ Skew is a measure of the asymmetry

◆ We proved that all RC interconnect trees:
– have unimodal impulse responses, h(t)
– and that the h(t) distributions have positive skew

◆ It is then easily shown for such a distribution that

◆ The Elmore delay is an upper bound on the 50% step response delay

Elmore Delay Bound

negative zero positive

MeanMedianMode ≤≤



3/6/98 15

Carnegie
Mellon Elmore Bound

◆ Bounds get tighter toward the interconnect loads
◆ Repeated convolutions make the distributions more “normal” ---

positive skew decreases toward a constant value

impulse responses
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◆ Any input voltage with a unimodal derivative will also make the
response more normal (finite tin) --- and the first moment bound
still holds

◆ For finite rise times, the pulse response distribution becomes more
symmetrical as the rise time increases

◆ In the limit, the mean of the pulse response equals the median and
the Elmore delay becomes exact

◆ A large percentage of responses will fall into this category
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◆ The Elmore delay as a dominant time constant

◆ If one time constant dominates all others, and there are no low
frequency zeros, we can approximate the dominant pole by m1
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◆ This approximation only scales the step response delay by a
constant factor
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◆ Not a good approximation for
general DSM trees

◆ Worst case error for  busses
with near- and far-end loads

bus

◆ Works well when the rise time
is slow

◆ Or for balanced interconnects
such as clock trees

clk
tree
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◆ Given the following floorplan
for a µP clock tree, optimize
the metal widths in terms of
the Elmore delays to balance
the skew

◆ R and C per unit length
values are pre-layout
estimates
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◆ Widths for zero Elmore
skew produced 8 ps of
skew with moment-
matching models

◆ But correlations for
optimization of signal
paths are not as good

◆ Signal paths require
small absolute errors,
whereas clock trees
require only small
relative errors
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◆ For signal nets is would
appear that we should match
3 moments minimally

◆ Capture shapes for good
relative errors

◆ But we can’t afford nonlinear
iterations for most delay
metric applications

◆ Two potential approaches:
– PRIMO
– SnP

impulse responses
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◆ Extend Elmore’s idea to matching other distribution properties
◆ Requires selection of some representative distribution
◆ Incomplete gamma is similar to RC impulse responses

◆ Moment matching m1, µ2, and µ3 for time-shifted incomplete
gamma is provably stable
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◆ Since provably stable, a
gamma integral table can
be used for delays

◆ With rise time a 2D table
is required

◆ For this example the step-
delay error is < 1%
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◆ Gamma approximation
struggles for some cases

◆ DSM interconnects can have
complex low frequency zero
effects

◆ Step delay error is
underestimated by 8% for
this example
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◆ We can build provably
stable n-pole
approximations

◆ Driving point pole
approximations are
provably stable

◆ k’s are fitted by
matching moments at
the response nodes of
interest

◆ Generates stable n-
exponential distribution
model which permits
table lookup evaluation

RC Tree
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◆ A two-pole model, or double
exponential distribution
function, can be used with a
3D table to evaluate finite
rise time response delays

◆ Step delay error is less than
1.5% in this example
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◆ It can be shown that
three exponentials are
minimally required to fit
some unimodal impulse
responses

◆ S2P step delay error is
14% in this example

◆ But is a 4D table
practical?
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◆ On-chip inductance is becoming a reality for long lines
◆ Impulse responses are no longer unimodal
◆ Skew measure (µ3) can be used to control damping
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◆ The delays are
accurately predicted
by the moment metrics
once the damping is
controlled
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◆ Some progress has been made on more accurate delay
metrics

◆ But more work remains to be done for the most
difficult DSM problems

◆ Similar metrics for coupling are necessary
◆ But coupled line responses are provably not unimodal

for the general case


